
A Framework for Specifying Explicit Bias for Revision of
Approximate Information Extraction Rules

Ronen Feldman

Yair Liberzon

ronen@instinct-soft.com
yair@instinct-soft.com

Binyamin Rosenfeld
Jonathan Schler

Instinct Software Ltd.

Petah Tikva, Israel
Tel. 972 3 92 444 64

grur@instinct-soft.com
jonathan@instinct-soft.com

Jonathan Stoppi

stops@instinct-soft.com

ABSTRACT
Information extraction is one of the most important techniques
used in Text Mining. One of the main problems in building
information extraction (IE) systems is that the knowledge elicited
from domain experts tends to be only approximately correct. In
addition, the knowledge acquisition phase for building IE rules
usually takes a tremendous amount of time on the part of the
expert and of the linguist creating the rules. We therefore need an
effective means of revising our IE rules whenever we discover
such an inaccuracy. The IE revision problem is how best to go
about revising a deficient IE rules using information contained in
examples that expose inaccuracies. The revision process is very
sensitive to implicit and explicit biases encoded in the specific
revision algorithm employed. In a sense, each revision algorithm
must provide two forms of biases: bias as to the place of the
revision and bias as to the type of the revision that should be
performed. In this paper we present a framework for writing
approximate IE rules that are provided with explicit bias. The
proposed framework can be used by many existing revision
algorithms. The purpose of the revision bias framework is to allow
the user to declare his own bias in a simple and structured way,
i.e. to express the conditions placed on the domain knowledge for
a given revision operator to be applied. This language extends and
generalizes the work reported in [Feldman et. al. 1993]. It attacks
the problem of writing IE rules from a novel perspective, one
which enables a much faster development of IE systems.

Keywords
Text Mining, Theory Revision, Information Extraction, User
Guided Revision.

1. INTRODUCTION
One of the main problems in building information extraction (IE)
systems [1,3,5,6,22,23] is that the knowledge elicited from
domain experts tends to be only approximately correct. Although
knowledge so obtained might make a good first approximation to
the real world, it typically contains inaccuracies that are exposed
when the model asserts a fact that does not agree with empirical
observation. This paper proposes a means of automatically

revising a set of IE rules - whenever we discover such an
inaccuracy - using a predefined bias scheme.

Informally, the IE rule revision problem is about how best to go
about revising a deficient set of IE rules using information
contained in examples that expose inaccuracies. In order to
characterize the attributes that are desirable in a IE rules revision
system, let us briefly examine the process by which IE rules are
constructed.

Typically, a domain expert sits with a linguist and encodes his or
her expert knowledge as a collection of IE rules. Sometimes more
than one domain expert is involved, leading to possible
inconsistencies in the rule base, although inconsistencies are not
uncommon in large rule bases even if there is only one domain
expert.

After the knowledge has been encoded, it is used to extract events
from documents. These events are usually obtained over a long
period of time as the IE system is put to use. As errors and
inaccuracies are encountered, the rule base must be refined
manually by the linguist. Some may be simple encoding errors,
while others may represent deeper, conceptual, errors in the
expert's understanding of the domain. IE revision systems are in
some sense nothing more than biased concept learning systems.
The bias comes in the form of an approximately correct concept
description (rule base) which is then patched and brought into line
with the provided examples. The intuition is that patching an
approximately correct IE rule set will be substantially cheaper and
more accurate than an IE rule set built from scratch.

The IE rules revision problem is related to the problem of
propositional and relational theory revision. Among the
propositional theory revision systems which can handle both
specialization and generalization we can count EITHER[18],
KBANN [24] and RAPTURE [17]. Among the relational theory
revision systems we can count AUDRY [25], FORTE [21] and
FOCL [16]. A common theme to all these systems is that they do
not distinguish between aspects of the original knowledge base
that are firmly held and those which are more conjectural.

An IE rules revision system should, in practice, replace this
knowledge refinement process. A useful solution to the IE rules
revision problem should integrate smoothly with the traditional
approach to knowledge engineering. Thus, it is important that an
IE rules revision system have certain qualities. First, the system

2

should be incremental - meaning that it should operate on
examples as they are obtained. IE rules revision systems which
require examples be provided all at once do not fit in well with
the traditional knowledge engineering process. Second, a system
which reconfigures the rule base so that it no longer makes sense
to the linguist lacks referential transparency: a useful system
should largely preserve the structure of the original rule base so
that, at any time, the rule engineer may examine and understand
its internal structure. Third, a domain expert may know a priori
which portions of the rule base should be trusted and which are
more conjectural. Thus the changes undertaken by the system
should reflect the expert's intuitive confidence in the individual
components of the rule base. Fourth, the domain expert may have
preferences as to which revision operators should be used for
revision specific elements should they be flawed.

In this paper we introduce our scheme for providing explicit
revision bias in the revision of flawed IE rules.

Other research on learning IE rules [1,3,5,6,22,23] has focused
on inducing new IE rules based on examples rather than revising
existing IE rules based on examples. In addition, we use a more
sophisticated extraction language, which is more suitable for
handling real world tasks and achieving high precision and recall.

The rest of the paper is organized as follows: in Section 2 we
define the basic concepts and establish the terminology used
throughout the paper. In Section 3 we motivate the need for a
special language for defining explicit revision bias. In Section 4
we describe our bias scheme and present examples. In Section 5
we provide experimental evaluation, and finally, in Section 6 we
present our conclusions and cite the major contribution of this
paper, outlining future research directions to extend this work.

2. FOUNDATIONS
In this section, we define and introduce the basic notions used
throughout this paper.

2.1 Pattern Matching Elements (PME)
The basic entity in a rule base is a Pattern Matching Element,
which is one of the following cases:

� String - e.g., “merger”

� Word class element: a phrase that is a member of a
predefined set of phrases that share a common semantic
meaning e.g., WCCountries (a word class that contains the
names of all the countries in the world)

� Scanner feature (basic characteristic of a token) e.g.,
@Capital or @HtmlTag

� Compound feature: a phrase comprising several basic feature

-e.g. Match(@Capital & WCCountries) will match a phrase
that belongs both to the word class WCCountries and start with
a capital letter.

� Part of Speech tag - e.g., noun or adj.

� Predicate Call - e.g., Company(C)

� Skip Pattern: a pattern that enables the system to skip up to a
certain number of tokens until it reaches an instance of a
predicate - provided that it does not encounter a phrase that
satisfies the Fail condition. For instance, skip(WCMerger,

SkipFail, 20) tells the system to skip up to 20 tokens until it
reaches a member of the word class WCMerger, provided it did
not encounter an end of sentence or HTML tag along the way
(based on the current definition of SkipFail, which may be
changed by the user).

2.2 Constraints
Constraints do not try matching text fragments to patterns, but
carry out on-the-fly Boolean checks for specific attributes. In
addition, they can do these checks on any bit of text: not just
fragments in the source document but also on results thrown up
during processing that never appear in the output. The marker for
a Constraint is the word verify, followed by brackets containing a
specific function, which governs what it is it is checking for.

For instance
verify (StartNotInPredicate (c , @PersonName))

makes sure that no prefix of the string assigned to variable c must
match with the predicate PersonName.

2.3 IE Rule Bases
Throughout this paper we will view a rule base as a logic
program. Thus, a rule base, Γ, is a conjunction of definite clauses
Ci: Hi ← Bi where Ci is a clause label, Hi (called the head) is a
literal and Bi = {Bi1 Bi2....} = Pi ∪ Ni (called the body) is a set of
literals, where Pi = {pij} is a set of Pattern Matching Elements
and Ni = {nij} is a set of constraints operating on Pi. The clause
clause Ci: Hi ← Bi represents the assertion that Hi is implied by
the conjunction of the literals in Pi while satisfying all the
constraints in Ni. The rules are written in a language called DIAL
(Declarative Information Analysis Language). DIAL is a
language designed specifically for writing IE rules. The complete
syntax of DIAL is beyond the scope of this paper.

To follow is an example of a DIAL rule, which will be used
throughout the paper:

FMergerCCM(C1, C2) :-

Company(Comp1) OptCompanyDetails "and"

skip(Company(x), SkipFail, 10)

Company(Comp2) OptCompanyDetails

skip(WCMergerVerbs, SkipFailComp, 20)

WCMergerVerbs skip(WCMerger, SkipFail, 20)

WCMerger

verify(WholeNotInPredicate(Comp1,

@PersonName))

verify(WholeNotInPredicate(Comp2,

@PersonName))

3

@% @!

{ C1 = Comp1; C2 = Comp2} ;

This is one of ten rules that define the notion of Merger between
two companies (where the names of the companies appear before
the merger-related verb or noun). The rule looks for a company
name (carried out by the predicate Company, which returns back
the parameter Comp1) followed by an optional phrase describing
the company, and then the word “and”. The system then skips
(within the same sentence, and while not encountering any phrase
matching the predicate SkipFail) up to ten tokens until it finds
another company, followed by an optional company description
clause. The system then skips up to 20 tokens until it finds one of
the phrases belonging to the word class WCMergerVerbs. (This
may be something like “approved”, “made an announcement”
etc.) Finally, the system skips up to ten tokens until it finds a
phrase belonging to the word class WCMerger. Finally, the rule
also contains two constraints ensuring that the names of the
companies are not names of people.

2.4 Examples
In addition to the rule base, we have some additional background
knowledge, denoted K. K is a collection of facts and clauses
defining some background predicates: we assume that K is correct
and no revision is attempted to K.

An example, E, is a tuple <S,P,I> made of three parts: a string S
which is a text fragment, a top-level predicate P, and a ground
instance I of P. Let Γ be a rule base, we denote Γ+K ⇒S E , if
when we apply the predicate P on the string S, we get the instance
I. For instance if S = “AOL and Time Warner announced a
merger”, and P = FMergerCCM, then I = FMergerCCM(“AOL”,
“Time Warner”). We define a function Γ such that for an example
E=<S,P,I>, Γ(E) = true if Γ+K ⇒S E and Γ(E) = false otherwise.

2.5 Relevant Examples
The decision to add new structures rather than delete a

flawed element is made on the basis of the examples affected by
the revision of the flawed element. Thus, before we decide which
revision operator to apply to the flawed element, we must
determine which of the examples are relevant to this revision. If
we were to use all the given examples when adding a new
structure, the new structure would be equivalent to an alternative
rule base that handles all the examples correctly. In other words,
we would be using the inductive algorithm to build a new IE rule
base from scratch - one that reflects none of the structure of the
original IE rule base. So instead, we focus the inductive
algorithm by finding an appropriate smaller set of relevant
examples -ones that are directly affected by the revision of the
flawed element. In this way, by using only the relevant examples,
we reduce the processing time needed for the inductive algorithm,
while retaining the original structure of the rule base.

With regard to a specific rule base element e we divide the
relevant examples into two sets:

� needed examples (denoted N): these are examples for which
e contributes to their correct classification (i.e, e must be part of
Γ in order to get a correct classification of the example).

� obstructive examples (denoted O) : examples for which e is
obstructive to the goal of achieving their correct classification
(i.e, e must not be part of Γ in order to get a correct
classification of the example). The computation of N and O is
done in a similar way to the algorithm described in [8].

2.6 Incremental Theory Revision
We provide a skeleton of an incremental revision algorithm that
processes examples one at a time, and when elements of a rule
base become candidates for revision we perform an appropriate
revision based on the information known at the time. The input to
the algorithm is an initial flawed rule base and a set of pre-
classified examples {Ei} which are used to refine the initial rule
base. The algorithm produces as output a revised version of Γ, Γ'
which handles correctly all given examples.

While there exists any misclassified example do:

For E ∈{Ei} do:

Find S - the set of elements to be revised

For e ∈ S do:

N = the set of needed examples

O = the set of obstructive examples

Pick a revision operator ∆
Using ∆ revise e based on the

example sets N and O.

end do.

end do.

end do.

Figure 1 - A skeleton for an incremental theory revision
algorithm

3. THE NEED FOR AN EXPLICIT
REVISION BIAS
The revision process of a flawed IE rule base can be viewed as a
search in an hypothesis space for the most appropriate concept
definition - where the hypothesis space consists of all the
candidate IE rules for the definition of the target concept
consistent with all known examples.

Consider, for example, a vastly simplified rule base which
includes the following IE rules:

Company(C):- CapitalWords -> head

WCCompanySuffix -> suffix {C=head+suffix};

Company(C):- NP->head WCCompanyVerb

{ C = head };

//NP = Noun Phrase

WCCompanySuffix = Inc Ltd Gmbh Ag;

WCCompanyVerb = announced merged “took

over”;

Suppose that we then determine independently that the string
“Microsoft Corp signed a contract with Excite” contains the

4

instance Company (“Microsoft Corp”). None of the above rules
will enable us to reach this conclusion - an indication that the
original knowledge base is deficient.

There are many solutions to this deficiency. To name a few
(among many other possible solutions):

Solution 1
Create a new clause for the predicate Company :

Company(C) :- CapitalWords -> head

“Corp”-> suffix

{ C = head+suffix };

Solution 2
Generalize the first clause by dropping the literal
WCCompanySuffix :

Company(C) :- CapitalWords -> head

{ C = head };

Solution 3
Generalize the second clause by adding the phrase “signed” to
WCCompanyVerb

Solution 4
Generalize the first clause by adding the phrase “corp” to
WCCompanySuffix.

How do we decide which revision is most appropriate? We might
apply a syntactic criterion (e.g., minimize number of changes to
the original theory) to prefer the third or fourth solutions, since
these require adding one phrase to a word class rather then adding
a new clause or dropping a complete PME. Note that such
syntactic methods implicitly assume that every knowledge base
element is of equal importance. In many cases, these heuristics
may lead to performing the wrong revision.

Suppose the domain expert was able to supply additional
information reflecting his or her confidence in the second rule.
We can exploit this information to prefer the third revision, since
it entails changes to a rule, which is a priori less credible. Our
claim is that such bias knowledge that controls the selection of a
revision operator should be clearly elicited, so that it can be
integrated into the revision process.

Using declarative biases allows us to distinguish clearly between
control and data, and furthermore between the parts of the
revision algorithm that need fixing and those that may be
modified by means of parameters. Revision biases could therefore
be defined as parameters that are shifted depending on the
application area and depending on the part of the theory that
needs to be revised. These would be based on two main types of
criteria: syntactic and semantic.

Our purpose here is to show how the user’s capacity to express
flexible biases can be extended and systematized through a
revision bias language. The purpose of such a language is to allow
the user to declare his own bias in a simple and structured way,
that is to express the conditions placed on the domain knowledge
for a given revision operator to be applied. This language extends
and generalizes the work reported in [7,8] by considering a larger
family of conditions.

In the absence of a bias scheme the system will use a predefined
cost scheme (each revision operator has a cost associated with its
application), and suggest revisions that have a minimal cost.

3.1 Typical Situations In Which An Explicit
Bias Is Needed

In this section we provide typical examples of situations in
which the expert writing the approximate rule base can provide
specific biases that direct the system to perform the correct
revisions. In these cases, providing an explicit bias is the most
natural way to guiding the revision system toward the desired
theory.

Predicate stubs: In some cases the user only wants to
specify that a certain predicate exists without supplying any of its
definitions. In the absence of any bias information, a naive
revision would just delete all instances of this predicate from the
clauses it appears in, since clearly they will all fail. To remedy this
problem, the user specifies that the suitable revision operator for
all instances of the predicate is to add new clauses to it. When a
literal which is an instance of the predicate is a candidate for
revision, we activate the inductive component in order to learn a
definition for that predicate. The user can also specify the
primitive predicates from which the definition should be
constructed, and the inductive component will give priority to
these primitives in the construction of the clauses.

Extraneous literals: some users prefer to add many literals
to the body of a clause just in case they are needed. The user can
then specify for such literals that the appropriate revision operator
is deletion. In such case, even if there are some negative examples
that might be misclassified due to the deletion of the literal, the
literal will be deleted anyway, and the negative examples will be
taken care of in another place in the theory. This bias eliminates
the addition of new intermediate concepts to this clause.

Under constrained clauses: there are times when the user
would like to provide a general skeleton to the definition of a
predicate, where it is clear that some literals are missing from the
clauses of the predicate. In such cases, the user can provide this
extra information by specifying that the revision operator of
choice should be refinement of the clause by adding new literals
to its body. The user can also specify the primitive (or
intermediate) literals that should be used by the inductive learner.

Climbing up and down a hierarchy: There are two
situations in which a hierarchy can be used. First, a hierarchy of
predicates can be specified directly as part of the rule base. The
clauses specifying the hierarchy are of the form Class :- SubClass,
indicating that SubClass is a kind of Class. Each class can be a
sub-class of several other classes, which implies that hierarchy is a
dag. When we want to generalize a literal, we climb up the
hierarchy; to specialize it, we descend the hierarchy. The user can
specify which direction should be attempted for the literal, and
even the maximum number of levels allowed in traversing the
hierarchy. The second type of hierarchy is a type hierarchy. Type
information can be of real use when specifying constraints on the
arguments of certain literals. Each argument is assigned a type,
from a given type hierarchy. The user can then specify the
preferred revisions at argument level for each literal. The bias
attached to specific arguments is similar to that of the predicate
hierarchy.

5

4. A FRAMEWORK FOR EXPLICIT BIAS

4.1 The Language
Each clause in the approximate rule base has the following form:

C:{CFH,BiasH} H :- B1:{CFB1,BiasB1}.....Bn:{CFBn,BiasBn}.

C is the label of the clause, H is the head of the clause, and
B1,....Bn are the literals of the clause. For each literal L, CFL is a
number between 1 and 0 that represents the expert's current
degree of confidence that a given literal need not be revised.
BiasL is an expression of the form {Revision-Operator/Pre-
Conditions}*. The semantics of such a bias is: apply the first
revision operator for which all the preconditions are satisfied.

Before we describe the current revision operators and the exact
form of the biases allowed, let us consider the factors which might
affect the selection of an appropriate revision operator:

� The location of the element in the rule base graph (in
particular, its depth)

� The current contents of the rule base (the definition of one
predicate might be affected by the definition of another)

� The negative examples that might be affected by the
element’s revision.

� The positive examples that might be affected by the
element’s revision.

In the next section we describe the current revision operators. As
noted earlier, the system is designed to be easily extendible to
accommodate new revision operators should they be required.

4.2 Revision Operators
We divide the revision operators into four classes according to the
syntactic change they perform.

4.2.1 Deletion Operators
We have two deletion operators: we can either delete a literal from
a clause (leading to greater generalization or specialization of the
clause) or we can delete a clause from the definition of a predicate
in order to specialize it. These operators perform radical revision
since they delete complete elements from the rule base. In general,
such operators will be used only if no additional problems can
arise from their application.

4.2.2 Addition Operators
It is often the case that instead of deleting a clause c, we can
remedy its original flaw by merely adding constraints to the body
of c . These constraints should be chosen in such a way as to
prevent the use of the clause by specifically those negative that
have been using it to achieve an undesired proof. At the same
time, it is equally important to ensure that these added conditions
do not inadvertently prevent the acceptance of positive examples.

By analogy, when a literal l (where l is an instance of
predicate p) becomes a candidate for revision, we can add clauses
to the definition of p that produce alternative definitions of l
under appropriate conditions. These additional clauses serve to

generalize l, obviating the need to delete it from the clause in
which it appears.

The decision to add new structures rather than deleting a flawed
element is made on the basis of the examples affected by its
revision. Therefore, before determining which revision operator to
apply, we must decide which of the examples are relevant to this
revision. If we were to make use of all given examples when
adding a new structure, the new structure would be equivalent to
an alternative rule base that correctly classifies all the examples.
In other words, we would be using the inductive algorithm to
build a new rule base from scratch – one that reflects none of the
structure of the original rule base. Instead, we choose to focus our
inductive IE rule learning algorithm (which is a FOIL-based
algorithm) by finding an appropriate smaller set of relevant
examples, ones that are directly affected by the revision of the
flawed element. By using only these examples, we reduce the
processing time needed for the inductive algorithm while retaining
the original structure of the rule base.

4.2.3 Replacement Operators
These operators are actually a combination of deletion operators
and addition operators. We delete one literal from a clause and
immediately add a new set of literals to the clause instead. Since
in this paper we are mainly concerned with incremental theory
revision algorithms, and at each point we perform only a few
revisions, the inclusion of macro operators such as replacement
operators does make a difference. A special case of the
replacement operators are literals that involve numeric constants
such as, for example, skip elements (by changing the maximum
number of skipped tokens allowed in them). Such literals are
replaced by others where the numeric constants are changed in the
appropriate direction in order to generalize or specialize the
literal. In addition, when a word class becomes a candidate for
revision, rather then deleting it, we can add another phrase to the
word class.

Another important kind of the replacement operators are those
related to dealing with the predicate hierarchy. We have two
kinds: one that climbs up the hierarchy and generalizes the literal
and another that descends the hierarchy and specializes the given
predicate. Both operators take an extra argument - a number that
represents the maximum number of levels to be tried in the
hierarchy in the direction specified by the operator. Thus, for
example, to allow the system to climb only one level, we provide
1 as an extra argument. In cases where there are several options
for generalization or specialization, the program would pick the
literal that best discriminates the positive examples from the
negative ones in the set of relevant examples.

4.3 A Taxonomy of Biases
While in principle the preconditions attached to the revision
operators might be any computable set of predicates, we propose
to express preconditions using a small set of primitives. These are
divided into three groups according to the type of information
they examine.

4.3.1 Example-based preconditions
From our experience we have found that comparisons on the sets
of needed and obstructive examples (N and O, respectively) are

6

sufficient in most cases. In particular, we have found that three
particular conditions are of interest:

1. N or O ≠ ∅, meaning the set should not be empty

2. N or O = ∅, meaning the set should be empty

3. N or O = X, meaning we do not care about the set’s contents.

For instance we might specify {delete/(O = X, N = X)} as the bias
for the revision of a given clause. This bias implies that even if
there are examples that need this clause to be correctly classified,
we prefer to delete the clause when it becomes a candidate for
revision. Similarly, we provide {add new clause /(O = X, N = X)}
as a bias for the revision of a given intermediate literal. This
expression says that even if we do not have any obstructive
examples, we should not delete the literal, but prefer to add a new
clause instead. This simple language, while not able to capture
every possible bias with regard to the example set, is powerful
enough to express most common biases given by experts. If we lift
the constraint that the preconditions must be expressed using the
sets N and O and allow any computable set of predicates, we can
use this scheme to define any form of example bias.

4.3.2 Topology-based preconditions
These preconditions concern the location of the flawed element in
the rule base graph. The primitives are:

mindepth <Rel> <numeric constant> where mindepth is
the length of the shortest path between the flawed element and
any top concept, and Rel ∈ {>,<,!=,≥,≤}.

maxdepth <Rel> <numeric constant> where maxdepth is
the length of the longest path between the flawed element and any
top concept, and Rel ∈ {>,<,!=,≥,≤}.

minheight <Rel> <numeric constant> where minheight
is the length of the shortest path between the flawed element and
any leaf in the graph, and Rel ∈ {>,<,!=,≥,≤}.

maxheight <Rel> <numeric constant> where maxheight
is the length of the longest path between the flawed element and
any leaf in the graph, and Rel ∈ {>,<,!=,≥,≤}.

Suppose we want to specify a bias that revisions should be
performed only at the leaves of the rule base graph. We would
then add the condition, minheight = 0 to the list of
preconditions of all elements. If this condition isn’t met, the
revision doesn’t take place.

4.3.3 Hierarchy-based preconditions
These preconditions are related to the location of the element in
the hierarchy and the topology of its ancestors and descendants.

The primitives are:

ancestors(N) - list of all Nth ancestors of the element
(ancestors(1) is the list of direct parents).

descendants (N) - list of all Nth descendants of the element
(descendants(1) is the list of direct children)

Thus, for example, we could specify a condition
size(ancestors(1)) = 1 as a precondition for climbing up in
the hierarchy (i.e., we may climb provided there is no ambiguity
as to where to climb).

4.4 Bias Tables
In order to provide a friendly user interface, we view each of the
biases attached to rule base elements as a structured table. Each
element has a table that specifies its biases with regard to the
selection of the appropriate revision operator. X represents “don't
care”, i.e., that there are no preconditions vis-a-vis that category.

The bias table of the literal company(C), for example, would look
as follows:

Table 1: Operator bias for Literal company(c)

Operator
Name

Example
preconditions

Topology
preconditions

Hierarchy
preconditions

Delete N = ∅, O = ∅ X X

Climb(1) N = ∅, O = ∅ X Size(parents(1)) = 1

User(climb) N = ∅, O = ∅ X Size(parents(1)) > 1

NOP O = ∅ X X

The above says that when the literal company(C) becomes a
candidate for revision, we will delete it if there are no examples
that rely on it to get a correct classification; while at the same time
there are examples for which it is obstructive to correct
classification. If any of these conditions are not met, we check if
there is only one possible generalization of the literal. If that is the
case, we replace it with its single generalization. Where there is
more than one generalization we employ the interactive technique
that involves the user picking the correct generalization operator.
If there are no examples that benefit from the revision of this
literal, we do nothing. This bias table was used for most the
elements of the IE rule base.

4.5 Inheritance of Biases
Providing revision bias on an element-by-element basis might be
unreasonable when dealing with large knowledge bases. We
therefore propose using two hierarchies: the syntactic hierarchy
and the semantic hierarchy. The syntactic hierarchy classifies
elements according to their syntactic role (e.g., intermediate
literals, clauses, skip elements, word classes etc.). The syntactic
hierarchy is shown in Figure 2. The semantic hierarchy classifies
elements according to their meaning (e.g., people-related,
company-relationship, technology-related, product-related etc.).
While the syntactic hierarchy is domain-independent, the semantic
hierarchy is domain dependent. A specification of an element
cluster is formed by combining the syntactic description with the
semantic one. For instance, one possible cluster description might
be the set of leaf literals that correspond to company-relationship
predicates (such as those for “merger”, “joint venture”, and “take
over”). All such elements would be assigned identical revision
bias. The biases provided for the different clusters form an
inheritance hierarchy. An element will be affected by the bias
declared for the most specific clusters that contain it. In the bias
table we can define that some preconditions are inherited from

7

more general clusters by indicating I in the suitable cell. We give
the user the option of specifying a criterion for breaking ties in
case of multiple inheritances. The default criterion is to pick the
cluster that was defined previously.

Element

PME Constraint

Word
Class

Predicate Basic
Element

Skip
Pattern

Members
hip based

Predicate
based

Equality
based

Scanner Compound String POS

Fig. 2: The Syntactic hierarchy

5. EXPERIMENTAL EVALUATION
We have tested the accuracy of the IE engine by analyzing
collections of documents extracted by the integrated Agent from
MarketWatch.com (over the period Oct 1999 – Feb 2000). We
started by extracting 15,950 articles from MarketWatch.com that
mentioned the word “merger”. We created 67 different event
types centering on companies, people, locations, technologies,
products and alliances. We defined 320 word classes and 2100
rules to extract the aforementioned event types. The advanced
debugging tools proved to be very useful in the debugging and
refinement of the rule set. After construction of the initial rule set
we achieved an F-Score of 89.3%. The IE revision module
enabled us to boost the F-Score to 96.7% in several hours. The
actual revision of the rules is done interactively, enabling the user
to pick the desired revision from the revisions proposed by the
system.

In Figure 3 we can see how the system proposes the revisions to
the user. In the left upper pane we see all positive instances of
FMergerCCM, and in the bottom pane we can see the clauses of
FMergerCCM, along with possible revision schemes. We
expanded one of the clauses and show the proposed revisions.
Here the system suggested two revisions (marked with “R” icon).
The first revision is to increase the skip range from 2 tokens to 4
tokens, and the second revision is to add the word “merging” to
the word class WCMerger. Performing these revisions enables the
clause to extract the event FmergerCCM (“Banco Santander
Corp.”, “Banco Central Hispano Corp.”) from the string “Banco
Santander Corp. and Banco Central Hispano Corp. announced
that they are merging”. The revisions suggested by the system
were based on the default bias scheme defined above.

Fig. 3: Interactive revision of the IE rules of FMergerCCM

We will now show how Textoscope [2,9,10,11,12,13] (The visual
front-end of the Text Mining system) enables us to analyze the
events and terms that were extracted from the 15,950 articles. In
Figure 4 we can see an event map showing companies that are
related to an event of “negative merger”, i.e., denying a planned
merger, or merger plans that did not materialize1.

Fig. 4: “Negative merger” Event map.

In Fig. 5 we can see an Event Map (with filter set to 11, i.e. only
events mentioned in at least 11 documents are shown) of actual
and planned mergers. We can see that the Time Warner-AOL
mega merger is one of the main events shown. In Fig. 6 we can
see the companies related to Time Warner in this collection. In
Fig. 7 we can see the titles of the documents that support the
merger event between AOL and Time Warner. In addition to the
title we can see the exact sentence in each document from which
the merger event was extracted. In Fig. 8 we see one of the
documents that supports the merger event between AOL and Time
Warner.

1 Larger font size indicates a higher occurrence of the term in the
collection. The darker the color of the link between terms, the
higher the support this event has in the collection.

8

Fig. 5: “Merger” Event Map.

Fig. 6: Companies related to Time Warner

Fig. 7: Titles of Documents supporting the AOL-Time Warner
Merger event.

Fig. 8: One of the Documents supporting the AOL-Time
Warner Merger event.

6. Conclusions
This paper presents a framework for performing biased
incremental IE rules revision based on explicit bias. We have
introduced a modular architecture for specifying revision bias, and
have described a family of revision operators and preconditions
needed for their appropriate application. The architecture is
designed to enable easy specification of biases of both the
aggregates of elements based on predefined semantic and
syntactic hierarchies and of specific rule base elements.

We view this paper as a further step toward building powerful
bias-guided IE revision systems. In our case the bias comes from
the operator bias attached to clusters of rule base elements. There
are certainly other forms of biases, which might be used to
construct efficient systems that perform accurate revisions, but we
believe that those can be easily integrated into the proposed
framework. It should be noted that the scheme of the operator bias
presented here may be adopted by any incremental IE revision
algorithm, and can be used in conjunction with any IE rule
learning algorithm. This approach enabled us to achieve a much
higher precision and recall than any of the other systems that were
based only on inductive learning of IE rules.

7. ACKNOWLEDGMENTS
Our thanks to Oren Etzioni and Yonatan Aumann for helpful
discussions on earlier drafts of this paper.

8. References
[1] Appelt, D. E., Hobbs J., Bear J., Israel D., and Tyson

M., 1993. ``FASTUS: A Finite-State Processor for
Information Extraction from Real-World Text'',
Proceedings. IJCAI-93, Chambery, France, August
1993.

[2] Aumann Y., Feldman R., Ben Yehuda Y., Landau D.,
Lipshtat O., Schler Y.: Circle Graphs: New

9

Visualization Tools for Text-Mining. PKDD 1999:
277-282

[3] Califf, M. E. and Mooney, R. (1997). Relational
learning of pattern-match rules for information

[4] Cohen. W., "Compiling Prior Knowledge into an
Explicit Bias". Working notes of the 1992 AAAI spring
symposium on knowledge assimilation. Stanford, CA,
March 1992.

[5] Craven M., DiPasquo D., Freitag D., McCallum A.,
Mitchell T., Nigam K. and Slattery S.
Learning to Extract Symbolic Knowledge from the
World Wide Web. Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI-98).

[6] Fisher D., Soderland S., McCarthy J., Feng F. and
Lehnert W., "Description of the UMass Systems as
Used for MUC-6," in Proceedings of the 6th Message
Understanding Conference, November, 1995, pp. 127-
140.

[7] Feldman R., Segre A. and Koppel M., "Incremental
Refinement of Approximate Domain Theories".
Proceedings of the 8th International Conference on
Machine Learning, 500-504, Evanston,IL,1991.

[8] Feldman. R., "Probabilistic Revision of Logical
Domain Theories". Ph.D Thesis, Computer Science
Department, Cornell University, Ithaca NY, February
1993.

[9] Feldman R., Aumann Y., Fresko M., Lipshtat O.,
Rosenfeld B., Schler Y.: Text Mining via Information
Extraction. PKDD 1999: 165-173

[10]Feldman R., Aumann Y., Zilberstein A., Ben-Yehuda
Y. Trend Graphs: Visualizing the Evolution of Concept
Relationships in Large Document Collections. PKDD
1998: 38-46

[11]Feldman R., Fresko M., Kinar Y., Lindell Y., Liphstat
O., Rajman M., Schler Y., Zamir O. Text Mining at the
Term Level. PKDD 1998: 65-73

[12]Feldman R., Dagan I., Hirsh H. Mining Text Using
Keyword Distributions. JIIS 10(3): 281-300 (1998)

[13]Feldman R., Klösgen W., Zilberstein A. Visualization
Techniques to Explore Data Mining Results for
Document Collections. KDD 1997: 16-23

[14]Freitag, D. (1998). Multistrategy learning for
information extraction. Proceedings of the Fifteenth
International Machine Learning Conference, 161-169.

[15]Huffman, S. (1996). Learning information extraction
patterns from examples. In Wermter, Learning for
Natural Language Processing. Berlin: Springer.

[16]Pazzani M. and Kibler D., "The Utility of Knowledge
in Inductive Learning". Technical Report, University of
California,Irvine, 1990.

[17]Mahoney J.J. and Mooney R.J., "Combining Neural
and Symbolic Learning to Revise Probabilistic Rule
Bases". Advances in Neural Information Processing
Systems, Vol. 5. Morgan Kaufman, San Mateo, CA,
1993.

[18]Ourston D. and Mooney R. J.,"Changing the rules: A
comprehensive approach to theory revision".
Proceedings of the Eighth National Conference on
Artificial Intelligence, pages 815-820, Boston, MA,
1990.

[19]Pazzani M. J., "Detecting and Correcting Errors of
Omission after Explanation-Based Learning", in
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pp 713-718,
Detroit, Aug 1989.

[20]Quinlan J.R., "Induction on Decision trees". Machine
Learning, 1, 81-106, 1986.

[21]Richards B.L., and Mooney R.J., "First-Order Theory
Revision". Proceedings of the 8th International
Workshop on Machine Learning, 447-451,
Evanston,IL,1991.

[22]Riloff E. and Lehnert W., Information Extraction as a
Basis for High-Precision Text Classification, ACM
Transactions on Information Systems (special issue on
text categorization) .

[23]Soderland S., “Learning Information Extraction Rules
for Semi-structured and Free Text,” Machine Learning
Journal, 1999, 1-44.

[24]Towell G.G., Shavlik J. and Noordewier M.O.,
"Refinement of approximately correct domain theories
by knowledge-based neural networks". Proceedings of
the Eighth National Conference on Artificial
Intelligence, 861-866, Boston, 1990.

[25]Wogulis J., "Revising Relational Domain Theories".
Proceedings of the 8th International Workshop on
Machine Learning, 462-466, Evanston,IL,1991.

