
Journal of Intelligent Information Systems 12, 61–73 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Borders: An Efficient Algorithm for Association
Generation in Dynamic Databases

YONATAN AUMANN aumann@cs.biu.ac.il
RONEN FELDMAN feldman@cs.biu.ac.il
ORLY LIPSHTAT okatz@cs.biu.ac.il
Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel

HEIKKI MANILLA Mannila@cs.helsinki.fi
Department of Computer Science, University of Helsinki, Helsinki, Finland

Abstract. We consider the problem of finding association rules in a database with binary attributes. Most
algorithms for finding such rules assume that all the data is available at the start of the data mining session. In
practice, the data in the database may change over time, with records being added and deleted. At any given time,
the rules for the current set of data are of interest. The naive, and highly inefficient, solution would be to rerun
the association generation algorithm from scratch following the arrival of each new batch of data. This paper
describes theBordersalgorithm, which provides an efficient method for generating associations incrementally,
from dynamically changing databases. Experimental results show an improved performance of the new algorithm
when compared with previous solutions to the problem.

Keywords: association rules, knowledge discovery, data mining

1. Introduction

One of the most commonly used techniques in the new emerging field of Data Mining
(Fayyad et al., 1995) is discovery of association rules. Association rules are rules regard-
ing 0-1 data that represent positive correlations between two sets of attributes (Agrawal
et al., 1993). Association rules have proven useful in several application areas including:
analysis of basket data for customized marketing programs, and telecommunications alarm
correlation (Mannila et al., 1994).

Several algorithms have been proposed for discovering association rules (Agrawal et al.,
1995; Agrawal et al., 1993; Mannila et al., 1994). These algorithms assume that all transac-
tions are available prier to the first time the algorithm is executed. However, in most cases
this assumption does not hold. Rather, information is constantly added (and possibly also
deleted) from the database, and we seek the associations relevant to thecurrentset of data.
A naive solution would be to rerun the algorithm from scratch every time new data arrives.
This, however, is highly inefficient, as adding even a very small amount of new data will
require running the association generation algorithm on all known transactions. Thus, we
seek anincrementalalgorithm, which allows to generate the new associations in an incre-
mental manner. Instead of processing all the records again, such an algorithm would only
perform a small fraction of the work on each new set of data and thereby provide the results
in a timely manner.

62 AUMANN ET AL.

In this paper we describe a new incremental algorithm for association generation, the
Bordersalgorithm. The algorithm is based on a new incremental method for generating the
frequent sets,which are the basis for the association rules. Two main features characterize
the Borders algorithm:

1. If the changes do not produce any new frequent sets, then there is no access to the
old data. Thus, we guarantee that costly scanning of the entire database will only be
performed whennew frequent sets are obtained. No previous algorithm provides this
guarantee.

2. In case the entire database is scanned, the number of passes over the database is gene-
rally very small, and there are only relatively few candidates for which support is
counted.

We provide three variants of our algorithm: one for the case of additions alone, one for
additions and deletions, and one for the case where the analyst wishes to change the support
threshold, without having to run the entire algorithm anew.

Incremental algorithms for association generation were previously considered in Cheung
et al. (1996), Cheung et al. (1997), Feldman et al. (1997). We compare the performance of
the new Borders algorithm to the FUP algorithm (Cheung et al., 1996). In comparison, the
Borders algorithm exhibits improved computing times across a wide range of parameters.

The rest of this paper is organized as follows. Section 2 provides the basic definitions.
Section 3 describes the Borders algorithm. In Section 4 we provide empirical results, testing
the performance Borders for a range parameters, and comparing the performance to that of
FUP. We conclude in Section 5 with a short discussion.

2. Definitions

Let A={A1, . . . , Am} be a set of attributes with binary domain ({0,1}). (The attributes are
sometime also called “items”.) A row, r, over A is a tupler = (r [A1], . . . , r [Am]), of 0’s
and 1’s. Such a row can also be viewed as a set{Ai | r [Ai]=1} of the attributes fromA.
A relation, R, over A is a multiset of rows overA. In the incremental setting, we denote
the initial relation byRO and the new set of added rows byRN . If records are deleted, we
denote the set of deleted records byRD. We denote bynO,nN, andnD the number of rows
in RO, RN, andRD, respectively.

For a given row,r, and set of attributesX, we say thatr includes X if X⊆ r . The
countof X in a relationR, denoted byc(X, R), is the number of rowsr ∈ R that include
X. The supportof X in R, denoted bys(X, R) is the fraction of rows which include
R, i.e., s(X, R)= c(X, R)/|R| (where|R| is the number of rows inR). An association
rule or simply anassociationis an expression of the formX⇒Y, where X andY are
attribute sets. Thesupportof the association is the support ofX ∪Y, and theconfidence
of the association, iss(X ∪Y, R)/s(X, R). We search for associations where the support
is above some user- defined threshold, denoted byσ , which we call theminimum support,
and whose confidence is above another user-defined threshold, denoted byγ . An attribute
set with at least the minimum support is called afrequent set.

BORDERS: AN EFFICIENT ALGORITHM FOR ASSOCIATION GENERATION 63

Example. Let A={a,b,c,d}, R={{a,b,c}, {a,b,d}, {a,c}}, σ =2/3, andγ =0.5 then the
frequent sets are:{a},{b},{c},{a,b},{a,c}, and the association rules are:

{a} ⇒ {b}-support 2/3, confidence 2/3

{b} ⇒ {a}-support 2/3, confidence 1

{a} ⇒ {c}-support 2/3, confidence 2/3

{c} ⇒ {a}-support 2/3, confidence 1.

All known algorithms for generating associations operate in two phases. First, all frequent
sets are generated. Then the association rules are derived from these sets. The first phase
is the most time-consuming (Agrawal et al., 1995). Accordingly, in this paper we present
incremental algorithms for generating the frequent sets.

The support of any given attribute setX can be obtained by simply scanning through the
relation and counting the number of rows that includeX. The problem is thatanysubset
of attributes is potentially a frequent set, and the number of these subsets is exponential.
Consequently, it is impossible to count the support of all attribute sets simultaneously, in
a single scan of the relation. To overcome this problem, algorithms for finding frequent
sets operate inrounds, scanning the relation many times. Before each scan, a (relatively)
small set ofcandidatesis generated. During the scan, only the count of the candidates is
computed. Scanning the entire relation can be very costly, as a typical relation may be very
large. Thus, it is necessary to keep the number of rounds as small as possible. In general,
the number of relation scans is the dominating factor in the performance of an algorithm.

3. The borders algorithm

The Borders algorithm is based on the notion ofborder sets, introduced in Mannila and
Toivonen (1997). A setX is aborder setif all its proper subsets are frequent sets (i.e., sets
with at least minimum support), but it itself is not a frequent set. Thus, the collection of
border setsdefines the borderline between the frequent sets and non-frequent sets, in the
lattice of attribute sets. An example of a relation, it frequent sets and border sets is depicted
in figure 1.

The Borders algorithm works by constantly maintaining the count information for all
frequent sets and all border sets in the current relation. When an increment,RN , arrives,
the increment alone is scanned to obtain its support for all (previous) frequent and border
sets. From this information, we compute (with no extra data access), the support of all
frequent and border sets in the combined relation. Additional scans of the entire relation
are performed only if the support of some border set has reached the minimum support
threshold (thus turning into a frequent set). This policy guarantees that the full relation is
never scanned if there is no new frequent set. Furthermore, even when additional scans are
required, monitoring the border sets minimizes the amount of counting work performed
during these scans. We shall prove that monitoring the border sets alone is sufficient for
discovering all frequent sets.

The following is a high-level description of the algorithm. A detailed description is given
in figure 2. We describe an incremental stage, where a new set of dataRN is added to the

64 AUMANN ET AL.

Figure 1. Border sets. The frequent sets are depicted with gray background. Border sets are circled. Lines indicate
containment.

Figure 2. The Borders algorithm-additions.

BORDERS: AN EFFICIENT ALGORITHM FOR ASSOCIATION GENERATION 65

old data—RO. We assume that for each border or frequent setX in RO, the countc(X, RO)

is already known from the previous stage. (We may assume starting from the empty set,
with ∅ as the only frequent set). The Borders algorithm starts by scanning the new relation
RN and updating the counters of all frequent sets and border sets (lines 1–5). The new
support of a setX is its count divided by the new total size. Note that since the size of the
relation is now larger, some previous frequent sets may not be frequent any longer. Thus,
the new frequent sets and border sets are determined (lines 7–8). Beforehand, the set of
promoted bordersis determined. A border setX (of RO) is said to bepromoted borderif
after the incrementRN its support reaches the minimum support threshold,σ (and hence
became frequent sets). Next, the candidates are generated (lines 12–15). Their count is
obtained by scanning the entire relation (line 16). Based on the count, the new frequent
sets and border sets are determined (lines 17–19).

Candidate generation and counting works in a sequence of rounds, where in roundi
candidates of sizei are generated and checked. The candidates of sizei +1, denoted by
Ci+1, are generated based on the new frequent sets of sizei (Li), the promoted borders of
size i , and the old frequent sets of sizei . The notationPromotedBorders(i)denotes the
promoted borders of sizei . Similarly, FrequentSets(i), denotes the frequent sets of sizei .
The procedure is based on the fact, which we prove next, that a set need be considered as a
candidate only if it has a subset that is a promoted border.

Lemma. Let X be a set of attributes that is a frequent set in RN ∪ RO but not in RO. Then
there exists a subset Y⊆ X such that Y is a promoted border.

Proof: Let Y be a minimal cardinality subset ofX that is a frequent set inRN ∪ RO but
not in RO. SinceY is a frequent set inRN ∪ RO, so are all of its proper subsets. However,
by the minimality ofY, none of these subsets is a new frequent set inRN ∪ RO. Thus,Y is
a border set inRO, andY⊆ X as claimed. 2

Theorem. The Borders algorithm is correct.

Proof: We prove that for each update phase, if prior to the beginning of the phase the
setsFrequentSetsandBordersconsist of all frequent sets and borders ofRO, respectively,
and the count for each such set is correct, then the same holds after the completion of the
update, with respect toRN ∪ RO.

Let X be a frequent set inRN ∪ RO. There are three possible cases.

1) X was a frequent set inRO. Then, its count is updated with the extra amountc(X, RN)

(lines 1–5), and it is found to be above threshold (line 7).
2) X was a border inRO, then its count is updated (line 1–5). It is found to be a promoted

border (line 6) and added to the frequent sets (line 7).
3) X was neither a frequent set nor a border inRO, but is a frequent set inRN ∪ RO. We

prove that in this caseX ∈ Li wherei is the size ofX. The proof is by induction oni . For
i =0 there is nothing to prove since all empty sets are frequent sets (assuming the entire
relation has minimum support). Assume fori we prove fori + 1. Consider the subsets

66 AUMANN ET AL.

of X of sizei . SinceX is a frequent-set inRN ∪ RO, all its subsets of sizei must also be
frequent sets inRN ∪ RO. Let B(X) be the subsets of sizei of X which were borders in
RO. Similarly, letF(X) be the subsets of sizei of X which were frequent sets inRO. Let
L(X)be the remaining subsets ofX of sizei . Since all elements ofL(X)are frequent sets,
but not borders or frequent sets inRO, by the inductive hypothesisL(X)⊆ Li . Thus, all
subsets ofX of sizei are inFrequentSets(i)∪ Li (line 15). Finally, ifB(X)∪ L(X)=∅
then X was a border inRO, in contradiction to the assumption. Thus, at least one of
the subsets of sizei of X is in PromotedBorders(i)∪ Li (line 14). By definition,|X| =
i + 1 (line 13). Thus,X ∈Ci+1. Thus, its count is determined during the scan of the
relation (line 16). It is found to pass the threshold (line 17), and is added to the frequent
sets (line 18).

Next, supposeX is a border set inRN ∪ RO. The proof is very similar to that for frequent
sets. Again, there are three possible cases.

1) X was a border set inRO. Then, its count is updated with the extra amountc(X, RN)

(lines 1–5), and it is found to be a border in the new relation (line 8).
2) X was a frequent set inRO. Then its count is updated (line 1–5). It is found not to be a

frequent set inRN ∪ RO (line 7), but yes a border (line 8).
3) X was neither a frequent set nor a border inRO, but is border inRN ∪ RO. We prove

that in this caseX ∈Ci+1 wherei +1 is the size ofX. Consider the subsets ofX of
sizei . SinceX is a border set inRN ∪ RO, all its subsets of sizei must be frequent sets
in RN ∪ RO. DefineB(X), F(X), andL(X) as above. Since all elements ofL(X) are
frequent sets, but not borders or frequent sets inRO, we have already shown above that
L(X)⊆ Li . Thus, all subsets ofX of sizei are inFrequentSets(i)⊆ Li (line 15). Simi-
larly, if B(X)∪ L(X)=∅ thenX was a border inRO, in contradiction to the assumption.
Thus, at least one of the subsets of sizei of X is in B(i)∪ Li (line 14). By definition,
|X| = i +1 (line 13). Thus,X ∈Ci+1. Thus, its count is found during the scan of the rela-
tion (line 16), it is found not to pass the threshold (line 17), and is added to the border sets
(line 19). 2

3.1. Deletions

In some cases, rows may also be deleted from the database. This might be due to expiration
date, or to errors found in these records. The Borders algorithm can be extended to handle
the case of deletions as well. To see this we observe that deletions have two effects on the
frequent sets:

1. The count of the attribute sets supported by the deleted rows is decreased. Thus, frequent
sets may cease to be frequent after the deletion. These sets can easily be determined by
scanning the deleted portionRD alone.

2. The overall size of the new relation is reduced. Since the support threshold is determined
as apercentageof the entire relation, the deletion causes a decrease in theabsolutecount
necessary for a set to be frequent. Thus, new frequent sets may emerge. In this case,
however, it is enough to monitor the border sets to discover all such new frequent sets.

BORDERS: AN EFFICIENT ALGORITHM FOR ASSOCIATION GENERATION 67

Figure 3. The Borders algorithm-addition and deletion.

The full algorithm for deletions and additions combined is provided in figure 3. The
correctness proof is essentially identical to that of the addition-alone version and is omitted.

3.2. Changing the threshold

Suppose that frequent sets where generated using a thresholdσ , and that we are interested
in changing to a different thresholdσ ′. If σ ′>σ (i.e., the threshold is increased) then
the task is easy. All we have to do is to delete the frequent sets that do not pass the new
threshold. However, ifσ ′<σ (i.e., the threshold is decreased), then new frequent sets may
emerge. None of the previously known algorithms provides a solution for this case. Rather,
the frequent sets must be regenerated from scratch for the new threshold.Bordershandles
this case with the same ease as deletion. The crucial point, again, is that any new frequent
set must have a subset that is a promoted border. In this case, apromoted borderis a set
that was a border using the old thresholdσ , but is a frequent set using the new thresholdσ ′.
A full description of the algorithm for handling threshold decrease is provided in figure 4.

4. Experimental evaluation

The performance of the algorithm was evaluated on the Medline database from the years
1989–90. The Medline database consists of a collection of short medical abstracts. Initially

68 AUMANN ET AL.

Figure 4. The Borders algorithm-decreasing the threshold.

term extractionwas performed on each of the abstracts. The most representative terms (in
tfidf metric) were then chosen to represent the abstract (see (Feldman et al., 1998) for
details). Thus, each abstract was associated with a set ofterms. These terms correspond to
the attributes in the standard definition.

We performed over 200 experiments, evaluating the performance of the Borders algorithm
over a wide range of parameters. We also compared the performance of the Borders to that
of the FUP algorithm (Cheung et al., 1996). The results are depicted in figures 5–9, and
discussed hereunder.

In each of the experiments we fixed an initial database, consisting of 20,000 rows. The
initial set was taken from the 1989 portion of the database. The frequent sets and borders
for this base-set were computed separately. We then added anincrement set, taken from
the 1990 portion of the database, and measured the performance of the algorithms when
producing the frequent set for the combined data set.

In our first experiment, we measured the performance of the algorithms with varying
increment sizes. The support threshold was set to 5%. We varied the increment size from
500 records (2.5% the size of the original set) to 5000 records (25%), in increments of 500.
The average times are depicted in figure 5 (each point is averaged over ten experiments).
The Borders algorithm exhibits improved performance throughout the entire range. The
performance gain ranges from over 50-fold for the small increments (2.5%), to 3–4 fold for
very large (10–25%) increments (see figure 6).

The main advantage of Borders algorithm is due to the small number of times the entire
database (old and new) must be scanned. Figure 7 depicts the average number of full
database passes each of the algorithms required for the different increment sizes. (The

BORDERS: AN EFFICIENT ALGORITHM FOR ASSOCIATION GENERATION 69

Figure 5. Update time.

Figure 6. Ratio of FUP time to Borders time.

somewhat rugged shape of the curve results from the statistical variations in the data sets.)
Throughout, Borders performs fewer passes than FUP. It is also interesting to note the
number of times that it was not necessary to access the old data-set at all. In 79 out of
the total of 100 cases considered in the experiment, Borders requiredno access to the old
database. In these cases, the update was almost instantaneous. Using the FUP algorithm,
in contrast, in only 3 of the 100 cases was it possible not to access the old database.

Next, we examined the affect of varying the support threshold. Using an increment of
1000 (5% of the original data set) we varied the support threshold from 1% to 10%. Average
times for ten such trails are depicted in figure 8. As the graph shows, Borders outperforms

70 AUMANN ET AL.

Figure 7. Number of passes; FUP verses Borders.

Figure 8. Varying the support threshold.

FUP throughout the entire range. At very small support thresholds (1%) the difference is
nominal, but increases with higher thresholds.

Again, the main advantage of Borders stems from the small number of database passes
it requires. Figure 9 depicts the average number of passes in the above experiments. The
results show that throughout the range the number of passes FUP requires is never less
than that of Borders. A detailed analysis proves that this is necessarily so. We can prove
that foranyupdate session, Borders will never require more database passes than Borders.
Furthermore, any candidate in Borders will also be a candidate in FUP (but not necessarily
the other way around). The full details of the proof are out of the scope of this paper.

BORDERS: AN EFFICIENT ALGORITHM FOR ASSOCIATION GENERATION 71

Figure 9. Average number of passes.

5. Discussion

This paper considers the problem of generating association rules in a dynamical setting,
where data is constantly being added and/or deleted to and from the database. In this case, at
any given time, all associations rules based on thecurrentset of data are of interest. We argue
that while the incremental arrival of data is common in many applications, most previous
algorithms for generating association rules are ill-suited for this setting. In particular, most
previous algorithms lack the ability to make use of computations made on the old data to
facilitate fast update, and require running the algorithm anew following the arrival of each
new set of data. For large data sets, this is prohibitively time-consuming.

In this paper we focus on the task of finding the frequent sets in the data set, which is the
main task in generating the association rules. We presented a new algorithm, the Borders
algorithm, for fats generation of frequent sets in the dynamical setting. We presented three
variants of the algorithm:

1. an algorithm for the case of additions only,
2. an algorithm for additions and deletions, and
3. an algorithm for the case of changing the threshold. (No algorithm for this case was

previously known).

All three algorithms are based on the notion of border sets, and on the observation that
monitoring the border sets suffices to track any changes in the frequent sets. The three
algorithms testify to the usefulness of the border notion in the dynamical setting.

Using the Medline collection as a test bed, we demonstrated the efficiency of the Borders
algorithm, and compared its performance to that of the FUP algorithm (Cheung et al., 1996).
We show that a large range of parameters (minimum support, update size) the Borders

72 AUMANN ET AL.

algorithm outperforms FUP, sometimes by more than an order of magnitude. Furthermore,
in most cases (over 75%), Borders requires no access at all to the old data. Thus, in most
cases, increments are almost instantaneous.

The algorithms presented in this paper provide a basic tool to allow data mining in the
dynamical setting. However, many issues relating this setting call for further research.
Among these we mention:

1. Extending the algorithms to relations over a non-binary or continuous domains (see
Srikant and Agrawal, 1996). In the case of a continuous domain the problem is that
partition of the domain into discrete intervals is in itself dependent on the existing data
(Srikant and Agrawal, 1996), and may change over time.

2. Efficient generation of temporal association rules in an incremental setting (see Mannila
et al., 1995).

Also, with the introduction oftime into the system, we may wish to give new data more
significance than old data. This introduces the notion of data mining over adynamic weighted
relation, were each row has a weight affiliated with it, and the weights vary over time.

Acknowledgments

This research was supported by grant # 8615 from the Israeli Ministry of Sciences.

References

Agrawal, A., Imielinski, T., and Swami, A. (1993). Mining association rules between sets of items in large
databases. InProc. of the ACM SIGMOD Conference on Management of Data(pp. 207–216).

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, I. (1995). Fast Discovery of Association Rules.
In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.),Advances in Knowledge Discovery
and Data Mining(pp. 307–328). AAAI Press.

Agrawal, A. and Srikant, R. (1994). Fast algorithms for mining association rules. InProceedings of the VLDB
Conference. Santiago, Chile.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns.Proc. of the Int’l Conference on Data Engineering
(ICDE). Taipei, Taiwan.

Cheung, D.W., Han, J., Ng, V., and Wong, C.Y. (1996). Maintenance of discovered association rules in large
databases: An incremental updating techniques.Proc. 12th IEEE International Conference on Data Engineering
(ICDE-96). New Orleans, Louisiana, U.S.A.

Cheung, D.W., Lee, S.D., and Kao, B. (1997). A general incremental technique for updating discovered asso-
ciation rules.Proc. International Conference On Database Systems for Advanced Applications (DASFAA-97).
Melbourne, Australia.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (1995).Advances in Knowledge Discovery and
Data Mining, AAAI Press.

Feldman, R., Amir, A., Aumann, Y., Zilberstein, A., and Hirsh, H. (1997). Incremental algorithms for association
generation. InProceedings of the 1st Pacific Asia Conference on Knowledge Discovery and Data Mining
(PAKDD97). Singapore.

Feldman, R., Fresko, M., Kinar, Y., Liphstat, O., Schler, Y., Rajman, M., and Zamir, O. (1998). Text Mining at
the Term Level. Department of computer science technical report. Bar Ilan University.

BORDERS: AN EFFICIENT ALGORITHM FOR ASSOCIATION GENERATION 73

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A. (1994). Finding interesting rules from
large sets of discovered association rules. InProceedings of the 3rd International Conference on Information
and Knowledge Management.

Mannila, H. and Toivonen, H. (1997). Levelwise Search and Borders of Theories in Knowledge Discovery,Data
Mining and Knowledge Discovery, 1(3), 241–258.

Mannila, H., Toivonen, H., and Verkamo, A. (1994). Efficient algorithms for discovering association rules. In
Proceedings of KDD94: AAAI Workshop on Knowledge Discovery in Databases(pp. 181–192).

Savasere, A., Omiecinski, E., Navathe, S. (1995). An efficient algorithm for mining association rules in large
databases. InProceedings of the 21st VLDB Conference.Zurich, Switzerland.

Srikant, R. and Agrawal, R. (1996). Mining quantitative association rules in large relational tables. InProceedings
of the ACM SIGMOD Conference on Management of Data. Montreal, Canada.

