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ABSTRACT 
This paper describes a framework for defining domain specific 
Feature Functions in a user friendly form to be used in a 
Maximum Entropy Markov Model (MEMM) for the Named 
Entity Recognition (NER) task. Our system called MERGE 
allows defining general Feature Function Templates, as well as 
Linguistic Rules incorporated into the classifier. The simple way 
of translating these rules into specific feature functions are shown. 
We show that MERGE can perform better from both purely 
machine learning based systems and purely-knowledge based 
approaches by some small expert interaction of rule-tuning.   

Categories and Subject Descriptors 
I.2.7 [Natural Language Processing]: Text analysis – Named 
Entity Recognition, Information Extraction. 

General Terms 
Named Entity, Information, Document Collection, Statistical 
Model, Empirical Model, Machine Learning, Maximum Entropy. 

Keywords 
Named Entity Recognition, Text Mining, Machine Learning, 
Information Extraction, Maximum Entropy Markov Model. 

1. INTRODUCTION 
There are two traditional approaches to Named-Entity recognition 
(NER): knowledge-based approach and machine learning 
approach. Knowledge-based systems usually achieve better 
accuracy, but require huge amounts of skilled labor by linguists 
and domain experts. Because of this, the recent research in NER 
is concentrated on machine learning techniques, which only 
require a manually labeled training set of documents.  The best 
published ML-based systems perform on the level of knowledge-
based systems for many categories. 

In this paper we present MERGE (Maximum Entropy Rule 
Guided Extraction) – a hybrid NER system which combines 
machine learning techniques, namely ME and manually written 
simple rules. MERGE benefits from both approaches and can 
outperform both manually written rules and standard machine 
learning systems. The rule language of MERGE is quite simple 
and the amount of necessary rule-writing is relatively small, as 

most of the work is done by the ML part of the system. 

2. MAXIMUM ENTROPY MODELING 
A Maximum Entropy approach models a random process by 
making the distribution satisfy a given set of constraints, and 
making as few other assumptions as possible.  The constraints are 
specified as real-valued feature functions over the data points.  
The expected value of each feature function under the ME 
distribution must equal the empirical expected value of function 
as found in the training dataset.  In all other respects, the target 
distribution should be as uniform as possible, which means it 
must have the highest entropy. For our purposes, we use ME to 
model the conditional probability distributions, which slightly 
differ in the way expected values are calculated ([4]). 

Let X be the set of conditions, usually very big, and Y the set of 
possible outcomes. We assume that there is a true joint 
distribution P(x,y), but we are interested only in modeling the 
conditional P(y|x). For this purpose we can use a training set  
{(xk,yk)}k=1..N generated by the true distribution, and a set of 
features fi:X×Y→R. Typically, the features are binary and test for 
specific conditions. It can be shown that the unique most uniform 
distribution that satisfies all feature constraints has the form: 
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where λi–s are the parameters chosen to maximize the likelihood 
of the training data, and Z(x) is a normalization constant, which 
ensures that for every x the sum of probabilities of all possible 
outcomes is 1.  The most common procedure for parameter 
estimation is the Generalized Iterative Scaling algorithm ([5]). 

2.1 Maximum Entropy Markov Models 
A MEMM ([1]) consists of |Y| conditional ME models py’(y|x) = 
p(y|x,y'), one for each y'. The model py’(y|x) estimates the 
probability of appearance of the label y immediately after the 
label y' in the context x. The probability of a whole label sequence 
y = y1 y2… ym, given the sentence x = x1 x2… xm, is the product 
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The best tagging can be found using Dynamic Programming 
similar to Vitterbi algorithm. The model p0(y|x) used at the 
beginning of a sentence is separate.  
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3. SYSTEM DETAILS 
3.1 Preprocessing 
The preprocessing of any text is done according to external 
definitions. First, the text is divided into tokens. A token is 
defined by a regular expression in which for an English text 
domain it might be in the form "[A-Za-z]+|[0-9]+|\S". 

Then, each token is assigned its features according to the feature 
templates. A template consists of a context rule – a binary test 
upon the positions in the text.  It can test the exact character value 
of the current token and its neighbors, capitalization information, 
membership in an external word list, arbitrary regular 
expressions, externally supplied features like pos tags, etc. A 
template can also define a generic context rule, such as “token 
value”.   

Each template defines a set of features – one feature for every 
combination of an instantiated context rule and a category.  The 
features are always built in such a way that exactly one feature 
from a template tests true at any text position.  This implies that 
the sum of all features is constant, satisfying the requirements of 
the GIS algorithm. For example, one Feature Template may have 
the following form:  

FeatureTemplate : { ( -1, Word) , (0, Capitalization) } 

This template would generate a feature function for every 
combination of the value "Word" feature at the previous token, 
the value of "Capitalization" feature at the current token, and the 
current tag. One such feature function might be: 

f = { 1 if previous token is "in" and current token is Capitalized  
      and current tag is Location 
   0  otherwise } 

For Tagging, the labels are assigned at the token level – each 
word in a sentence is labeled by an entity type label or by label 
None. For multi-token entities we label each token by the same 
category label, making no distinction between beginning, middle, 
or ending tokens of the entity.   

3.2 MERGE Rule Definition 
Defining specific rules is done via a simple pattern matching 
language, with patterns working at the token level.  A pattern 
syntax is similar to the regular expressions syntax, but with tokens 
instead of characters.  Quantifiers *, +, ? are allowed, as well as 
the grouping parentheses “(” “)”.  The angular brackets “<>” 
delimit the target entity. Features are generated for each token in 
the delimited entity.  The tokens are either specified directly, or 
represented by token-classes of the form “[Boolean 
expression]”.The expressions are simple token-attribute=value 
checks, combined with logical operators &(and) |(or), and !(not).   

Here is an example set of rules for some tricky organizations: 
Rule: Organization   { 
 // to catch: Person of (the) Organization 
: [cl=Capital] "of" "the"? < [cl=Capital]{1,3} > 
 // to catch: company/firm/group called Xyz 
: [wc=CompanyAlias] "called" < [cl=Capital]+  >    } 
WordClass: Country { france  turkey  israel … } 
WordClass: CompanyAlias { company  firm  group … } 

In our MUC-7 evaluation the list of published Word Classes are 
used as feature functions themselves. Besides that, some intuitive 

Word Classes are defined within the Rule-Development 
framework, in order to use them as "wc" feature for Rule Writing. 
As an example we had a Word Class wc=WeekDay, including the 
words Sunday, Monday, etc. and it is used in a Rule: 

Rule: Date { : < ["next"|"last"] > [ wc=WeekDay]  } 
WordClass: WeekDay { sunday  monday  tuesday  … } 

The translation of Rules into a Feature Function is done by 
checking the rule pattern at each token position. The above rule 
for Date will be translated into feature function: 

f = { 1 if current token is "next" or "last", and the next token is  
     found in wc WeekDay, and current Tag is Date,  
   0 otherwise } 

For keeping the value M constant for each pair (x,y), we defined 
also this same feature function for all the other possible tags.  

4. EXPERIMENTS 
We made an evaluation of our methodology on MUC-7 data set, 
by checking the system performance on the whole possible 
training data (350 documents). By adding some approximately 50 
more rules the overall performance reached to 93.5% as shown in 
Table 1, while overlapping match results come up to 95.4%. (In 
overlapping-match, a entity is considered correct if at least one 
word of it is tagged correctly) The lower overall performance is 
due to other entity types which had slightly lower results. 

Exact Match OverlappingMatch
Rec. Pre. F. Rec. Pre. F.

Org. 92.7 96.4 94.5 94.3 98.3 96.3
Per. 95.1 95.4 95.2 95.1 95.4 95.2
Loc. 92.3 98.4 95.2 92.9 99.0 95.9
All 91.2 95.9 93.5 93.0 97.8 95.4

Table 1. MUC7: After training with 350 documents. 

We also compared our system to other successful models.  We 
run an implementation of Nymble ([2]) and TEG ([3]) on that 
same corpus, which produced the results shown on Table.2.  

HMM TEG Merge+Rules
Org. 87.8 90.9 93.6
Per. 80.5 91.8 93.7
Loc. 90.9 91.9 95.4
Avg. 86.4 91.5 94.2

 Table 2.Comparetive results for MUC7(without doc. Headers-Footers). 
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