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ABSTRACT 
This paper describes a framework for defining domain specific 
Feature Functions in a user friendly form to be used in a 
Maximum Entropy Markov Model (MEMM) for the Named 
Entity Recognition (NER) task. Our system called MERGE 
allows defining general Feature Function Templates, as well as 
Linguistic Rules incorporated into the classifier. The simple way 
of translating these rules into specific feature functions are shown. 
We show that MERGE can perform better from both purely 
machine learning based systems and purely-knowledge based 
approaches by some small expert interaction of rule-tuning. 

Categories and Subject Descriptors 
Machine Learning, Named Entity Recognition, Information 
Extraction.  

General Terms 
Machine Learning, Named Entity Recognition, Information 
Extraction.  

Keywords 
Keywords are your own designated keywords. 

1. INTRODUCTION 
Named-Entity recognition (NER) is one of the core components 
in most Information Extraction and Text Mining systems. The 
NER task is to find all proper noun phrases (and other easily 
recognizable phrases) in a text and to classify them into a small 
predefined set of semantic categories, such as names, locations, 
dates, organizations, drugs, diseases, books etc. NER is essential 
as a preprocessing step before applying other text mining 
techniques – for extracting relations, building ontologies and 
semantic hierarchies, etc. 

There are two traditional approaches to NER: knowledge-based 
approach and machine learning approach. Knowledge-based 
systems usually achieve better accuracy, but require huge 
amounts of skilled labor by linguists and domain experts in order 
to prepare and maintain the extraction knowledge.  Because of 
this, the recent research in NER is concentrated on machine 
learning techniques, which only require a manually labeled 

training set of documents.  The best published ML-based systems 
perform on the level of knowledge-based systems for many 
categories. 

In this paper we present MERGE (Maximum Entropy Rule 
Guided Extraction) – a hybrid NER system which combines 
machine learning techniques, namely Maximum Entropy and 
manually written simple rules. MERGE benefits from both 
approaches and can outperform both manually written rules and 
standard machine learning systems.  The rule language of 
MERGE is quite simple and the amount of necessary rule-writing 
is relatively small, as most of the work is done by the ML part of 
the system. 

1.1 Related Work 
Knowledge-based systems employ complicated sets of rules 
written by teams of linguists, computer scientists and domain 
experts. For comparison with our system we use the ACE-2 
winner DIAL, a system developed by ClearForest Inc.  DIAL is 
based upon a general-purpose pattern language, which allows 
arbitrary procedural data-processing. The system was top 
performing at ACE-2 after two months of manual tuning by a 
team of experts. 

There have been several attempts to automate the rule writing 
process using machine learning methods ([1], [2], [3], [4], [5]). 
Recently, probabilistic machine learning systems became state of 
the art for NER ([6],[7]) and for field extraction ([8]). Most 
prominently, Hidden Markov Models (HMM) have been used for 
the information extraction task ([6], [9], [10], [11], [12]). Beside 
HMM, there are other systems based on SVM ([13]), Naïve Bayes 
([14]), or combinations of the above ([4], [15]). As a Maximum 
Entropy Model, MENE ([21]) makes use of diverse knowledge 
sources. Recently Maximum Entropy conditional models, like 
Maximum Entropy Markov Models ([8]) and Conditional 
Random Fields ([16]) were reported to outperform the generative 
HMM models on several IE tasks. 

Hybrid approaches, such as TEG ([17]) combine the benefits of 
precise manual rule writing and the generality of the machine 
learning approaches. TEG is based on a short manually-written 
set of rules that constitute a semantically oriented probabilistic 
context free grammar, with the probabilities learned from the 
training set. 



Like TEG, MERGE utilizes the hybrid approach, using manual 
rules to improve the accuracy of a probabilistic model.  However, 
the MERGE rules do not form a grammar like TEG rules, but act 
as special-purpose features, which are combined with the 
automatically-generated features using the Maximum Entropy 
principle.  MERGE rules are supposed to be written after the 
system passed several training-and-test development cycles, in 
order to catch the problematic cases on which the purely 
probabilistic model failed. This methodology greatly reduces the 
amount of manual work, as only necessary rules are ever written. 

The remainder of this paper is structured as follows: in section 2 
we present our implementation of the Maximum Entropy Markov 
Model.  In section 3 we describe the details of our system. Our 
results are presented in section 4.  In section 5 we discuss the 
results and conclude. 

2. MAXIMUM ENTROPY MODELING 
A Maximum Entropy approach models a random process by 
making the distribution satisfy a given set of constraints, and 
making as few other assumptions as possible.  The constraints are 
specified as real-valued feature functions over the data points.  
The expected value of each feature function under the ME 
distribution must equal the empirical expected value of function 
as found in the training dataset.  In all other respects, the target 
distribution should be as uniform as possible, which means it 
must have the highest entropy.  Those conditions completely 
specify the unique distribution and show a way to calculate it.  
For our purposes, we use ME to model the conditional probability 
distributions, which slightly differ in the way expected values are 
calculated ([18]). 

 Let X be the set of conditions, usually very big, and Y the set of 
possible outcomes.  We assume that there is a true joint 
distribution P(x, y), but we are interested only in modeling the 
conditional P(y | x).  For this purpose we can use a training set  
{(xk, yk)}k=1..N  generated by the true distribution, and a set of 
features fi : X × Y → R. Typically, the features are binary and test 
for specific conditions.  For instance, in NER the set X may be the 
(huge) set of all possible mentions of all possible words, the set Y 
may be the set of all output categories, and a useful feature may 
test the correlation between the capitalization of a word and its 
being labeled as a personal name: 

1,  if the word in  is capitalized and Person
( , )

0, otherwise.
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It can be shown that the unique most uniform distribution that 
satisfies all feature constraints has the form: 

(*)  ( )
( )

( )1
| exp ,i i

i

p y x f x y
Z x

λ= ⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

where λi–s are the parameters chosen to maximize the likelihood 
of the training data, and Z(x) is a normalization constant, which 
ensures that for every x the sum of probabilities of all possible 
outcomes is 1.  The most common procedure for parameter 
estimation is the Generalized Iterative Scaling algorithm ([19]). 

2.1 Generalized Iterative Scaling 
The comprehensive description of the algorithm can be found in 
[20] and [18]. 

We need a way to calculate the expected values of features 
according to the training set and according to a given conditional 
distribution. For this purpose we define empirical distribution 
p(x,y) of the training dataset {(xk, yk)}k=1..N  as: 
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(We assume that all xk are different, which is natural in modeling 
conditional distributions). The expected value of a feature fi 
according to the empirical distribution is: 

1

,
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In order to calculate the expected value of a feature according to a 
given conditional distribution p(y|x) we need the marginal p(x).  
However, we do not model it, and moreover, we do not wish to 
sum over the whole X, which is huge and can be ill-defined.  
Therefore, we use p̃ (x) instead of p(x), which is a reasonable 
approximation: 
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Now we are sufficiently equipped to state the Generalized 
Iterative Scaling algorithm: 

Input: Feature functions {fi}, training set {(xk, yk)}. 

Output: Optimal parameter values λ*i and optimal model pλ*. 

1. Start with λ = (λ1, λ2,…)=0 

2. Let 
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Update lambdas: λi:= λi+∆λ  

3. Repeat step 2 until convergence. 

The expectation Ep(λ)(fi) is calculated according to the distribution 
(*) with the current set of parameters λ.  The constant M is the 
sum of all feature functions for any given pair (x,y).  Our simple 
version of the GIS algorithm works under assumption that this 
sum is independent of x and y.  The common approach for making 
this assumption true is to fix an arbitrary sufficiently large M and 
add an auxiliary feature function 

( ) ( ), ,aux i
i

f x y M f x y= −∑  

However, in our system we do not need to use such auxiliary 
function, because our feature set is generated in such a way that 
the sum of features is always constant and equals to the number of 
feature templates, described below. 



2.2 Maximum Entropy Markov Models 
Generative probabilistic models, such as HMMs and SCFGs 
perform sentence labeling tasks in the following way:  Sentences 
and their labelings are assumed to be jointly distributed, with 
some unknown true distribution P(X,Y), where X is the set of all 
sentences and Y the set of all labelings.  Then, a model p(X,Y) of 
the true distribution is estimated using the training data.  After 
that, the model can be used to label a previously unseen sentence 
x by maximizing p(x, y): 

: arg max ( | ) arg max ( , ),y Y y Yy p y x p x y∈ ∈= =  

since the marginal p(x) does not depend on y. 

The necessity to model the joint probability places heavy 
restrictions upon the form of X.  Typically, elements of X are 
sequences of tokens, elements of Y are sequences of category 
labels, and the probability of a sequence is a product of 
probabilities of its constituents.  The probabilities of constituents 
are allowed to be conditioned upon the immediate neighbors but 
not upon anything else.  In practice, longer-range dependencies 
and dependencies upon some arbitrary features are quite common, 
which makes conditional models attractive. 

Conditional models, such as MEMMs ([8]) and CRFs ([16]), 
model p(y|x) directly, avoiding the necessity of generating x.  
Instead, the models use Maximum Entropy to combine arbitrary 
contextual features of x into a single conditional distribution.  The 
MEMM is a straightforward conditional modification of HMM, 
introduced in [8].  It is used in our MERGE system.  The more 
complex CRFs produce improvement in the presence of label bias 
problems ([16]), but in our case label biases do not pose a critical 
problem, so a simpler model was chosen. 

A MEMM consists of |Y| conditional ME models py’(y|x) = 
p(y|x,y'), one for each y'. The model py’(y|x) estimates the 
probability of appearance of the label y immediately after the 
label y' in the context x.  The probability of a whole label 
sequence y = y1 y2… ym, given the sentence x = x1 x2… xm, is the 
product 
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Note that the conditioning elements xi are not the words of a 
sentence, as in generative models.  They are better thought of as 
positions in the sentence, and the feature functions can use any of 
their properties – current and neighbor tokens, their capitalization 
and morphological properties, indentation, etc. 

The model p0(y|x) used at the beginning of a sentence is separate.  
There are a number of possible ways to implement it, and the 
correct one is probably domain and language-dependent: For 
instance (i) to build the model from only the first tokens in each 
training text, (ii) to use pNone(y|x) instead, or (iii) to build another 
model from all the tokens in the training data. The second option 
is the one we adopted for our experiments. 

The model py’(y|x) estimates can suffer from data sparseness if the 
overall number of instances of y' in the training data is very small.  
In order to alleviate the problem we train a separate p(y|x) model 
that does not depend on the previous tag, and interpolate between 

the two models.  The exact value of the interpolation coefficient 
was experimentally found to be not significant, so λ=½ was used. 

3. SYSTEM DETAILS 
3.1 Preprocessing 
The preprocessing of any text is done according to the external 
definitions. First, the text is divided into tokens. A token is 
defined by a regular expression in which for an English text 
domain it might be in the form: 

 Token = "[A-Za-z]+|[0-9]+|\S"  

Which can be read as: A token is an adjacent English letter 
sequence or adjacent Digit sequence or any single non-white-
space character. 

Then, each token is assigned its features according to the feature 
templates. A template consists of a context rule – a binary test 
upon the positions in the text.  It can test the exact character value 
of the current token and its neighbors, capitalization information, 
membership in an external word list, arbitrary regular 
expressions, externally supplied features like pos tags, etc. A 
template can also define a generic context rule by specifying a 
generic test, such as “token value”.  Such a generic context rule is 
instantiated during training, according to the token values found 
in the training set. 

Each template defines a set of features – one feature for every 
combination of an instantiated context rule and a category.  The 
features are always built in such a way that exactly one feature 
from a template tests true at any text position.  This implies that 
the sum of all features is constant, satisfying the requirements of 
the GIS algorithm. 

For example, one Feature Template may have the following form: 

 FeatureTemplate : { 
   Check: -1, Word 
   Check:  0, Capitalization 
   } 
This template would generate a feature function for every 
combination of the value "Word" feature at the previous token, 
the value of "Capitalization" feature at the current token, and the 
current tag. One such feature function might be: 

  f = { 1 if previous token value is "in" 
    and current token is Capitalized 
    and current tag is Location 
   0 otherwise } 

3.2 Tagging 
The labels are assigned at the token level – each word in a 
sentence is labeled by an entity type label or by label None. For 
multi-token entities we label each token by the same category 
label, making no distinction between beginning, middle, or ending 
tokens of the entity.  This practice produces errors in the cases 
where two entities of the same category are adjacent.  However, 
in our datasets there are less than 0.1% of such cases, which is 
negligible. 



3.3 Integrating Manual Rules 
In order to show the benefits of our manual rules, we compare 
them with typical knowledge-based system rules.  A DIAL 
rulebook consists of a set of sequentially checked rules, prepared 
for a specific domain by a linguist-programmer-domain expert.  
Aside from the sheer amount of the necessary rules, there are 
other problems, which make the effort of creating and maintaining 
the rules enormous.  Consider the following example: 

The texts "Smith said …" and "Turner said …" may imply a rule 
"Any Capital word followed by said, is a Person" may yield 
incorrect result for the text "Microsoft said …". Another rule "If 
the word is Microsoft, then it is a Company" can fix that mistake, 
but the correcting rule must be located before the erroneous rule. 
Also, such rule introduces new mistakes: when there is a new text 
in the form "Microsoft Windows …" it is talking about a product 
name and not the Company. 

Two problems exist in the example above.  First, there is no 
natural order in the rules, so it is hard for a person to order them 
correctly. Second, it is even harder to foresee the possible 
undesirable consequences of a new rule in most unlikely places. 

The rules of MERGE are free from those problems. Most of the 
“regular” patterns get caught by the automatically generated 
features, so only rules for problematic cases are necessary.  This 
keeps the size of the rule-sets small and manageable.  The order 
of rules is not important, and undesirable consequences of rules 
are impossible, since the bad rules are automatically rejected by 
the Maximum Entropy learner. 

3.4 MERGE Rule Definition 
Defining specific rules is done via a simple pattern matching 
language, with patterns working at the token level.  A pattern 
syntax is similar to the regular expressions syntax, but with tokens 
instead of characters.  Quantifiers *, +, ? are allowed, as well as 
the grouping parentheses “(” “)”.  The angular brackets “<>” 
delimit the target entity. Features are generated for each token in 
the delimited entity.  The tokens are either specified directly, or 
represented by token-classes of the form “[Boolean 
expression]”.The expressions are simple token-attribute=value 
checks, combined with logical operators & (and) | (or), and ! 
(not).  The currently allowed token-attributes are: 

• “cl” – character-contents of the token.  Possible values 
are Capital, Lower, Number, etc. 

• “wc” – checks the appearance of the token in a list of 
words.  Value specifies the name of the list. 

• "adj" – adjacency information with values True, False 
and Start-Sentence. 

• Token, Word, Stem – the exact character sequence 
(token value), the lowercase token value, the stem of the 
token. 

Here is an example set of rules for catching some tricky 
organizations: 

Rule: Organization { 
 // to catch: France's Org 
: [wc=Country&cl=Capital] "'s" < [cl=Capital] > 
 // to catch: Person of (the) Organization 

: [cl=Capital] "of" "the"? < [cl=Capital]{1,3} > 
 // to catch: company/firm/group called Xyz 
: [wc=CompanyAlias] "called" < [cl=Capital]+  > 
} 
WordClass: Country { france  turkey  israel … } 
WordClass: CompanyAlias { company  firm  group … 
} 

In our MUC-7 evaluation the list of published Word Classes are 
used as feature functions themselves. Besides that, some intuitive 
Word Classes are defined within the Rule-Development 
framework described in Section 3.5, in order to use them as "wc" 
feature for Rule Writing. As an example we had a Word Class 
wc=WeekDay, including the words Sunday, Monday, etc. and it 
is used in a Rule: 

Rule: Date { 
  : < ["next"|"last"] > [ wc=WeekDay] 
} 
WordClass: WeekDay { sunday  monday  tuesday  … } 

The translation of Rules into a Feature Function is done by 
checking the rule pattern at each token position. The above rule 
for Date will be translated into feature function: 

f = {  1  if current token is "next" or "last",  
   and the next token is found in wc WeekDay , 
   and current Tag is Date,  
  0  otherwise } 

 
Fig. 1. Methodology for Adding Manual Rules 
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For keeping the value M constant for each pair (x,y), we defined 
also this same feature function for all the other possible tags. 
These definitions will not be necessary for a ME system with the 
auxiliary feature function as described in section 2.1 or for ME 
system that doesn’t use the Iterative Scaling for estimating the 
parameters. 

3.5 Methodology 
The MERGE system can reach high-quality performance 
autonomously. We want to further improve this performance by 
adding rules for the more difficult cases, which are incorrectly 
handled by the automatic processing. Thus, our process of rules 
development has the following form: 

Input: Manually-tagged document collection. 
Step 1. Randomly divide the corpus into N parts.  
Step 2. Take one of these parts as the Validation set, and the other  
N-1 as the Training set. 
Step 3. Train the initial MERGE Model.  
Step 4. Run this model on the Validation set. 
Step 5. Check the missed and incorrectly tagged entities in the 
Validation set, and add intuitive rules for those tokens.  
Step 6.  Repeat Steps 3-5 until no further improvement is possible. 
Step 7. Repeat Steps 2-5 with another part as the Validation set. 
Step 8. Train the complete system on the whole Training data. 
The most critical step is Step 5. In our experiments we 
extensively used Perl scripts for investigating the mis-tagged 
examples from the Validation data, in order to find appropriate 
rules for fixing them. There are separate scripts for the Current, 
Preceding and Succeeding contextual clues of the mis-tagged 
entities. 

3.6 Real Example of Rule Writing 
We will demonstrate the process of the rule writing and an effect 
of the rules with a real example. 

First, we trained the system autonomously upon a subset of the 
MUC-7 training set.  The feature templates were allowed to test a 
single token in a window of five (two previous tokens, the 
current, and two following tokens).  The allowed tests were the 
exact token value (generic) and the character traits of the token 
(capitalized, numerical, punctuation, etc.).  After evaluation upon 
a validation set we discovered many missing organizations of the 
form: 

secretary of defense 
vice president of Avitas 
president of the NFL 
 

We defined a Word Class of "Position" and we added a rule to 
deal with such cases: 

Rule: Organization { 
  : [wc=Position]+ "of" "the"? <> 
} 
WordClass: Position  
{ secretary "vice president" president … } 

The rule solved the problems.  For comparison we tested several 
models with much bigger number of feature templates that were 
checking bigrams and trigrams in the preceding tokens.  The 

bigrams were insufficient, and only trigrams did succeed in 
catching some of the errors.  And one of the cases appears to 
require at least a 4-gram.  Yet, the trigrams and 4-grams are 
infeasible because of the huge number of features they create, 
most of which are just noise. 

3.7 Rule to Feature Function Translation 
A rule translates into a feature function as follows:  Each line in 
the rule definition is tested at every token position in the training 
and test data. Tokens that matched i-th pattern in the rule 
definition have their feature value set to i.  Tokens that matched 
no expression receive zero for the feature value. 

For instance, the rule definition for finding Dates may look as 
follows:  

Rule: PossibleDate 
{ 
  // Rule_Check_1  
: < > [wc=NumberWord|cl=Number] 
  ["days"|"weeks""months"|"years"|"decades"|"centuries"]
 ["later"|"before"|"earlier"] 
 // Rule_Check_2 
: < > ([wc=MonthAbbr&cl=Capital] ["."& adj=True]| 
    [wc=MonthName&cl=Capital]) 
   wc=DayOfMonth "," cl=YearFour 
 // Rule_Check_3 
: < > wc=MonthNumber     [adj=True&"-"]  
  [adj=True& wc=DayOfMonth] [adj=True&"-"] 
  [adj=True&[cl=YearTwo|cl=YearFour]]  
} 

The value of the feature PossibleDate will be equal to 1 for 
tokens matching Rule_Check_1, such as “19 years later”, to 2 for 
tokens matching Rule_Check_2, such as “Sept. 8, 1994”, to 3 for 
tokens matching Rule_Check_3, such as “05-22-96”, and to 0 for 
tokens that match neither of the expressions. 

The value of the PossibleDate feature can subsequently be 
incorporated into a Feature Template Definition, for example as 
follows:   

 FeatureTemplate: { 
   Check: -1, Word 
   Check: 0 , PossibleDate 
 } 

 

4. EXPERIMENTS 

4.1 Evaluation on MUC-7 
We made an evaluation of our methodology on MUC-7 data set. 
The 100 Training documents were used for developing the 
MERGE Model and the Test (Dry Run) documents were used for 
evaluation of the system.  Only the training documents were used 
for discovering and writing rules, which was done according to 
the iterative process described in section 3.5. 

The initial simple model, working in an autonomous mode 
(without manual rules) produced 84.9% f-measure, as shown in 
Table 1. 



 

Simple MERGE       MERGE+Rules 
 Rec. Pre. F. Rec. Pre. F. 
Org. 79.4 87.8 83.4 83.9 90.9 87.2 
Per. 86.7 89.9 88.3 90.6 93.4 92.0 
Loc. 85.9 85.3 85.6 91.5 91.8 91.7 
All 82.7 87.3 84.9 87.9 91.7 89.8 

Table 1. MUC7: After training with 100 documents. 

 
In comparison, the system with rules performed 5% f-measure 
better. The rule development process took approximately 10 man-
hours, during which about 300 rules were added. 

Besides the simple experiment of above data set we checked the 
system performance also on the whole possible training data (350 
documents). By adding some approximately 50 more rules the 
overall performance reached to 93.5% as shown in Table 2, while 
overlapping match results come up to 95.4%. (In overlapping-
match, a entity is considered correct if at least one word of it is 
tagged correctly) The lower overall performance is due to the 
entities of Date, Time, and Money which had slightly lower 
results. 

Exact Match OverlappingMatch 
 Rec. Pre. F. Rec. Pre. F. 
Org. 92.7 96.4 94.5 94.3 98.3 96.3 
Per. 95.1 95.4 95.2 95.1 95.4 95.2 
Loc. 92.3 98.4 95.2 92.9 99.0 95.9 
All 91.2 95.9 93.5 93.0 97.8 95.4 

Table 2. MUC7: After training with 350 documents. 

We also compared our system to other successful models.  We 
run an implementation of Nymble ([9]) and the TEG system 
([17]) on that same corpus, which produced the results shown on 
Table.3. The results are slightly different from the previous ones, 
since the Header-Footer parts of the documents are dropped to 
make a fair comparison. MERGE can use any external 
information like which section we are in, but not the HMM 
system. 

 HMM TEG Merge+Rules 
Org. 87.8 90.9 93.6 
Per. 80.5 91.8 93.7 
Loc. 90.9 91.9 95.4 
Avg. 86.4 91.5 94.2 

Table 3. Comparetive Results for MUC-7 (without document 
Headers-Footers). 

4.2 Evaluation Using a Large Training 
Dataset 
We also evaluated the performance of MERGE on a large 
industrial corpus. The collection consists of 1170 financial news 
articles manually tagged with several categories. Altogether it 

includes 800K tokens, and around 39000 manually tagged 
Locations, Organizations and Persons. 
The initial MERGE model included these feature function checks: 
the token value checks in a window size of two previous and two 
next tokens; character traits feature checks for previous, current 
and next tokens; combinations of the token value check for the 
current token and character traits checks for the previous and the 
next tokens; the global information feature checking whether the 
token was ever assigned a certain tag (as described in [7]); and a 
set of external word lists, which were also used by the TEG 
system and the DIAL rules. 
The comparative results between HMM (Nymble), TEG, DIAL, 
and our MERGE system are shown below: 
 

 HMM TEG DIAL Merge 
Merge
Rules 

Loc. 81.8 92.8 93.6 90.4 93.7 
Org. 78.9 86.7 84.1 90.1 90.2 
Per. 80.7 87.8 94.2 92.6 92.8 
Avg
. 80.5 89.1 90.6 91.0 92.2 

Table 4. Comparetive Results on a Large Data-Set (F-Measure 
with β=1.0) 

As can be seen when using a large collection for training, the 
MERGE's performance is fine even without any additional rules. 
During rule development, another 36 rules were added, which 
further improved the performance. Among these problematic 
cases were the manual tagging errors in test data, inconsistent 
labeling between train and test data, and all the hardly-to-find 
cases. 

5. DISCUSSION AND CONCLUSION 
We presented a hybrid NER system, which by combining the 
probabilistic machine learning with a set of manually written rules 
developed in relatively very short time period, is able to get the 
best of the two worlds.  Our MERGE system gives better results 
than both purely knowledge-based and purely-ME systems while 
requiring only a limited amount of manual rule writing, necessary 
to catch the patterns that are too complex for automatic learning. 
The feature functions are generated by template definitions, where 
the training data fills the necessary feature check slots. The 
manually written rules are incorporated into those templates, 
letting human heuristic be used together with the automatic 
learning system. 
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