
 

 

Structural Extraction from Visual Layout of Documents
Binyamin Rosenfeld 
ClearForest Corporation 

15 East 26 St 
New York, NY 
212-432-1515 

grur@clearfotrest.com 

Ronen Feldman 
ClearForest Corporation 

15 East 26 St 
New York, NY 
212-432-1515 

Department of Computer 
Science 

Bar Ilan University 
Ramat Gan, Israel 

ronen@clearfotrest.com 
 

Yonatan Aumann 
ClearForest Corporation 

15 East 26 St 
New York, NY 
212-432-1515 

Department of Computer 
Science 

Bar Ilan University 
Ramat Gan, Israel 

yonatan@clearfotrest.com 
 
 
 

ABSTRACT 

Most information extraction systems focus on the textual content 
of the documents.  They treat documents as sequences of words, 
disregarding the physical and typographical layout of the 
information.  While this strategy helps in focusing the extraction 
process on the key semantic content of the document, much 
valuable information can also be derived form the document 
physical appearance. Often, fonts, physical positioning and other 
graphical characteristics are used to provide additional context to 
the information. This information is lost with pure-text analysis.  
In this paper we describe a general procedure for structural 
extraction, which allows for automatic extraction of entities from 
the document based on their visual characteristics and relative 
position in the document layout.  Our structural extraction 
procedure is a learning algorithm, which automatically generalizes 
from examples. The procedure is a general one, applicable to any 
document format with visual and typographical information. We 
also describe a specific implementation of the procedure to PDF 
documents, called PES (PDF Extraction System).  PES works 
with PDF documents and is able to extract fields such as 
Author(s), Title, Date, etc. with very high accuracy.   

Categories and Subject Descriptors 

H.4. [Information Systems Application], H.3.3 [Information 
Search and Retrieval], H.3.1 [Content Analysis and Indexing], 
I.7.3 [Index Generation]. 

General Terms 

Algorithms, Management, Experimentation, Documentation. 

General Terms 
Text Mining, Document Layout Analysis, Information Extraction 

1. INTRODUCTION 
Most text-processing systems [1] simplify the structure of the 
documents they process.   The visual form and layout of the 
documents is ignored and only the text itself is processed, usually 
as linear sequences or even bags of words.  This allows the 
algorithms to be simpler and cleaner, at the cost of a possible loss 
of valuable information.  This paper is an attempt to restore the 
balance.  We propose an approach that ignores the content of 
words, while focusing on their superficial features, such as size 
and position on the page.  Such an approach is not aimed at 
replacing the semantic one, but rather to complement the 
conventional text extraction systems, and can also function as a 
preprocessor or a converter. 

 

We implemented this approach in a system called PES (PDF 
Extraction System). The PES system accepts its input in the form 
of Acrobat PDF documents.  A document page in PDF format is 
represented by a collection of primitive objects, which can be 
characters, simple graphic shapes, or embedded objects.  Each 
primitive has properties, such as font size and type for characters, 
and position on the page, given as coordinates of the object’s 
bounding rectangle.  We are interested in an automatic process 
that accepts a formatted document as input, and returns a set of 
predefined set of elements of the document, each assigned to a 
corresponding field, e.g. “AUTHOR = …,  TITLE = …, “ etc.  
The set of field names and document elements that get assigned to 
them is problem-dependent, and may be different for different 
types of documents.  Thus, we seek a system that learns how to 
extract the proper document elements based on examples provided 
by a domain expert.  In PES system, described in this paper, a 
domain expert annotates a set of documents, marking the fields to 
be extracted.  Each annotated document functions as a template, 
against which new documents are matched. 

At the heart of the extraction system we have the following 
problem:   
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Given: 

1. Document A (a template), 

2. A set of primitives in A (annotated fields), denoted 
PA, 

3. Document B (a query document), 

 

Find: 

1. The degree of similarity between documents A and 
B. 

2. The set of primitives in B that corresponds to PA. 

 

The first step in the process of finding the primitives of B that 
correspond to PA, is to find similarities between the original 
document A and the new document B. The simplest way to match 
two documents is coordinate-wise: match objects of the that have 
identical bounding rectangles.  The disadvantages of such an 
approach are obvious.  If the same field has different visual sizes, 
e.g. a document title containing different number of words and 
text lines, or if the field is shifted a bit, the system will not 
identify the correct match. Nevertheless, the coordinates form a 
good basis for more refined heuristics, as the same fields tend to 
reside in more or less the same location across documents. 
However, the correspondence must be established between 
objects, not coordinates.  In addition, the correspondence must be 
between higher-level groups and not only between primitive 
objects. 

The PDF document representation does not contain any 
information about text lines, paragraphs, columns, tables, and 
other meaningful groups of primitives.  The format is designed for 
human reading, where the human mind does the necessary 
grouping unconsciously.  In order for information extraction 
systems to take advantage of the visual clues available in the PDF 
format, the system must perform perceptual grouping, as the first 
stage of processing a document.  The approach we take is to take 
the physical/visual representation of the document, and transform 
it into a complex abstract representation – consisting of nested 
objects and relationships between them. We call this step 
perceptual grouping. Once perceptual grouping has been 
performed, the resulting structure is independent of the specific 
document type. This approach allows us to provide a general 
procedure applicable to diverse formats, and rapidly adaptable to 
new formats.  

Once the document structures are generated, these structures can 
be used to extract information.  A representative set of documents 
is annotated by a domain expert, with parts of the documents’ 
structures being assigned to certain fields.  These documents serve 
as templates to be matched against the new documents.  In the 
process of structural mapping, a correspondence is created 
between two document structures, mapping the objects of a 
template document to the objects of the non-annotated query 
document. 

 

In the following sections we describe our approach to the two 
problems outlined above, the perceptual grouping and the 
structural mapping. We then discuss a particular implementation 
suited for information extraction from PDF documents, and 
experimental results. 

2.2.2.2.    RACKS    
The algorithms for both grouping and mapping use a special data 
structure, the rack, or probabilistic priority queue, for choosing 
objects to work upon.  Racks are probabilistic queues, used in [7].  
For both algorithms it makes sense that some of the objects are 
more important or more promising than others, and it is also 
possible to calculate their importance or promise level.  Objects 
have weights that measure their importance and quality functions 
calculate their promise.  A natural solution would be is to 
maintain a priority queue of objects, always choosing the best 
object to work upon.  But this approach has two problems.  First, 
if priority ranking of objects is very strict the algorithms may 
easily be thrown into a loop, constantly working on the same 
small set of objects and not making any progress.  Secondly, even 
if the difference in priorities is very small the higher will always 
be chosen, which may cause “starvation” to some very promising 
objects.  Racks provide the necessary solution to these problems, 
by  chosening object randomly, rather than deterministically,but 
having the probability of choosing a particular object proportional 
to the object’s priority.  
 
Definition:  A rack or urgency queue is a container data 
structure that supports two operations:  Add(Object, Urgency)  
and  GetObject().  The GetObject() returns a random object from 
among those added by Add(). The probability of choosing each 
object is proportional to its urgency. 
Unique rack sums an object’s urgencies if the object is added 
more than once. 
 
Implementation:   There is an efficient implementation of the 
rack data structure that allows adding and retrieving objects in 
O(log N), where N is the size of the container.  The objects are 
stored in a balanced binary tree, and each node contains the sum 
of urgencies of all objects in a subtree rooted at the node.  Add() 
inserts the object at the next available place and adds its urgency 
to all of the object’s ancestors.  Get() is more interesting: 
 
Get(T : Tree) : returns object 
 Let  R := random number between 0 and 
T.Root.SumUrgencies 
 S :=  GetAt(T, R); 
 Return the object at S and erase the object from the tree; 
update ancestors’ urgencies; 

GetAt(T : Tree, R : number) : Tree 
 if (T.LeftSubtree exists) 
 if (T.LeftSubtree.SumUrgencies > R) 
   return GetAt(T.LeftSubtree, R); 
  end if 
 R = R – T.LeftSubtree.SumUrgencies; 
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end if 
 if (T.RightSubtree exists) 
 if (T.RightSubtree.SumUrgencies > R) 
   return GetAt(T.RightSubtree, R); 
  end if 
 R = R – T.RightSubtree.SumUrgencies; 

end if 
return T; 

 
The unique rack is implemented in the same way using a red-
black tree [4] as the storage structure, in order to allow rapid 
location of an object’s location within the tree. 

3. THE PERCEPTUAL GROUPING 
PROBLEM 
 
An Unstructured World Situation is a set of primitive objects 
positioned in some coordinate system.  The objects are primitive 
in the sense of having no internal structure, although they may be 
of different types and may have different properties.  One property 
that is common to all object types is the “coordinates” property.  
The coordinate system allows defining a very crude relation 
between objects called neighborhood.  In simple terms, two 
objects are neighbors if there is no other object between them.  
For coordinate systems of more than one dimension, the definition 
is somewhat more subtle , but can be based on the same idea.  The 
neighborhood relation is the basis of all other semantic relations 
between objects. 
 
The task of perceptual grouping is to discover meaningful groups 
– sets of neighboring objects that together define higher-level 
objects, which in turn participate in the neighborhood relation and 
may become parts of still higher-level objects.  We define the 
notion of a hierarchical graph, or H-Graph, which mathematically 
captures the recursive building process of the neighborhood 
groups.  Technically an H-graph is a forest of objects, with 
primitives for leaves and groups for internal nodes.  Groups 
contain only objects that are connected by the neighborhood 
relation. 
 

Formally, let P be a set of primitives and let N⊆ P×P be a 
symmetric neighboring relation.  An H-Graph over (P,N) is a 
rooted forest such that: 

• At the leaves there are only elements of P. 
• For any internal node x, if Px denotes the set of all 

leaves in the subtree rooted in x, then 
(Px, N ∩ (Px × Px)) is a connected graph.   

 
In the following, we may omit reference to the sets P and N, if 
obvious from the context.  We now provide some formal 
definitions and notations. 
 

Definition: Let H=(O, E) be an H-Graph over (P, N).  For x ∈  O:  

• Ground(x) denotes the set of all leaves in the subtree 
rooted at x. 

• DescendantsTree(x)  denotes the sub-tree rooted at x. 
• Neighbors(x) denotes all nodes y, which do not belong 

to Descendants(x), for which there exists a  
p1 ∈  Ground(x) and p2 ∈  Ground(y) such that p1 and p2  
are neighbors (i.e. (p1, p2) ∈  N) . 

• H-Graph H’ is an extension of H if H is a sub-forest of 
H’. 

 
The definition of an H-graph is not concerned with the types and 
properties of objects and groups. While these are important to the 
specific implementation, it is possible to define the general 
grouping problem and the generic algorithm without reference to 
them.  In section 4, when we refer to the PDF extraction problem, 
we show an example of a specific H-Graph over PDF 
documentsthat is based on specific object types relevant to the 
PDF format.  
 
Problem Definition: 
The input is a set of primitive elements P and a neighboring 
relation N, together representing an unstructured world situation.  
Intuitively, the goal is to find an H-Graph over (P, N) that “gives 
structure” to this representation.  There are many ways to structure 
the same set of primitives and clearly some of the ways are better 
than others, from the point of view of the problem domain.   
 
In order to be able to compare different possible ways of 
structuring the same situation, we assign a quality score to each 
H-graph, as follows.  We assume that we are provided a value 
function Q : Groups(P) →R, which assigns a score to each group 
that can be built over P.  Formally, Groups(P) is the set of all (up 
to isomorphism) trees, such that their set of leaves is a subset of P 
connected by N.  Then, for an H-Graph H, we define: 

∑ ∈
=

Hx
xsTreeDescendantQHQ ))(()( , 

the sum of scores of all groups in H.  Given the quality function 
Q, the problem of perceptual grouping becomes a problem of 
combinatorial optimization:  find an H-Graph, Hopt, over (P, N), 
with the highest quality score Q(Hopt).  
 
Naturally, the tractability of the problem depends on the 
properties of the neighborhood relation, N, and the quality 
function, Q.  In most cases the right solution is obvious, and the 
quality function reflects this fact by giving it a much higher score 
than its rivals.  However, there are some difficult or ambiguous 
cases where the right solution (from the standpoint of the domain 
problem) may not be found without additional information or 
further processing at stages other than the perceptual grouping.  
For those cases it is better if the system does not try to find the 
maximal solution, but instead choose randomly from the cluster of 
solutions of more-or-less the same score.  Then if the solution is 
inadequate, the grouping may be rerun with hopefully better 
results. 
 
The algorithm we present is a greedy algorithm, but it allows 
retracting choices at specific points if better alternatives come up. 
Rather then using simple backtracking, all changes to the structure 

205



 

 

are local and preserve whatever was done at other parts of the 
object collection.  The algorithm includes a random element, so 
although the obvious groups are always built in the same way, the 
difficult ones could be rebuilt differently in each run.  The 
algorithm, being greedy, assumes what can be called accessibility 
of the quality function, meaning that high-score groups can be 
built by gradual addition of objects, one by one, without 
significantly decreasing the score on the way.  This condition does 
not always hold in real world situations.  For instance, when 
building a table, it is necessary to add a whole row of objects at 
once in order not to decrease the quality.  This is not a serious 
limitation, as the algorithm can be altered to check for ‘minimal 
extensions’ instead of ‘extensions by one object’. 
 
Grouping Algorithm: 
Input: P (set of primitives), N (Neighborhood relationship),  
Q (quality function) .    
Output:  H (H-Graph over (P,N)) 
 
ObjectsToProcess := P; 
while (ObjectsToProcess is nonempty) 
 x := some object from ObjectsToProcess. 

 if (x ∈  H \ P) // x is a group - try to extend it  
  y := FindFittingExtension(x); 

  if (y ≠ ∅ ) 
   ExtendGroup(x, y); 
   continue;   // process next object 
  end if 
 else 
        // x is primitive or x is a group but cannot be extended 
  y := FindFittingParent(x); 

  if (y ≠ ∅ ) 
   CreateGroup(y); 
   continue;   // process next object 
  end if 
 end if 
end while 
 
The main loop of the algorithm revolves around the 
ObjectsToProcess rack.    ObjectsToProcess initially contains 
every primitive, and in each iteration one object is taken off the 
rack and processed.  If the object is a previously built group, an 
attempt is made to extend the group by adding one more object 
from its neighborhood.  If the group cannot be extended, or if the 
object is primitive, an attempt is made to create a higher-level 
group containing the object. 
 
An object y is fit to extend a group x if, (i) they are neighbors, (ii) 
the quality of x+y is better than the quality of x, and (iii) the 
Fitness of y in x is better than the Fitness of y in its previous 

parent group (if it exists).  The Fitness function is defined via the 
quality function Q: 
 








>−−−

∉
=

.|,)(|/)(
0)(),()(

)(,0
),(

otherwisexChildrenxQ
yxQifyxQxQ

xChildrenyif
xyFitness  

 
ExtendGroup(x, y) disconnects both x and y from their previous 
parents, adds y to the children of x and places the new x+y object 
onto the ObjectsToProcess rack, allowing it to be further extended 
or to be used as a base for a higher-level group. 
 
A node y is a fitting parent of node x if: (i) y has one or two 
children, one of which is x and another x’s neighbor, (ii) the 
quality of y is positive, and (iii) the Fitness of all y’s children in y 
is better than their Fitness in their previous parents. 
 
CreateGroup(y) disconnects y’s children from their previous 
parents, adds y to H, and places y onto the ObjectsToProcess rack. 
 
DisconnectFromParent(x)  checks whether p = Parent(x) exists, 
and if it does, whether it can exist without x (it cannot if Q(p –  x) 
≤ 0).  If it can, x is removed from the children of p, and p is placed 
onto the ObjectsToProcess rack.  Otherwise, p is destroyed 
(removed from the current H) and all its former children are 
placed onto the rack. 
 
The main loop is executed so long as there are objects in the 
queue.  The execution stops when all attempts to either extend any 
group or create a new one fail.  Precautions may be taken to stop 
the loop after a fixed number of iterations, in order not to fall into 
an infinite loop because of a bad quality function.  Our experience 
that it is usually safe to stop the processing after 5|P| iterations, 
since the mode of execution ensures that the most important and 
the best groups are constructed first. 

4. STRUCTURAL MAPPING PROBLEM 
Once we have a method to convert an unstructured object set into 
a structured H-Graph, the next goal is to map between two 
structured H-Graphs: that of the template document and that of 
the query document. We require that the mapping preserve the 
hierarchical structure of the two H-Graphs.  Specifically, if a node 
x is under node y, then Map(x) must be under Map(y).  We 
perform the mapping in a recursive fashion, mapping the highest-
level objects to highest-level objects, and then recursively 
mapping their members.  Thus, it remains to show how to perform 
one level of the mapping.  On each level, there is a set of objects 
in each of the graphs, and neighboring relation defined between 
objects of each graph.    
The problem definition: 
The input is two undirected graphs, with nodes for objects and 
edges for the neighborhood relation between them.  The desired 
output is a function that best maps one graph onto another.  In 
order to define the quality of a mapping, two problem-dependent 
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similarity functions are required, evaluating similarity of any two 
objects and of any two relations.  The definition of the algorithm 
in terms of those functions allows avoiding the types and 
properties of objects and relations.  There may also be a different 
weight assigned to each object and relation, if they have different 
importance. In this case, the problem is to optimize the weighted 
quality of the mapping. 
 
Problem:   Given two undirected connected graphs G1 = (V1, E1) 
and G2 = (V2, E2), a weight function W : V1∪ E1 → R+ on vertices 
and edges of the first graph, and two similarity functions, SimObj 
: V1 × V2 → [0,1]  and  SimRl : E1 × E2 → [0,1],  find a mapping 
M : V1 → V2, that maximizes MapQuality, where 
 

)))(,(),,(())(,(),(),,(

)),(,())(,()()(

1211
),(

111121

11111

111

11

uMvuvSimRluMuSimObjuvwMvvRlQuality
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∑

∑

∈

∈

⋅⋅=

⋅⋅=  

 (Note:  If (v2, u2) ∉  E2,  SimRl(∗ , (v2, u2)) is considered to be 
zero.) 
 
The algorithm we use to solve this problem is also a greedy 
algorithm.  The algorithm requires a seed mapping to start 
working.  A seed is a map of a single object.  It doesn’t have to be 
the correct or the best mapping, but if it is too far off, the 
algorithm will be slower and might not find a good mapping if the 
neighborhood relation is too sparse.  In the specific problem of 
PDF document structures mapping, we take as the seed a mapping 
between two top-most and left-most objects that can be mapped 
onto each other. 
  
The Mapping Algorithm  
Input: G1 (template graph), G2 (query document graph),  
W (weigh function), SimObj (object similarity function),  
SimRl (relation similarity function).   
Output: M (mapping function)) 
 

M(Seed1) := Seed2 for some Seed1 ∈  V1 and Seed2 ∈  V2; 
ObjectsToProcess := { Seed1 }; 
while (ObjectsToProcess is nonempty) 
v1 := some object from ObjectsToProcess; 
for all (v1, u1) ∈  E1 
 find (M(v1), u2) ∈  E2  
                     such that RlQuality(u1, u2) is maximal; 
 if (M-1(u2) = ∅   or  RlQuality(M-1(u2), u2)  
                     <  RelQuality(u1, u2) ) 
  M-1(u2) := ∅ ; 
  M-1(u1) := u2; 
  ObjectsToProcess := ObjectsToProcess ∪   
                                        { u1 }; 

 end if 
end for 

end while 
 

In a similar way to the grouping algorithm, the main loop is 
carried over the rack ObjectsToProcess.  All objects in this rack 
are already mapped somewhere.  At each iteration one object is 
taken off the rack and processed.  An extension of the mapping is 
attempted for all neighbors of the object.  All objects that were 
successfully mapped are placed in ObjectsToProcess.  The 
process stops when there are no more objects to map. 
 

5. STRUCTURAL EXTRACTION (IMPLEMENTATION 
FOR PDF) 
The PES system contains several components, which instantiate 
for PDF documents the generic grouping and mapping algorithms 
described above.  The specific instantiation defines the 
neighborhood relation and provides the various quality functions. 
 
The exact definition of neighborhood can vary as long as it is 
consistent and provides good connectivity between adjacent 
objects.  The definition chosen for our implementation considers 
two objects to be neighbors if no other object obscures them from 
each other’s “view”.  
 
Grouping of PDF objects 
 
There are three kinds of primitive objects, namely characters, 
simple graphics, and embedded pictures, and there could be many 
kinds of groups, of which three are currently implemented: ‘text 
lines’, ‘paragraphs’ and ‘columns’.  The qualities of the different 
kinds of groups are calculated differently. 
 
Text lines are the simplest to spot.  They are sequences of 
neighbor characters, whose vertical coordinates are more or less 
the same.  The distinction between lines and non-lines is sharp 
enough for the definition to be exact (non-fuzzy).  A group of 
neighborhood-connected characters is considered to be a line 
(with quality = 1.0) if their y-coordinates are not further apart than 
half their average height, and their x-coordinates are not too far 
from each other, so the x-distance between the bounding 
rectangles of any two adjacent characters is less than twice their 
average height.  Any other group is considered to be unacceptable 
as a line (quality = 0). 
  
‘Paragraphs’ are groups of neighboring lines that are bound to 
each other more closely than to anything else.  A good paragraph 
has the following characteristics:  the characters in different lines 
are of the same font; the distances between lines are constant; and 
the lines are aligned or centered.  The exact scoring function for 
paragraphs is provided in the Appendix. 
  
Columns are groups of neighboring paragraphs, residing 
vertically, with difference in font size less than twice minimal font 
size, and with the distance between paragraphs less than four 
times the average line height.  The quality of an acceptable 
column is 1, and everything else 0. 
 

207



 

 

The quality of paragraphs and columns includes a small positive 
bonus for the size.  If the group contains only a single element, 
the quality is halved.  Thus, bigger groups are preferred, and 
singleton groups will form only in the lack of any better option. 
 
 
Mapping of PDF structures 
In order to instantiate the generic algorithm to the specific 
instance of PDF extraction, we need to define the two similarity 
functions SimObj(Obj1,Obj2) and SimRl(Rel1,Rel2).   
 
SimObj(Obj1,Obj2) measures the similarity between two objects.  
Our implementation of the function takes into account the 
following three parameters: 

• Object types: only objects of the same type get a 
positive similarity value, 

• Size: the closer in size the objects are to each other, the 
higher the score, 

• Position: the closer the objects would be to each other, 
if placed on the same page, the higher the score. 

 
SimRl(Rel1,Rel2) measures the similarity between two relations, 
i.e. pairs of objects.  Our implementation of the function 
disregards all relations between two objects except for relations 
between positions of their bounding rectangles.  Specifically, 
Rel1=(Obj11,Obj12) is considered similar to Rel2 = (Obj21,Obj22) if 
the corners of Obj12 lay in the same relations to Obj11 as the 
corners of Obj22 lay to Obj21.  A detailed description of the 
functions used in PES is provided in the Appendix. 
 
Example 
Figure 1 shows two portions of two different PDF documents 
(both Lehman Brothers research reports). Each primitive object is 
annotated with a number. These are the numbers 1 through 7.  We 
ran our Grouping algorithm on both sets of objects, producing 
objects of higher order.  These are the objects 8-11, indicated in 
Figure 1. 

1
2
3
4
5
6
7

8

9

10

11 : Column

1

2
3
4

5
6
7

8

9

10

11

Figure 1 - two portions of 2 different PDF documents A (left) 
and B(Right) 

 

Figure 2 depicts the sequence of steps taken by the Grouping 
algorithm, for the two PDF portions; in forming the H-Graph 
(both portions produced the same H-Graph).  The final H-Graph 
is shown in Figure 3.  

7654321

P PP
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Deleted
 in #11

 

Figure 2 - The Grouping algorithm operating on each of the 
PDF portions of Figure 1 
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Primitive Level

Paragraph Level
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Figure 3 - The Final H-Graph of the PDF portions 

 
The Mapping Algorithm 
Once the H-Graphs for both PDF portions where constructed, we 
applied the Mapping algorithm, to map the two structures.  Note 
that while the resulting H-Graphs were identical, the objects 
themselves are different (different font, location, etc.).  Thus, 
there is still a need to find the best mapping. 
 
The mapping algorithm in this case runs in three levels, according 
to the three levels of the associated H-Graphs.   Following is a 
trace of the operations of the algorithm (we denote by A.i, and 
B.i, the i-th object of PDF A and B, respectively).   
 
Level 1.  Mapping of the roots.  In the given example, there is 
only single root in each H-Graph.  Both are of the same type 
(column) and thus can be mapped. 
 M(Object A.11) := Object B.11 
 
Level2.  Mapping of the roots’ children.  The topmost and 
leftmost compatible objects are matched.  The seed is placed in 
ObjectsToProcess. 
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M(A.8) := B.8 
Loop:  Already mapped object is taken from 
ObjectsToProcess and its neighbors are mapped and 
placed into ObjectsToProcess. 

Neighbors(A.8) = { A.9 }. 
        M(A.9) := B.9 
 

Neighbors(A.9) = { A.8, A.10 }. 
  M(A.8) is unchanged 
  M(A.10) := B.10 
 
  Neighbors(A.10) = { A.9 }. 
  M(A.9) is unchanged 
 
Level3.   Mapping of the children of the matched paragraphs. 

Children(A.8) = { A.1 } 
Children(B.9) = { B.1 } 
M(A.1) := B.1 

 
Children(A.9) = { A.2, A.3, A.4 } 
Children(2.9) = { B.2, B.3, B.4 } 
M(A.2) := B.2 
M(A.3) := B.3 
M(A.4) := B.4 

 
Children(A.10) = { A.5, A.6, A.7 } 
Children(B.10) = { B.5, B.6, B.7 } 
M(A.5) := B.5 
M(A.6) := B.6 
M(A.7) := B.7 

 
At this point we have a perfect match between the two H-graphs, 
and the mapping is complete.  
 
The overall system architecture 

The system contains several components:  Annotator, Grouper, 
Mapper, and Extractor.  Annotator is a GUI tool that allows the 
user to mark fields in a PDF document and store their names and 
positions in a separate file.  Grouper takes a PDF document as 
input, does the grouping and saves the document structure.  
Mapper’s input is a template (document structure + fields data) 
and a document structure for a query document.  The template is 
mapped onto the query document, and the elements assigned to 
the various fields are produced as output, together with the overall 
quality of the mapping.  Extractor takes a document structure and 
the selected elements and outputs the elements’ text. 

 

The Grouper and the Mapper may sometimes produce different 
results for the same document(s), because the algorithms have a 

random element to them.  This feature can actually be an 
advantage and can be used to improve the precision of the results, 
as follows.  The Mapper outputs the mapped elements for a new 
document.  This allows the document to be used as a template, so 
the Mapper can map it back to the original template, producing 
alternative elements.  If the elements are different from the 
original elements, a different grouping may be tried.  Experiments 
suggest that this technique (called ‘MapBack’) does significantly 
improve precision. The architecture of the PES system is show in 
Figure 4. 
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Figure 4 - Architecture of the PES System 

6. EXPERIMENTAL EVALUATION 
The experiments were performed using a dataset of 500 annotated 
company reports, 100 from each of the five brokerage firms: 
Lehman Brothers, Merrill Lynch, Morgan Stanley Dean Witter, 
SalomonSmithBarney and HSBC.  For each of the documents, 4 
fields were marked: Author (first author), Date, Title, and 
Document Source.  The experiments were conducted to find out 
how the results depend on the number of template documents and 
on the use of randomness and ‘mapping back and regrouping’ 
technique.  The results are summarized in the Table 1.  Each entry 
contains the recall and the precision (recall/precision) for each of 
the 4 elements (Author, Date, Title and Source) and their average 
values.  

 

Table 1. Recall/Precision figures for experiments done with 
PES  

 

Figure 5 shows the dependence of the overall performance on the 
number of training documents (templates) per document type, for 
both the regular and MapBack approaches. 

Map 
Back? 

#temp
-lates 

Author Date Title Source All Fields 

No 
No 
No 

1 
3 
6 

40.0/58.0 
50.0/67.3 
65.3/86.4 

48.0/72.8 
45.3/70.7 
84.0/94.4 

47.3/67.0 
46.0/52.7 
77.3/83.7 

70.0/70.1 
67.3/70.7 
82.0/91.9 

51.3/67.0 
52.2/65.4 
77.2/89.1 

No 10 66.0/87.0 83.3/91.9 83.3/89.9 78.0/93.5 77.7/90.6 
Yes 
Yes 
Yes 

1 
3 
6 

52.7/70.1 
58.0/65.9 
90.7/90.7 

46.7/74.7 
46.7/72.7 
90.7/91.8 

46.0/68.7 
46.7/68.1 
83.3/83.8 

68.7/99.3 
70.0/88.2 
94.7/94.7 

53.5/78.2 
55.3/73.7 
89.8/90.3 

Yes 10 93.3/93.3 94.0/94.0 94.7/94.7 96.7/96.7 94.7/94.7 
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Figure 5 - Performance per number of templates 

Several things are worth noticing in this chart.  First, both 
precision and recall of the algorithm with MapBack are 
significantly better than their regular counterparts.  Also, note that 
the MapBack curves show more stable improvement as more 
templates are added, in contrast to the regular experiments, where 
adding a template sometimes makes results worse.  This shows 
that the MapBack technique can filter out bad templates.  , 
Finally, all curves show a jump at 4-5 templates.  The reason is 
that the templates were chosen randomly.  Thus, the document 
types (formats) are not represented equally or uniformly among 
the templates.  Apparently, the fifth template happened to belong 
to a format that was not previously represented. 
 
We also compared the performance of our algorithm to a fully 
greedy algorithm.  The difference is that our algorithm allows 
reshuffling of objects between groups, while a greedy algorithm 
would not. The results are shown in Figure 6. 
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Figure 6 - Performance of fully greedy algorithm 

 
As can be seen, the results are very bad, which shows that for the 
perceptual grouping problem our algorithm is indeed stronger 
than purely greedy algorithm. 

7. CONCLUSIONS 
The experiments suggest that the proposed approach is indeed 
viable, although not without shortcomings.  The significant 
improvement of the precision with MapBack tests shows that the 
feedback between grouping and mapping is important.  The 
technique can be thought of as a way to influence the grouping 
process with the results of the mapping process, a way to blend 
them together, however weakly.  The improvement of the 
performance confirms the point of view of [7] that the two basic 
problems, perception and analogy making, are interdependent, 
even in such a limited domain as structuring a PDF document.  
Further research should focus on blending them altogether, within 
the same urgency-based architecture. 

Another essential shortcoming is the complexity of group quality 
functions.  It is interesting to note in contrast that the similarity 
functions are very simple and still adequate.  This suggests that 
another level of abstraction may be required, between the quality 
functions and the types of groups they represent, abstraction that 
allows the group quality to be calculated from a set of features of 
the group’s components and the group as a whole.  
 
The method of learning new document types is close to learning 
concepts from prototypical examples.  It is assumed that simpler 
concepts, which define parts of the document type, are already 
learned and can be found and identified by the process of 
perceptual grouping.  So, what is learned is the particular 
configuration of simpler concepts that make a complex concept, 
or a set of such configurations.  Yet another direction of further 
research would be to allow some of the intermediate concepts, 
less than the whole document, to be learned in this way. Other 
researchers [2,3,5,8] have dealt with modeling the document 
structure. However the main purpose of their systems was to 
generate the structure of the document and not to extract specific 
elements. In addition these systems have no learning component 
that is able to learn the extraction patterns based on a set of 
training examples.   
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