

Structural Extraction from Visual Layout of Documents
Binyamin Rosenfeld
ClearForest Corporation

15 East 26 St
New York, NY
212-432-1515

grur@clearfotrest.com

Ronen Feldman
ClearForest Corporation

15 East 26 St
New York, NY
212-432-1515

Department of Computer
Science

Bar Ilan University
Ramat Gan, Israel

ronen@clearfotrest.com

Yonatan Aumann
ClearForest Corporation

15 East 26 St
New York, NY
212-432-1515

Department of Computer
Science

Bar Ilan University
Ramat Gan, Israel

yonatan@clearfotrest.com

ABSTRACT

Most information extraction systems focus on the textual content
of the documents. They treat documents as sequences of words,
disregarding the physical and typographical layout of the
information. While this strategy helps in focusing the extraction
process on the key semantic content of the document, much
valuable information can also be derived form the document
physical appearance. Often, fonts, physical positioning and other
graphical characteristics are used to provide additional context to
the information. This information is lost with pure-text analysis.
In this paper we describe a general procedure for structural
extraction, which allows for automatic extraction of entities from
the document based on their visual characteristics and relative
position in the document layout. Our structural extraction
procedure is a learning algorithm, which automatically generalizes
from examples. The procedure is a general one, applicable to any
document format with visual and typographical information. We
also describe a specific implementation of the procedure to PDF
documents, called PES (PDF Extraction System). PES works
with PDF documents and is able to extract fields such as
Author(s), Title, Date, etc. with very high accuracy.

Categories and Subject Descriptors

H.4. [Information Systems Application], H.3.3 [Information
Search and Retrieval], H.3.1 [Content Analysis and Indexing],
I.7.3 [Index Generation].

General Terms

Algorithms, Management, Experimentation, Documentation.

General Terms
Text Mining, Document Layout Analysis, Information Extraction

1. INTRODUCTION
Most text-processing systems [1] simplify the structure of the
documents they process. The visual form and layout of the
documents is ignored and only the text itself is processed, usually
as linear sequences or even bags of words. This allows the
algorithms to be simpler and cleaner, at the cost of a possible loss
of valuable information. This paper is an attempt to restore the
balance. We propose an approach that ignores the content of
words, while focusing on their superficial features, such as size
and position on the page. Such an approach is not aimed at
replacing the semantic one, but rather to complement the
conventional text extraction systems, and can also function as a
preprocessor or a converter.

We implemented this approach in a system called PES (PDF
Extraction System). The PES system accepts its input in the form
of Acrobat PDF documents. A document page in PDF format is
represented by a collection of primitive objects, which can be
characters, simple graphic shapes, or embedded objects. Each
primitive has properties, such as font size and type for characters,
and position on the page, given as coordinates of the object’s
bounding rectangle. We are interested in an automatic process
that accepts a formatted document as input, and returns a set of
predefined set of elements of the document, each assigned to a
corresponding field, e.g. “AUTHOR = …, TITLE = …, “ etc.
The set of field names and document elements that get assigned to
them is problem-dependent, and may be different for different
types of documents. Thus, we seek a system that learns how to
extract the proper document elements based on examples provided
by a domain expert. In PES system, described in this paper, a
domain expert annotates a set of documents, marking the fields to
be extracted. Each annotated document functions as a template,
against which new documents are matched.

At the heart of the extraction system we have the following
problem:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM ’02, Nov 4-9, 2002, McLean, VA.
Copyright 2002 ACM 1-58113-492-4/02/0011…$5.00.

203

Given:

1. Document A (a template),

2. A set of primitives in A (annotated fields), denoted
PA,

3. Document B (a query document),

Find:

1. The degree of similarity between documents A and
B.

2. The set of primitives in B that corresponds to PA.

The first step in the process of finding the primitives of B that
correspond to PA, is to find similarities between the original
document A and the new document B. The simplest way to match
two documents is coordinate-wise: match objects of the that have
identical bounding rectangles. The disadvantages of such an
approach are obvious. If the same field has different visual sizes,
e.g. a document title containing different number of words and
text lines, or if the field is shifted a bit, the system will not
identify the correct match. Nevertheless, the coordinates form a
good basis for more refined heuristics, as the same fields tend to
reside in more or less the same location across documents.
However, the correspondence must be established between
objects, not coordinates. In addition, the correspondence must be
between higher-level groups and not only between primitive
objects.

The PDF document representation does not contain any
information about text lines, paragraphs, columns, tables, and
other meaningful groups of primitives. The format is designed for
human reading, where the human mind does the necessary
grouping unconsciously. In order for information extraction
systems to take advantage of the visual clues available in the PDF
format, the system must perform perceptual grouping, as the first
stage of processing a document. The approach we take is to take
the physical/visual representation of the document, and transform
it into a complex abstract representation – consisting of nested
objects and relationships between them. We call this step
perceptual grouping. Once perceptual grouping has been
performed, the resulting structure is independent of the specific
document type. This approach allows us to provide a general
procedure applicable to diverse formats, and rapidly adaptable to
new formats.

Once the document structures are generated, these structures can
be used to extract information. A representative set of documents
is annotated by a domain expert, with parts of the documents’
structures being assigned to certain fields. These documents serve
as templates to be matched against the new documents. In the
process of structural mapping, a correspondence is created
between two document structures, mapping the objects of a
template document to the objects of the non-annotated query
document.

In the following sections we describe our approach to the two
problems outlined above, the perceptual grouping and the
structural mapping. We then discuss a particular implementation
suited for information extraction from PDF documents, and
experimental results.

2.2.2.2. RACKS
The algorithms for both grouping and mapping use a special data
structure, the rack, or probabilistic priority queue, for choosing
objects to work upon. Racks are probabilistic queues, used in [7].
For both algorithms it makes sense that some of the objects are
more important or more promising than others, and it is also
possible to calculate their importance or promise level. Objects
have weights that measure their importance and quality functions
calculate their promise. A natural solution would be is to
maintain a priority queue of objects, always choosing the best
object to work upon. But this approach has two problems. First,
if priority ranking of objects is very strict the algorithms may
easily be thrown into a loop, constantly working on the same
small set of objects and not making any progress. Secondly, even
if the difference in priorities is very small the higher will always
be chosen, which may cause “starvation” to some very promising
objects. Racks provide the necessary solution to these problems,
by chosening object randomly, rather than deterministically,but
having the probability of choosing a particular object proportional
to the object’s priority.

Definition: A rack or urgency queue is a container data
structure that supports two operations: Add(Object, Urgency)
and GetObject(). The GetObject() returns a random object from
among those added by Add(). The probability of choosing each
object is proportional to its urgency.
Unique rack sums an object’s urgencies if the object is added
more than once.

Implementation: There is an efficient implementation of the
rack data structure that allows adding and retrieving objects in
O(log N), where N is the size of the container. The objects are
stored in a balanced binary tree, and each node contains the sum
of urgencies of all objects in a subtree rooted at the node. Add()
inserts the object at the next available place and adds its urgency
to all of the object’s ancestors. Get() is more interesting:

Get(T : Tree) : returns object
 Let R := random number between 0 and
T.Root.SumUrgencies
 S := GetAt(T, R);
 Return the object at S and erase the object from the tree;
update ancestors’ urgencies;

GetAt(T : Tree, R : number) : Tree
 if (T.LeftSubtree exists)
 if (T.LeftSubtree.SumUrgencies > R)
 return GetAt(T.LeftSubtree, R);
 end if
 R = R – T.LeftSubtree.SumUrgencies;

204

end if
 if (T.RightSubtree exists)
 if (T.RightSubtree.SumUrgencies > R)
 return GetAt(T.RightSubtree, R);
 end if
 R = R – T.RightSubtree.SumUrgencies;

end if
return T;

The unique rack is implemented in the same way using a red-
black tree [4] as the storage structure, in order to allow rapid
location of an object’s location within the tree.

3. THE PERCEPTUAL GROUPING
PROBLEM

An Unstructured World Situation is a set of primitive objects
positioned in some coordinate system. The objects are primitive
in the sense of having no internal structure, although they may be
of different types and may have different properties. One property
that is common to all object types is the “coordinates” property.
The coordinate system allows defining a very crude relation
between objects called neighborhood. In simple terms, two
objects are neighbors if there is no other object between them.
For coordinate systems of more than one dimension, the definition
is somewhat more subtle , but can be based on the same idea. The
neighborhood relation is the basis of all other semantic relations
between objects.

The task of perceptual grouping is to discover meaningful groups
– sets of neighboring objects that together define higher-level
objects, which in turn participate in the neighborhood relation and
may become parts of still higher-level objects. We define the
notion of a hierarchical graph, or H-Graph, which mathematically
captures the recursive building process of the neighborhood
groups. Technically an H-graph is a forest of objects, with
primitives for leaves and groups for internal nodes. Groups
contain only objects that are connected by the neighborhood
relation.

Formally, let P be a set of primitives and let N⊆ P×P be a
symmetric neighboring relation. An H-Graph over (P,N) is a
rooted forest such that:

• At the leaves there are only elements of P.
• For any internal node x, if Px denotes the set of all

leaves in the subtree rooted in x, then
(Px, N ∩ (Px × Px)) is a connected graph.

In the following, we may omit reference to the sets P and N, if
obvious from the context. We now provide some formal
definitions and notations.

Definition: Let H=(O, E) be an H-Graph over (P, N). For x ∈ O:

• Ground(x) denotes the set of all leaves in the subtree
rooted at x.

• DescendantsTree(x) denotes the sub-tree rooted at x.
• Neighbors(x) denotes all nodes y, which do not belong

to Descendants(x), for which there exists a
p1 ∈ Ground(x) and p2 ∈ Ground(y) such that p1 and p2
are neighbors (i.e. (p1, p2) ∈ N) .

• H-Graph H’ is an extension of H if H is a sub-forest of
H’.

The definition of an H-graph is not concerned with the types and
properties of objects and groups. While these are important to the
specific implementation, it is possible to define the general
grouping problem and the generic algorithm without reference to
them. In section 4, when we refer to the PDF extraction problem,
we show an example of a specific H-Graph over PDF
documentsthat is based on specific object types relevant to the
PDF format.

Problem Definition:
The input is a set of primitive elements P and a neighboring
relation N, together representing an unstructured world situation.
Intuitively, the goal is to find an H-Graph over (P, N) that “gives
structure” to this representation. There are many ways to structure
the same set of primitives and clearly some of the ways are better
than others, from the point of view of the problem domain.

In order to be able to compare different possible ways of
structuring the same situation, we assign a quality score to each
H-graph, as follows. We assume that we are provided a value
function Q : Groups(P) →R, which assigns a score to each group
that can be built over P. Formally, Groups(P) is the set of all (up
to isomorphism) trees, such that their set of leaves is a subset of P
connected by N. Then, for an H-Graph H, we define:

∑ ∈
=

Hx
xsTreeDescendantQHQ))(()(,

the sum of scores of all groups in H. Given the quality function
Q, the problem of perceptual grouping becomes a problem of
combinatorial optimization: find an H-Graph, Hopt, over (P, N),
with the highest quality score Q(Hopt).

Naturally, the tractability of the problem depends on the
properties of the neighborhood relation, N, and the quality
function, Q. In most cases the right solution is obvious, and the
quality function reflects this fact by giving it a much higher score
than its rivals. However, there are some difficult or ambiguous
cases where the right solution (from the standpoint of the domain
problem) may not be found without additional information or
further processing at stages other than the perceptual grouping.
For those cases it is better if the system does not try to find the
maximal solution, but instead choose randomly from the cluster of
solutions of more-or-less the same score. Then if the solution is
inadequate, the grouping may be rerun with hopefully better
results.

The algorithm we present is a greedy algorithm, but it allows
retracting choices at specific points if better alternatives come up.
Rather then using simple backtracking, all changes to the structure

205

are local and preserve whatever was done at other parts of the
object collection. The algorithm includes a random element, so
although the obvious groups are always built in the same way, the
difficult ones could be rebuilt differently in each run. The
algorithm, being greedy, assumes what can be called accessibility
of the quality function, meaning that high-score groups can be
built by gradual addition of objects, one by one, without
significantly decreasing the score on the way. This condition does
not always hold in real world situations. For instance, when
building a table, it is necessary to add a whole row of objects at
once in order not to decrease the quality. This is not a serious
limitation, as the algorithm can be altered to check for ‘minimal
extensions’ instead of ‘extensions by one object’.

Grouping Algorithm:
Input: P (set of primitives), N (Neighborhood relationship),
Q (quality function) .
Output: H (H-Graph over (P,N))

ObjectsToProcess := P;
while (ObjectsToProcess is nonempty)
 x := some object from ObjectsToProcess.

 if (x ∈ H \ P) // x is a group - try to extend it
 y := FindFittingExtension(x);

 if (y ≠ ∅)
 ExtendGroup(x, y);
 continue; // process next object
 end if
 else
 // x is primitive or x is a group but cannot be extended
 y := FindFittingParent(x);

 if (y ≠ ∅)
 CreateGroup(y);
 continue; // process next object
 end if
 end if
end while

The main loop of the algorithm revolves around the
ObjectsToProcess rack. ObjectsToProcess initially contains
every primitive, and in each iteration one object is taken off the
rack and processed. If the object is a previously built group, an
attempt is made to extend the group by adding one more object
from its neighborhood. If the group cannot be extended, or if the
object is primitive, an attempt is made to create a higher-level
group containing the object.

An object y is fit to extend a group x if, (i) they are neighbors, (ii)
the quality of x+y is better than the quality of x, and (iii) the
Fitness of y in x is better than the Fitness of y in its previous

parent group (if it exists). The Fitness function is defined via the
quality function Q:








>−−−

∉
=

.|,)(|/)(
0)(),()(

)(,0
),(

otherwisexChildrenxQ
yxQifyxQxQ

xChildrenyif
xyFitness

ExtendGroup(x, y) disconnects both x and y from their previous
parents, adds y to the children of x and places the new x+y object
onto the ObjectsToProcess rack, allowing it to be further extended
or to be used as a base for a higher-level group.

A node y is a fitting parent of node x if: (i) y has one or two
children, one of which is x and another x’s neighbor, (ii) the
quality of y is positive, and (iii) the Fitness of all y’s children in y
is better than their Fitness in their previous parents.

CreateGroup(y) disconnects y’s children from their previous
parents, adds y to H, and places y onto the ObjectsToProcess rack.

DisconnectFromParent(x) checks whether p = Parent(x) exists,
and if it does, whether it can exist without x (it cannot if Q(p – x)
≤ 0). If it can, x is removed from the children of p, and p is placed
onto the ObjectsToProcess rack. Otherwise, p is destroyed
(removed from the current H) and all its former children are
placed onto the rack.

The main loop is executed so long as there are objects in the
queue. The execution stops when all attempts to either extend any
group or create a new one fail. Precautions may be taken to stop
the loop after a fixed number of iterations, in order not to fall into
an infinite loop because of a bad quality function. Our experience
that it is usually safe to stop the processing after 5|P| iterations,
since the mode of execution ensures that the most important and
the best groups are constructed first.

4. STRUCTURAL MAPPING PROBLEM
Once we have a method to convert an unstructured object set into
a structured H-Graph, the next goal is to map between two
structured H-Graphs: that of the template document and that of
the query document. We require that the mapping preserve the
hierarchical structure of the two H-Graphs. Specifically, if a node
x is under node y, then Map(x) must be under Map(y). We
perform the mapping in a recursive fashion, mapping the highest-
level objects to highest-level objects, and then recursively
mapping their members. Thus, it remains to show how to perform
one level of the mapping. On each level, there is a set of objects
in each of the graphs, and neighboring relation defined between
objects of each graph.
The problem definition:
The input is two undirected graphs, with nodes for objects and
edges for the neighborhood relation between them. The desired
output is a function that best maps one graph onto another. In
order to define the quality of a mapping, two problem-dependent

206

similarity functions are required, evaluating similarity of any two
objects and of any two relations. The definition of the algorithm
in terms of those functions allows avoiding the types and
properties of objects and relations. There may also be a different
weight assigned to each object and relation, if they have different
importance. In this case, the problem is to optimize the weighted
quality of the mapping.

Problem: Given two undirected connected graphs G1 = (V1, E1)
and G2 = (V2, E2), a weight function W : V1∪ E1 → R+ on vertices
and edges of the first graph, and two similarity functions, SimObj
: V1 × V2 → [0,1] and SimRl : E1 × E2 → [0,1], find a mapping
M : V1 → V2, that maximizes MapQuality, where

)))(,(),,(())(,(),(),,(

)),(,())(,()()(

1211
),(

111121

11111

111

11

uMvuvSimRluMuSimObjuvwMvvRlQuality

MvMvRlQualityvMvSimObjvwMMapQuality

Euv

Vv

∑

∑

∈

∈

⋅⋅=

⋅⋅=

 (Note: If (v2, u2) ∉ E2, SimRl(∗ , (v2, u2)) is considered to be
zero.)

The algorithm we use to solve this problem is also a greedy
algorithm. The algorithm requires a seed mapping to start
working. A seed is a map of a single object. It doesn’t have to be
the correct or the best mapping, but if it is too far off, the
algorithm will be slower and might not find a good mapping if the
neighborhood relation is too sparse. In the specific problem of
PDF document structures mapping, we take as the seed a mapping
between two top-most and left-most objects that can be mapped
onto each other.

The Mapping Algorithm
Input: G1 (template graph), G2 (query document graph),
W (weigh function), SimObj (object similarity function),
SimRl (relation similarity function).
Output: M (mapping function))

M(Seed1) := Seed2 for some Seed1 ∈ V1 and Seed2 ∈ V2;
ObjectsToProcess := { Seed1 };
while (ObjectsToProcess is nonempty)
v1 := some object from ObjectsToProcess;
for all (v1, u1) ∈ E1
 find (M(v1), u2) ∈ E2
 such that RlQuality(u1, u2) is maximal;
 if (M-1(u2) = ∅ or RlQuality(M-1(u2), u2)
 < RelQuality(u1, u2))
 M-1(u2) := ∅ ;
 M-1(u1) := u2;
 ObjectsToProcess := ObjectsToProcess ∪
 { u1 };

 end if
end for

end while

In a similar way to the grouping algorithm, the main loop is
carried over the rack ObjectsToProcess. All objects in this rack
are already mapped somewhere. At each iteration one object is
taken off the rack and processed. An extension of the mapping is
attempted for all neighbors of the object. All objects that were
successfully mapped are placed in ObjectsToProcess. The
process stops when there are no more objects to map.

5. STRUCTURAL EXTRACTION (IMPLEMENTATION
FOR PDF)
The PES system contains several components, which instantiate
for PDF documents the generic grouping and mapping algorithms
described above. The specific instantiation defines the
neighborhood relation and provides the various quality functions.

The exact definition of neighborhood can vary as long as it is
consistent and provides good connectivity between adjacent
objects. The definition chosen for our implementation considers
two objects to be neighbors if no other object obscures them from
each other’s “view”.

Grouping of PDF objects

There are three kinds of primitive objects, namely characters,
simple graphics, and embedded pictures, and there could be many
kinds of groups, of which three are currently implemented: ‘text
lines’, ‘paragraphs’ and ‘columns’. The qualities of the different
kinds of groups are calculated differently.

Text lines are the simplest to spot. They are sequences of
neighbor characters, whose vertical coordinates are more or less
the same. The distinction between lines and non-lines is sharp
enough for the definition to be exact (non-fuzzy). A group of
neighborhood-connected characters is considered to be a line
(with quality = 1.0) if their y-coordinates are not further apart than
half their average height, and their x-coordinates are not too far
from each other, so the x-distance between the bounding
rectangles of any two adjacent characters is less than twice their
average height. Any other group is considered to be unacceptable
as a line (quality = 0).

‘Paragraphs’ are groups of neighboring lines that are bound to
each other more closely than to anything else. A good paragraph
has the following characteristics: the characters in different lines
are of the same font; the distances between lines are constant; and
the lines are aligned or centered. The exact scoring function for
paragraphs is provided in the Appendix.

Columns are groups of neighboring paragraphs, residing
vertically, with difference in font size less than twice minimal font
size, and with the distance between paragraphs less than four
times the average line height. The quality of an acceptable
column is 1, and everything else 0.

207

The quality of paragraphs and columns includes a small positive
bonus for the size. If the group contains only a single element,
the quality is halved. Thus, bigger groups are preferred, and
singleton groups will form only in the lack of any better option.

Mapping of PDF structures
In order to instantiate the generic algorithm to the specific
instance of PDF extraction, we need to define the two similarity
functions SimObj(Obj1,Obj2) and SimRl(Rel1,Rel2).

SimObj(Obj1,Obj2) measures the similarity between two objects.
Our implementation of the function takes into account the
following three parameters:

• Object types: only objects of the same type get a
positive similarity value,

• Size: the closer in size the objects are to each other, the
higher the score,

• Position: the closer the objects would be to each other,
if placed on the same page, the higher the score.

SimRl(Rel1,Rel2) measures the similarity between two relations,
i.e. pairs of objects. Our implementation of the function
disregards all relations between two objects except for relations
between positions of their bounding rectangles. Specifically,
Rel1=(Obj11,Obj12) is considered similar to Rel2 = (Obj21,Obj22) if
the corners of Obj12 lay in the same relations to Obj11 as the
corners of Obj22 lay to Obj21. A detailed description of the
functions used in PES is provided in the Appendix.

Example
Figure 1 shows two portions of two different PDF documents
(both Lehman Brothers research reports). Each primitive object is
annotated with a number. These are the numbers 1 through 7. We
ran our Grouping algorithm on both sets of objects, producing
objects of higher order. These are the objects 8-11, indicated in
Figure 1.

1
2
3
4
5
6
7

8

9

10

11 : Column

1

2
3
4

5
6
7

8

9

10

11

Figure 1 - two portions of 2 different PDF documents A (left)
and B(Right)

Figure 2 depicts the sequence of steps taken by the Grouping
algorithm, for the two PDF portions; in forming the H-Graph
(both portions produced the same H-Graph). The final H-Graph
is shown in Figure 3.

7654321

P PP

C

8

#3 #
3 #
6

1

1 #
7

#12 #
9

11

P

2

Deleted
 in #7

P

4

C

5

Deleted
 in #6

Deleted
 in #6

C

10

Deleted
 in #11

Figure 2 - The Grouping algorithm operating on each of the
PDF portions of Figure 1

7654321

9 108

11

Primitive Level

Paragraph Level

Column Level

Figure 3 - The Final H-Graph of the PDF portions

The Mapping Algorithm
Once the H-Graphs for both PDF portions where constructed, we
applied the Mapping algorithm, to map the two structures. Note
that while the resulting H-Graphs were identical, the objects
themselves are different (different font, location, etc.). Thus,
there is still a need to find the best mapping.

The mapping algorithm in this case runs in three levels, according
to the three levels of the associated H-Graphs. Following is a
trace of the operations of the algorithm (we denote by A.i, and
B.i, the i-th object of PDF A and B, respectively).

Level 1. Mapping of the roots. In the given example, there is
only single root in each H-Graph. Both are of the same type
(column) and thus can be mapped.
 M(Object A.11) := Object B.11

Level2. Mapping of the roots’ children. The topmost and
leftmost compatible objects are matched. The seed is placed in
ObjectsToProcess.

208

M(A.8) := B.8
Loop: Already mapped object is taken from
ObjectsToProcess and its neighbors are mapped and
placed into ObjectsToProcess.

Neighbors(A.8) = { A.9 }.
 M(A.9) := B.9

Neighbors(A.9) = { A.8, A.10 }.
 M(A.8) is unchanged
 M(A.10) := B.10

 Neighbors(A.10) = { A.9 }.
 M(A.9) is unchanged

Level3. Mapping of the children of the matched paragraphs.

Children(A.8) = { A.1 }
Children(B.9) = { B.1 }
M(A.1) := B.1

Children(A.9) = { A.2, A.3, A.4 }
Children(2.9) = { B.2, B.3, B.4 }
M(A.2) := B.2
M(A.3) := B.3
M(A.4) := B.4

Children(A.10) = { A.5, A.6, A.7 }
Children(B.10) = { B.5, B.6, B.7 }
M(A.5) := B.5
M(A.6) := B.6
M(A.7) := B.7

At this point we have a perfect match between the two H-graphs,
and the mapping is complete.

The overall system architecture

The system contains several components: Annotator, Grouper,
Mapper, and Extractor. Annotator is a GUI tool that allows the
user to mark fields in a PDF document and store their names and
positions in a separate file. Grouper takes a PDF document as
input, does the grouping and saves the document structure.
Mapper’s input is a template (document structure + fields data)
and a document structure for a query document. The template is
mapped onto the query document, and the elements assigned to
the various fields are produced as output, together with the overall
quality of the mapping. Extractor takes a document structure and
the selected elements and outputs the elements’ text.

The Grouper and the Mapper may sometimes produce different
results for the same document(s), because the algorithms have a

random element to them. This feature can actually be an
advantage and can be used to improve the precision of the results,
as follows. The Mapper outputs the mapped elements for a new
document. This allows the document to be used as a template, so
the Mapper can map it back to the original template, producing
alternative elements. If the elements are different from the
original elements, a different grouping may be tried. Experiments
suggest that this technique (called ‘MapBack’) does significantly
improve precision. The architecture of the PES system is show in
Figure 4.

Training
PDF Annotator

Field
Description

s of the
Training

PDF

Grouper Mapper

New PDF

New
H-Graph

Generator

Training
H-Graph

Template

Field
Descriptions
for the New
Document

Final
Output

Figure 4 - Architecture of the PES System

6. EXPERIMENTAL EVALUATION
The experiments were performed using a dataset of 500 annotated
company reports, 100 from each of the five brokerage firms:
Lehman Brothers, Merrill Lynch, Morgan Stanley Dean Witter,
SalomonSmithBarney and HSBC. For each of the documents, 4
fields were marked: Author (first author), Date, Title, and
Document Source. The experiments were conducted to find out
how the results depend on the number of template documents and
on the use of randomness and ‘mapping back and regrouping’
technique. The results are summarized in the Table 1. Each entry
contains the recall and the precision (recall/precision) for each of
the 4 elements (Author, Date, Title and Source) and their average
values.

Table 1. Recall/Precision figures for experiments done with
PES

Figure 5 shows the dependence of the overall performance on the
number of training documents (templates) per document type, for
both the regular and MapBack approaches.

Map
Back?

#temp
-lates

Author Date Title Source All Fields

No
No
No

1
3
6

40.0/58.0
50.0/67.3
65.3/86.4

48.0/72.8
45.3/70.7
84.0/94.4

47.3/67.0
46.0/52.7
77.3/83.7

70.0/70.1
67.3/70.7
82.0/91.9

51.3/67.0
52.2/65.4
77.2/89.1

No 10 66.0/87.0 83.3/91.9 83.3/89.9 78.0/93.5 77.7/90.6
Yes
Yes
Yes

1
3
6

52.7/70.1
58.0/65.9
90.7/90.7

46.7/74.7
46.7/72.7
90.7/91.8

46.0/68.7
46.7/68.1
83.3/83.8

68.7/99.3
70.0/88.2
94.7/94.7

53.5/78.2
55.3/73.7
89.8/90.3

Yes 10 93.3/93.3 94.0/94.0 94.7/94.7 96.7/96.7 94.7/94.7

209

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Regular recall

Regular prec

MapBack
recall

MapBack
prec

Figure 5 - Performance per number of templates

Several things are worth noticing in this chart. First, both
precision and recall of the algorithm with MapBack are
significantly better than their regular counterparts. Also, note that
the MapBack curves show more stable improvement as more
templates are added, in contrast to the regular experiments, where
adding a template sometimes makes results worse. This shows
that the MapBack technique can filter out bad templates. ,
Finally, all curves show a jump at 4-5 templates. The reason is
that the templates were chosen randomly. Thus, the document
types (formats) are not represented equally or uniformly among
the templates. Apparently, the fifth template happened to belong
to a format that was not previously represented.

We also compared the performance of our algorithm to a fully
greedy algorithm. The difference is that our algorithm allows
reshuffling of objects between groups, while a greedy algorithm
would not. The results are shown in Figure 6.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Regular recall

Regular prec

MapBack
recall

MapBack
prec

Figure 6 - Performance of fully greedy algorithm

As can be seen, the results are very bad, which shows that for the
perceptual grouping problem our algorithm is indeed stronger
than purely greedy algorithm.

7. CONCLUSIONS
The experiments suggest that the proposed approach is indeed
viable, although not without shortcomings. The significant
improvement of the precision with MapBack tests shows that the
feedback between grouping and mapping is important. The
technique can be thought of as a way to influence the grouping
process with the results of the mapping process, a way to blend
them together, however weakly. The improvement of the
performance confirms the point of view of [7] that the two basic
problems, perception and analogy making, are interdependent,
even in such a limited domain as structuring a PDF document.
Further research should focus on blending them altogether, within
the same urgency-based architecture.

Another essential shortcoming is the complexity of group quality
functions. It is interesting to note in contrast that the similarity
functions are very simple and still adequate. This suggests that
another level of abstraction may be required, between the quality
functions and the types of groups they represent, abstraction that
allows the group quality to be calculated from a set of features of
the group’s components and the group as a whole.

The method of learning new document types is close to learning
concepts from prototypical examples. It is assumed that simpler
concepts, which define parts of the document type, are already
learned and can be found and identified by the process of
perceptual grouping. So, what is learned is the particular
configuration of simpler concepts that make a complex concept,
or a set of such configurations. Yet another direction of further
research would be to allow some of the intermediate concepts,
less than the whole document, to be learned in this way. Other
researchers [2,3,5,8] have dealt with modeling the document
structure. However the main purpose of their systems was to
generate the structure of the document and not to extract specific
elements. In addition these systems have no learning component
that is able to learn the extraction patterns based on a set of
training examples.

8. REFERENCES
[1] Appelt D. E., Hobbs J., Bear J., Israel D. and Tyson M., 1993.
“FASTUS: A Finite-State Processor for Information Extraction
from Real-World Text”, Proceedings. IJCAI-93, Chambery,
France, August 1993.
[2] Cattoni R., Coianiz T., Messelodi S., and Modena C. M. ITC-
IRST, Via Sommarive, I-38050 Povo, Trento, Italy January 1998 .
[3] Cerny, V., "Thermodynamical Approach to the Traveling
Salesman Problem: An Efficient Simulation Algorithm", J. Opt.
Theory Appl., 45, 1, 41-51, 1985
[4] Cormen Thomas H., (Editor), Leiserson, Charles E., and
Rivest, Ronald L. “Introduction to Algorithms”, Second Edition.
MIT Press, September 2001.
[5] Dori D., Doermann D., Shin, C., Haralick R., Phillips I.,
Buchman M., and Ross D. The Representation of Document
Structure: A Generic Object-Process. Handbook on Optical
Character Recognition and Document Image Analysis, World
Scientific Publishing Company, 1996
[6] Feldman R., Rosenfeld B., Stoppi J., Liberzon Y. and Schler,
J., 2000. “A Framework for Specifying Explicit Bias for Revision
of Approximate Information Extraction Rules”. KDD 2000: 189-
199.
[7] Hofstadter, D., Fluid Concepts & Creative Analogies :
Computer Models of the Fundamental Mechanisms of Thought,
Basic Books, 1995.
[8] Kirkpatrick, S., C. D. Gelatt Jr., M. P. Vecchi, "Optimization
by Simulated Annealing",Science, 220, 4598, 671-680, 1983.

210

	INTRODUCTION
	RACKS
	GetAt(T : Tree, R : number) : Tree

	THE PERCEPTUAL GROUPING PROBLEM
	STRUCTURAL MAPPING PROBLEM
	STRUCTURAL EXTRACTION (IMPLEMENTATION FOR PDF)
	EXPERIMENTAL EVALUATION
	CONCLUSIONS
	REFERENCES

