
A Hybrid Approach to NER by MEMM and Manual Rules

Moshe Fresko Binyamin Rosenfeld Ronen Feldman
Computer Science Department, Data Mining Lab.

Bar-Ilan University
Ramat-Gan, 52900, Israel

+972-3-5317874

freskom1@cs.biu.ac.il, grurgrur@gmail.com, feldman@cs.biu.ac.il,

ABSTRACT
This paper describes a framework for defining domain specific
Feature Functions in a user friendly form to be used in a
Maximum Entropy Markov Model (MEMM) for the Named
Entity Recognition (NER) task. Our system called MERGE
allows defining general Feature Function Templates, as well as
Linguistic Rules incorporated into the classifier. The simple way
of translating these rules into specific feature functions are shown.
We show that MERGE can perform better from both purely
machine learning based systems and purely-knowledge based
approaches by some small expert interaction of rule-tuning.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Text analysis – Named
Entity Recognition, Information Extraction.

General Terms
Named Entity, Information, Document Collection, Statistical
Model, Empirical Model, Machine Learning, Maximum Entropy.

Keywords
Named Entity Recognition, Text Mining, Machine Learning,
Information Extraction, Maximum Entropy Markov Model.

1. INTRODUCTION
There are two traditional approaches to Named-Entity recognition
(NER): knowledge-based approach and machine learning
approach. Knowledge-based systems usually achieve better
accuracy, but require huge amounts of skilled labor by linguists
and domain experts. Because of this, the recent research in NER
is concentrated on machine learning techniques, which only
require a manually labeled training set of documents. The best
published ML-based systems perform on the level of knowledge-
based systems for many categories.

In this paper we present MERGE (Maximum Entropy Rule
Guided Extraction) – a hybrid NER system which combines
machine learning techniques, namely ME and manually written
simple rules. MERGE benefits from both approaches and can
outperform both manually written rules and standard machine
learning systems. The rule language of MERGE is quite simple
and the amount of necessary rule-writing is relatively small, as

most of the work is done by the ML part of the system.

2. MAXIMUM ENTROPY MODELING
A Maximum Entropy approach models a random process by
making the distribution satisfy a given set of constraints, and
making as few other assumptions as possible. The constraints are
specified as real-valued feature functions over the data points.
The expected value of each feature function under the ME
distribution must equal the empirical expected value of function
as found in the training dataset. In all other respects, the target
distribution should be as uniform as possible, which means it
must have the highest entropy. For our purposes, we use ME to
model the conditional probability distributions, which slightly
differ in the way expected values are calculated ([4]).

Let X be the set of conditions, usually very big, and Y the set of
possible outcomes. We assume that there is a true joint
distribution P(x,y), but we are interested only in modeling the
conditional P(y|x). For this purpose we can use a training set
{(xk,yk)}k=1..N generated by the true distribution, and a set of
features fi:X×Y→R. Typically, the features are binary and test for
specific conditions. It can be shown that the unique most uniform
distribution that satisfies all feature constraints has the form:

(*) ()
()

()1
| exp ,i i

i

p y x f x y
Z x

λ= ⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

where λi–s are the parameters chosen to maximize the likelihood
of the training data, and Z(x) is a normalization constant, which
ensures that for every x the sum of probabilities of all possible
outcomes is 1. The most common procedure for parameter
estimation is the Generalized Iterative Scaling algorithm ([5]).

2.1 Maximum Entropy Markov Models
A MEMM ([1]) consists of |Y| conditional ME models py’(y|x) =
p(y|x,y'), one for each y'. The model py’(y|x) estimates the
probability of appearance of the label y immediately after the
label y' in the context x. The probability of a whole label sequence
y = y1 y2… ym, given the sentence x = x1 x2… xm, is the product

()
1

1 1 1 1
1

0() ()|
i

m

y i i
i

p p y p xx y
−

+ +
=

= ⋅ ∏y x

The best tagging can be found using Dynamic Programming
similar to Vitterbi algorithm. The model p0(y|x) used at the
beginning of a sentence is separate.

Copyright is held by the author/owner(s).
CIKM’05, ctober 31–November 5, 2005, Bremen, Germany.
ACM 1-59593-140-6/05/0010.

3. SYSTEM DETAILS
3.1 Preprocessing
The preprocessing of any text is done according to external
definitions. First, the text is divided into tokens. A token is
defined by a regular expression in which for an English text
domain it might be in the form "[A-Za-z]+|[0-9]+|\S".

Then, each token is assigned its features according to the feature
templates. A template consists of a context rule – a binary test
upon the positions in the text. It can test the exact character value
of the current token and its neighbors, capitalization information,
membership in an external word list, arbitrary regular
expressions, externally supplied features like pos tags, etc. A
template can also define a generic context rule, such as “token
value”.

Each template defines a set of features – one feature for every
combination of an instantiated context rule and a category. The
features are always built in such a way that exactly one feature
from a template tests true at any text position. This implies that
the sum of all features is constant, satisfying the requirements of
the GIS algorithm. For example, one Feature Template may have
the following form:

FeatureTemplate : { (-1, Word) , (0, Capitalization) }

This template would generate a feature function for every
combination of the value "Word" feature at the previous token,
the value of "Capitalization" feature at the current token, and the
current tag. One such feature function might be:

f = { 1 if previous token is "in" and current token is Capitalized
 and current tag is Location
 0 otherwise }

For Tagging, the labels are assigned at the token level – each
word in a sentence is labeled by an entity type label or by label
None. For multi-token entities we label each token by the same
category label, making no distinction between beginning, middle,
or ending tokens of the entity.

3.2 MERGE Rule Definition
Defining specific rules is done via a simple pattern matching
language, with patterns working at the token level. A pattern
syntax is similar to the regular expressions syntax, but with tokens
instead of characters. Quantifiers *, +, ? are allowed, as well as
the grouping parentheses “(” “)”. The angular brackets “<>”
delimit the target entity. Features are generated for each token in
the delimited entity. The tokens are either specified directly, or
represented by token-classes of the form “[Boolean
expression]”.The expressions are simple token-attribute=value
checks, combined with logical operators &(and) |(or), and !(not).

Here is an example set of rules for some tricky organizations:
Rule: Organization {
 // to catch: Person of (the) Organization
: [cl=Capital] "of" "the"? < [cl=Capital]{1,3} >
 // to catch: company/firm/group called Xyz
: [wc=CompanyAlias] "called" < [cl=Capital]+ > }
WordClass: Country { france turkey israel … }
WordClass: CompanyAlias { company firm group … }

In our MUC-7 evaluation the list of published Word Classes are
used as feature functions themselves. Besides that, some intuitive

Word Classes are defined within the Rule-Development
framework, in order to use them as "wc" feature for Rule Writing.
As an example we had a Word Class wc=WeekDay, including the
words Sunday, Monday, etc. and it is used in a Rule:

Rule: Date { : < ["next"|"last"] > [wc=WeekDay] }
WordClass: WeekDay { sunday monday tuesday … }

The translation of Rules into a Feature Function is done by
checking the rule pattern at each token position. The above rule
for Date will be translated into feature function:

f = { 1 if current token is "next" or "last", and the next token is
 found in wc WeekDay, and current Tag is Date,
 0 otherwise }

For keeping the value M constant for each pair (x,y), we defined
also this same feature function for all the other possible tags.

4. EXPERIMENTS
We made an evaluation of our methodology on MUC-7 data set,
by checking the system performance on the whole possible
training data (350 documents). By adding some approximately 50
more rules the overall performance reached to 93.5% as shown in
Table 1, while overlapping match results come up to 95.4%. (In
overlapping-match, a entity is considered correct if at least one
word of it is tagged correctly) The lower overall performance is
due to other entity types which had slightly lower results.

Exact Match OverlappingMatch
Rec. Pre. F. Rec. Pre. F.

Org. 92.7 96.4 94.5 94.3 98.3 96.3
Per. 95.1 95.4 95.2 95.1 95.4 95.2
Loc. 92.3 98.4 95.2 92.9 99.0 95.9
All 91.2 95.9 93.5 93.0 97.8 95.4

Table 1. MUC7: After training with 350 documents.

We also compared our system to other successful models. We
run an implementation of Nymble ([2]) and TEG ([3]) on that
same corpus, which produced the results shown on Table.2.

HMM TEG Merge+Rules
Org. 87.8 90.9 93.6
Per. 80.5 91.8 93.7
Loc. 90.9 91.9 95.4
Avg. 86.4 91.5 94.2

 Table 2.Comparetive results for MUC7(without doc. Headers-Footers).

5. REFERENCES
[1] McCallum, A., Freitag, D., Pereira, F.: Maximum Entropy

Markov Models for IE and Segmentation. Proc. of the 17th
International Conference on Machine Learning. (2000)

[2] Bikel, D. M., Miller, S., Schwartz, R., Weischedel, R.:
Nymble: a high-performance learning name-finder.
Proceedings of ANLP-97. (1997) 194-201.

[3] Rosenfeld, B., Feldman, R., Fresko, M., Schler, J., Aumann,
Y.: TEG - A Hybrid Approach to Information Extraction.
Proc. of the 13th ACM. (2004)

[4] Berger, A., della Pietra, S., della Pietra, V.: A maximum
entropy approach to NLP. Comp.Ling. 22(1), (2004) 39-71.

[5] Darroch, J. N., Ratcliff., D.: Generalized iterative scaling for
log-linear models. Annals of Math.Stat.43(5):(1972)

