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Abstract 

In the CoNLL 2003 NER shared task, more 
than two thirds of the submitted systems used 
a feature-rich representation of the task.  Most 
of them used the maximum entropy principle 
to combine the features together.  Others used 
large margin linear classifiers, such as SVM 
and RRM.  In this paper, we compare several 
common classifiers under exactly the same 
conditions, demonstrating that the ranking of 
systems in the shared task is due to feature se-
lection and other causes and not due to inher-
ent qualities of the algorithms, which should 
be ranked otherwise.  We demonstrate that 
whole-sequence models generally outperform 
local models, and that large margin classifiers 
generally outperform maximum entropy-based 
classifiers.  

1 Introduction 

Recently, feature-rich classifiers became state-of-the-art 
in sequence labeling tasks, such as NP chunking, PoS 
tagging, and Named Entity Recognition. Such classifiers 
are able to use any property of tokens and their contexts, 
if the property can be represented in the form of real-
valued (usually binary) feature functions. Since almost 
all local properties can be represented in such a way, 
this ability is very powerful. 

Maximum-entropy-based models are currently the 
most prevalent type of feature-rich classifiers in se-
quence labeling tasks. Such models define a probability 
distribution over the set of labelings of a sentence, given 
the sentence. In this, such classifiers differ from the 
generative probabilistic classifiers, such as HMM-based 
Nymble (Bikel et al., 1999) and SCFG-based TEG 
(Rosenfeld et al., 2004), which model the joint probabil-
ity of sequences and their labelings, and which can use 
only a very limited range of context features. 

An alternative feature-rich approach is discriminative 
models, trained by maximizing the margin between cor-
rect and incorrect labelings. Recently, the maximal 
margin classifiers were adopted for multi-label classifi-

cation (Crammer, Singer, 2001) tasks and for structured 
classification tasks (Taskar, Guestrin, and Koller, 2003). 

Another important difference among methods is their 
scope. The most often used methods are local, in the 
sense of modeling classification decisions separately for 
each sentence position. More recent methods model 
labeling of whole sequences. 

In this work we compare the performance of four 
different classifiers within the same platform, using 
exactly the same set of features. MEMM (McCallum, 
Dayne Freitag, and Pereira, 2000;  Chieu and Ng, 2002) 
and CRF (Lafferty, McCallum, and Pereira, 2001;  
McCallum and Li, 2003) are a local and a whole-
sequence maximum entropy based classifiers.  RRM 
(regularized Winnow) (Zhang and Johnson, 2003) and 
MIRA (McDonald, Crammer and Pereira, 2004) are a 
local and a whole-sequence maximal margin classifiers.  
We test the effects of different training sizes, different 
choice of parameters, and different feature sets upon the 
algorithms' performance. 

Our experiments indicate that whole-sequence mod-
els outperform local models, as expected.  Also, al-
though the effect is less pronounced, maximal margin 
models generally outperform maximum entropy based 
models. We will  present our experiments and their re-
sults. 

2 Experimental Setup 

The goal of this work is to compare the four sequence 
labeling algorithms in several different dimensions:  
absolute performance, dependence upon the corpus, 
dependence upon the training set size and the feature 
set, and dependence upon the hyperparameters. 

2.1 Datasets 

For our experiments we used four datasets:  CoNLL-E, 
the English CoNLL 2003 shared task dataset, CoNLL-
D, the German CoNLL 2003 shared task dataset, the 
MUC-7 dataset (Chinchor, 1998), and the proprietary 
CLF dataset (Rosenfeld et al., 2004).  For the experi-
ments with smaller training sizes, we cut training cor-
pora into chunks of 10K, 20K, 40K, 80K, and 160K 
tokens.  In the following sections, the datasets are de-
noted  <Corpus>_<Size>, e.g. “CoNLL-E_10K”.  

mailto:grurgrur@gmail.com
mailto:feldman@cs.biu.ac.il
mailto:freskom1@cs.biu.ac.il


2.2 Feature Sets 

There are many properties of tokens and their contexts 
that can be used in a NER system.  We experiment with 
the following properties, ordered according to the diffi-
culty of obtaining them (all of the properties except the 
last two apply to tokens inside a small window around 
the given position): 

A. The exact character strings of tokens. 
B. Lowercase character strings of tokens. 
C. Simple properties of characters inside tokens, 

such as capitalization, letters vs digits, punctua-
tion, etc. 

B×C.  Products of features from “B” and “C” for  
           adjacent tokens inside the window. 

D. Suffixes and prefixes of tokens with lengths be-
tween 2 to 4 characters. 

E. Presence of tokens in local and global dictionar-
ies, which contain words that were classified as 
certain entities someplace before – either any-
where (for global dictionaries), or in the current 
document (for local dictionaries). 

F. PoS tags of tokens. 
G. Stems of tokens. 
H. Presence of tokens in small manually prepared 

lists of semantic terms – such as months, days of 
the week, geographical features, company suf-
fixes, etc. 

I. Presence of tokens inside gazetteers, which are 
huge lists of known entities. 

The PoS tags are available only for the two CoNLL 
datasets, and the stems are available only for the 
CoNLL-D dataset.  Both are automatically generated 
and thus contain many errors. The gazetteers and lists of 
semantic terms are available for all datasets except 
CoNLL-D. 
We tested the following feature sets: 

set0: checks properties A, B, C at the current 
               and the previous token. 

set1:   A, B, C, B×C in a window [-2…0]. 
set2:   A, B, C, B×C in a window [-2…+2]. 
set2x: Same as set2, but only properties  

           appearing > 3 times are used. 
set3:   A, B, C, B×C in a window [-2…+2], 

               D at the current token. 
set4:   A, B, C, B×C in a window [-2…+2], 
           D at the current token, E. 
set5:   A, B, C, B×C, F, G in a window [-2…+2] , 
           D at the current token, E. 
set6:   set4 or set5, H 
set7:   set4 or set5, H, I 

2.3 Hyperparameters 

The MaxEntropy-based algorithms, MEMM and CRF, 
have similar hyperparameters, which define the priors 
for training the models.  We experimented with two 
different priors – Laplacian (double exponential)   
PrLAP(λ) = αΣi|λi| and Gaussian 
PrGAU(λ) = (Σiλi

2) / (2σ2).  Each prior depends upon a 
single hyperparameter specifying the “strength” of the 
prior.  Note, that ∇PrLAP(λ) has discontinuities at zeroes 
of λi.  Because of that, a special consideration must be 
given to the cases when λi approaches or is at zero.  
Namely, 

(1) if λi tries to change sign, set λi := 0, and allow it 
to change sign only on the next iteration, and 

(2) if λi = 0, and ( )
i TL∂

∂λ < αλ , do not allow λi to 

change, because it will immediately be driven 
back toward zero. 

In some of the previous work (e.g., Peng and 
McCallum, 1997), the Laplacian prior was reported to 
produce much worse performance than the Gaussian 
prior. Our experiments show them to perform similarly. 
The likely reason for this difference is the different way 
of handling the zero discontinuities. 

RRM algorithm has three hyperparameters – the prior 
μ, the regularization parameter c, and the learning rate 
η. 

MIRA algorithm has two hyperparameters – the 
regularization parameter c and the number K of incor-
rect labelings that are taken into account at each step. 

MUC7_40K_set7 CLF_80K_set2 CoNLL-E_160K_set2x 
RRM c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 

    η=0.001 48.722 48.722 48.65 49.229 49.229 49.244 84.965 84.965 84.965 
  μ=0.01   η=0.01 63.22 63.207 62.915 64 64.04 63.71 90.246 90.238 90.212 

    η=0.1 61.824 62.128 63.678 58.088 58.628 61.548 89.761 89.776 89.904 
    η=0.001 60.262 60.249 60.221 59.943 59.943 59.943 89.556 89.556 89.573 

  μ=0.1   η=0.01 65.529 65.547 65.516 64.913 64.913 64.811 91.175 91.175 91.15
    η=0.1 60.415 60.958 63.12 55.04 55.677 60.161 30.741 30.741 56.445 
    η=0.001 66.231 66.231 66.174 65.408 65.408 65.408 91.056 91.056 91.056 

  μ=1   η=0.01 62.622 62.579 62.825 59.197 59.311 59.687 90.286 90.317 90.351 
    η=0.1 2.922 2.922 8.725 0 0 1.909 0 0 0 

 
Table 1. RRM results with different hyperparameter settings. 

 



  CLF     CoNLL-D   MUC7 CoNLL-E 
CRF 20K_set7 40K_set7 80K_set7 40Kset2x 80Kset2x 160Kset2x 80K_set2 80K_set2 

GAU σ = 1 76.646 78.085 80.64 29.851 35.516 39.248 80.756 69.247 
GAU σ = 3 75.222 77.553 79.821 28.53 35.771 38.254 80.355 69.693
GAU σ = 5 75.031 77.525 79.285 29.901 35.541 38.671 79.853 69.377 
GAU σ = 7 74.463 77.633 79.454 30.975 36.517 38.748 79.585 69.341 
GAU σ = 10 74.352 77.05 77.705 29.269 36.091 38.833 80.625 68.974 

LAP α=0.01 73.773 77.446 79.071 29.085 35.811 38.947 79.738 69.388 
LAP α=0.03 75.023 77.242 78.81 31.082 34.097 38.454 79.044 69.583 
LAP α=0.05 76.314 77.037 79.404 30.303 35.494 39.248 79.952 69.161 
LAP α=0.07 74.666 76.329 80.841 30.675 34.53 38.882 79.724 68.806 
LAP α=0.1 74.985 77.655 80.095 31.161 35.187 39.234 79.185 68.955 

 
Table 2. CRF results with different hyperparameter settings. 

 
CLF CoNLL-D MUC7 CoNLL-E 

MEMM 20K_set7 40K_set7 80K_set7 40Kset2x 80Kset2x 160Kset2x 80K_set2 80K_set2 
GAU σ = 1 75.334 78.872 79.364 30.406 35.013 40.164 78.773 67.537 
GAU σ = 3 74.099 75.693 77.278 28.484 35.33 40.005 77.295 67.401 
GAU σ = 5 73.959 74.685 77.316 28.526 35.043 39.799 77.489 67.87 
GAU σ = 7 73.411 74.505 77.563 28.636 34.63 38.531 77.255 67.897 
GAU σ = 10 73.351 74.398 77.379 28.488 33.955 37.83 77.094 68.043

LAP α=0.01 71.225 74.04 75.721 28.316 34.329 40.074 78.312 67.871 
LAP α=0.03 72.603 72.967 76.54 29.086 35.159 38.621 77.385 67.401 
LAP α=0.05 71.921 75.523 75.37 30.425 33.942 39.984 78.262 67.908 
LAP α=0.07 72.019 74.486 77.197 30.118 35.25 39.195 76.646 67.833 
LAP α=0.1 72.695 75.311 76.335 30.315 33.487 40.861 78.141 67.421 

 
Table 3. MEMM results with different hyperparameter settings. 

 
CLF_20K_set7 CoNLL-D_40K_set2x 

MIRA K=1 K=3 K=5 K=10 K=1 K=3 K=5 K=10 
c=1 73.395 73.063 73.894 73.567 25.816 26.473 26.611 27.003 
c=10 73.471 72.839 73.906 74.029 26.968 27.699 26.477 26.127 
c=20 74.015 73.013 73.924 74.092 24.619 23.209 23.906 25.163 
c=50 74.617 72.824 74.969 73.791 19.533 18.929 17.952 18.934 
  CoNLL-E_80_set2 MUC7_40_set2x 
c=1 83.402 83.286 83.302 83.34 64.269 63.464 64.151 63.878 
c=10 83.131 82.459 82.375 82.462 63.935 64.31 64.824 64.243 
c=20 82.167 82.039 81.592 81.795 64.105 62.941 62.857 63.313 
c=50 77.909 77.097 76.585 77.719 59.759 59.542 58.964 59.987 

 
Table 4. MIRA results with different hyperparameter settings.

3 Experimental Results  

It is not possible to test every possible combination of 
algorithm, dataset and hyperparameter. Therefore, we 
tried to do a meaningful series of experiments, which 
would together highlight the different aspects of the 
algorithms. 

All of the results are presented as final microaver-
aged F1 scores. 
 
 

3.1 Influence of the hyperparameters 

In the first series of experiments we evaluated the de-
pendence of the performance of the classifiers upon 
their hyperparameters.  All of the algorithms showed 
moderate and rather irregular dependence upon their 
hyperparameters.  Because of the irregularity, fine-
tuning of parameters on a held-out set has little mean-
ing. Instead, we chose a single good overall set of val-
ues and used them for all subsequent experiments. 

A selection of the RRM results is shown in the Table 
1. As can be seen, setting μ = 0.1, c = 0.01 and η = 0.01 



gives reasonably close to optimal performance on all 
datasets. All subsequent experiments were done with 
those hyperparameter values. 

Likewise, the ME-based algorithms have no single 
best set of hyperparameter values, but have close 
enough near-optimal values.  A selection of MEMM 
and CRF results is shown in the Table 2 and Table 3.  
For subsequent experiments we use CRF with Laplacian 
prior with α = 0.07 and MEMM with Gaussian prior 
with σ = 1. 

MIRA results are shown in the Table 4.  For the sub-
sequent experiments we use K = 5 and c = 10. 
In this series of experiments we evaluated the perform-
ance of the algorithms using progressively bigger train-
ing datasets:  10K, 200K, 400K, 800K and 1600K 
tokens.  The results are summarized in the Fig.1.  As 
expected, the algorithms exhibit very similar training 
size vs. performance behavior. 

3.2 Influence of the feature sets 

In this series of experiments we trained the models 
with all available training data, but using different fea-
ture sets. The results are summarized in the Table 5.  
The results were tested for statistical significance using 
the McNemar test. All the performance differences be-
tween the successive feature sets are significant at least  
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Fig 1. Performance of the algorithms on  

datasets of different sizes. 
 

 
at the level p=0.05, except for the difference between 
set4 and set5 in CoNLL-E dataset for all models, and 
the differences between set0, set1, and set2 in CoNLL-E 

and MUC7 datasets for CRF and MIRA models. Those 
are statistically insignificant. The differences between 
the performance of different models that use same fea-
ture sets are also mostly significant. Exceptions are the 
numbers preceded by a tilda “~”. Those numbers are not 
significantly different from the best results in their cor-
responding rows. 

As can be seen, MEMM performs worst, as all of the 
other models generally outperform it. MIRA and CRF 
perform comparably with all feature sets and document 
collections, while RRM is better on CoNLL-D, worse 
on MUC-7, and similar to them on CoNLL-E. 

Comparing maximal-margin-based vs. maximum-
entropy-based models, we note that RRM always wins 
over MEMM, while CRF and MIRA perform very close 
to each other. The possible conclusion is that maximal 
margin classifiers should in general perform better, but 
the effect is masked in case of MIRA by its being only 
an approximation of a true large margin classifier. 

Comparing whole-sequence vs. local models, we see 
that CRF always wins over MEMM, but MIRA some-
times loses to RRM. However, it is interesting to note 
that both CRF and MIRA win over local models by a 
large margin on feature sets 0 and 1, which are distin-
guished from the set 2 by absence of “forward-looking” 
features.  Indeed, using “forward-looking” features pro-
duces little or no improvement for MIRA and CRF, but 
very big improvement for local models, probably be-
cause such features help to alleviate the label bias prob-
lem (Lafferty et al., 2001). The possible conclusion is 
that the whole-sequence classifiers should in general 
perform better, but the effect becomes less pronounced 
as bigger feature sets are used, within larger window 
around the current token.  

Finally, we should note the very good performance of 
the RRM. It is not only one of the best-performing, but 
also fastest to train and simplest to implement. 

4 Conclusions  

We have presented a set of experiments comparing four 
common state-of-the-art feature-rich sequence classifi-
ers inside a single system, using completely identical 
feature sets.  The experiments show that classifiers 
modeling labeling decisions for whole sequences should 
outperform local models, so the comparatively poor 
performance of CRF in the CoNLL 2003 NER task 
(McCallum and Li, 2003) is due to suboptimal feature 
selection and not to any inherent flaw in the algorithm 
itself. 
 
 
 
 
 
 



 MUC7 CoNLL-D CoNLL-E 
 CRF MEMM RRM MIRA CRF MEMM RRM MIRA CRF MEMM RRM MIRA 
set0 75.75 66.58 62.206 73.16 48.99 43.36 40.11 ~48.53 87.38 82.28 76.89 86.01 
set1 75.54 67.08 68.405 73.98 50.67 49.16 48.05 ~50.31 87.36 82.52 81.79 86.01 
set2 75.29 74.00 74.75 74.50 ~52.13 52.01 51.54 52.51 86.89 87.09 87.76 ~87.48
set3 76.91 76.33 ~76.79 ~76.90 60.17 59.53 61.10 60.32 ~88.93 88.71 89.11 ~89.05
set4 78.34 77.89 77.83 ~78.12 62.79 63.58 65.80 64.49 90.04 90.05 90.72 ~90.65
set5      65.65 65.32 67.81 65.33 90.14 90.12 ~90.56 90.62 
set6 ~78.97 78.44 78.02 79.15      ~90.57 ~90.49 ~90.98 90.99 
set7 81.79 80.92 81.06 ~81.46         ~91.41 90.88 ~91.78 91.82 

 
Table 5. Performance of the algorithms using different feature sets 

 
 
We also demonstrated that Large Margin systems 

generally outperform the Maximum Entropy models. 
However, building full-scale Maximal Margin models 
for whole sequences, such as M3 Networks (Taskar, 
Guestrin, and Koller, 2003), is very time-consuming 
with currently known methods and the training appears 
much slower than training of corresponding CRF.  Ap-
proximations such as MIRA can be built instead, which 
perform at more or less the level of CRF. 

In addition, we demonstrated that the Laplacian prior 
performs just as well and sometimes better than Gaus-
sian prior, contrary to the results of some of the previ-
ous researches. 
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