SUBJECTS
[Tentative title]

YEHUDA N. FALK

To be published by Cambridge University Press
TABLE OF CONTENTS

CHAPTER 1: ON SUBJECTS AND EXPLANATION ... 1
 1.1. Overview .. 1
 1.2. Subject Properties ... 2
 1.2.1. First Approximation .. 2
 1.2.2. Case and Subjects ... 5
 1.2.3. Second Approximation .. 10
 1.3. On Explanation .. 13
 1.3.1. General Considerations .. 13
 1.3.2. Subject as Structural Position .. 13
 1.3.3. Subject as Grammatical Relation 15
 1.3.4. Subject as Grammatical Function 17
 1.4. The Formal Framework .. 19
 1.5. A Look Ahead .. 23

CHAPTER 2: MOST PROMINENT ARGUMENT .. 25
 2.1. Argumenthood .. 25
 2.1.1. First Approximation .. 25
 2.1.2. Argument Structure and Hierarchies 27
 2.1.3. Most Prominent Argument ... 30
 2.1.4. Mismatches Between Argument Structure and Grammatical Functions ... 32
 2.1.5. Mapping in Mixed-Subject Languages 36
 2.1.6. Further Thoughts on Argument Mapping 38
 2.2. Specification of Argument Properties .. 39
 2.2.1. Introductory Remarks ... 39
 2.2.2. Null Arguments .. 40
 2.2.3. Imperative Addressee .. 40
 2.3. Anaphora .. 42
 2.3.1. Anaphoric Prominence .. 42
 2.3.2. Switch-Reference ... 47
 2.4. Summary .. 51

CHAPTER 3: PIVOT .. 53
 3.1. The Pivot Function ... 53
 3.1.1. The Concept ... 53
 3.1.2. Formalization: The Pivot Condition 55
 3.2. Uniform Subjects and Mixed Subjects 57
 3.3. Pivothood and Constructions ... 61
 3.3.1. Types of Constructions .. 61
 3.3.2. Distinguishing formal constructions 66
 3.3.3. Multiple pivots ... 69
 3.4. Clause-Internal PIV Properties ... 70
 3.4.1. External Position ... 71
 3.4.2. Other Clause-Internal Properties 73
3.5. Some Morphology .. 74
3.6. Forthcoming Attractions ... 79

CHAPTER 4: LONG DISTANCE DEPENDENCIES 81
 4.1. About Long-Distance Dependencies 81
 4.1.1. Functional Uncertainty ... 81
 4.1.2. Pivots and Non-Pivots ... 84
 4.1.3. Matrix Subjects .. 91
 4.2. Across-the-Board Extraction 94
 4.3. The *That*-Trace Effect ... 100
 4.4. Summary .. 106

CHAPTER 5: CONTROL CONSTRUCTIONS 109
 5.1. Overview of the Issues ... 109
 5.2. The Semantic Basis of Control 110
 5.3. Syntactic Types of Control 112
 5.4. Subjunctivity and Control ... 115
 5.4.1. General ... 115
 5.4.2. Case Study: Tagalog .. 118
 5.4.3. A Non-Problem in Balinese 124
 5.5. Other Control Constructions 125
 5.5.1. Non-Complement Equi ... 125
 5.5.2. Raising ... 126
 5.6. Conclusion .. 130

CHAPTER 6: UNIVERSALITY ... 133
 6.1. Non-Subject Languages ... 133
 6.2. The Realization of Arguments 135
 6.3. Universality of the Pivot Function 139
 6.3.1. Case Study: Acehnese ... 139
 6.3.2. Topic Prominence ... 143
 6.3.3. Pivotless Languages .. 145
 6.3.3.1. General Considerations 145
 6.3.3.2. Choctaw/Chickasaw .. 146
 6.3.3.3. Warlpiri .. 153
 6.4. Conclusion .. 158

CHAPTER 7: COMPETING THEORIES 161
 7.1. Other Approaches .. 161
 7.2. Typological Approach .. 161
 7.3. Functionalism .. 164
 7.4. Inverse Mapping and Multistratal Subjects 165
 7.5. Constituent-Structure Approaches 169
 7.6. Final Thoughts .. 179

REFERENCES .. 183
CHAPTER 1
ON SUBJECTS AND EXPLANATION

1.1. Overview

Explaining subjects and their properties is an important challenge in contemporary linguistics. For formalist approaches to linguistics, the clustering of properties that subjects display necessitates some special representational properties unique to subjects. Without such representational uniqueness, the properties of subjects that set them apart from other elements of the clause are mysterious. However, this only pushes the need for explanation back one level: such special representation itself calls out for explanation. For functionalist approaches, similar issues are raised, as it is not clear what the functional properties of subjects are that set them apart.

From a typological perspective, the mystery of subjects is even deeper, as different language types appear to deploy subject properties in different (but systematic) ways. As a result of the discoveries of ergative languages, Philippine-type languages, active languages, and the like, interesting questions have been raised about the properties of subjects, the representation of subjects, and even the cross-linguistic validity of “subject” as an element of linguistic description.

The concept of “subject” is one with a long history in linguistics. As with most other such concepts, contemporary linguistics did not invent the subject. Instead, it has taken a traditional concept and attempted to provide it with theoretical content. Problems have arisen because the concept “subject” originates in traditional studies of classical Indo-European languages such as Greek and Latin, languages which are closely related genetically, areally, and typologically. Investing “subject” with theoretical content thus usually depends on either focusing on languages which are typologically similar to classical Indo-European languages or attempting to extend an Indo-European notion to languages which have very different typological properties. As a result, different researchers take varying positions on which languages are examined, and in some languages which element (if any) is to be identified as the subject. Much of the literature on such topics as ergativity and active languages focuses on debates such as these. These issues need to be clarified if a true understanding of subjects and their properties is to be achieved.

All contemporary approaches to linguistics—formalist, functionalist, typological, etc.—appropriately take the goal of linguistics to be the explanation of linguistic phenomena. As such, they depart from merely being satisfied with describing linguistic facts, although proper description is, of course, a prerequisite for explanation. In the realm of subjecthood, this means that simply stipulating the properties of subjects is not sufficient: the properties should follow from a proper characterization of the nature of subjects. Since explanation is possible only in the context of a theory of the linguistic domain in question, the attempts that have been made at explaining subjects have been as varied as schools of linguistics, and have mirrored the drawbacks of the theoretical assumptions made by the researchers. Formal accounts tend to be characterized by a disregard for functional factors and often by inadequate cross-linguistic coverage. Functionalist and typological accounts are typically based on superficial surveys of languages and disregard the nature of the formal devices involved in syntax.

It is the thesis of this study that a truly explanatory theory of subjects has yet to be constructed, and its goal is the proposal of such a theory. A theory of subjects must be formally grounded, functionally aware, and achieve sufficiently broad typological coverage, including all
of the types of languages which are potentially problematic. Unlike previous accounts, the theory
of subjects to be proposed here meets all of these criteria. Naturally, it draws on insights of
earlier approaches, but it synthesizes them in a way which results in true explanation of the
properties of subjects as they are revealed in cross-linguistic study.

In this first chapter, we will enumerate the properties generally thought to be subject
properties. We will also discuss typological issues related to subjecthood. Finally, we will discuss
different types of approaches to subjects.

1.2. Subject Properties

1.2.1. First Approximation

As mentioned above, subjects display an array of properties which must be accounted for
by a theory of subjecthood. Properties of subjects have been enumerated in studies like Keenan
(1976) and Andrews (1985). We will review them here briefly, primarily using examples from
English. However, before we discuss the properties of subjects, it is necessary to take heed of the

At the outset we must note that there are no properties which in all languages are always exhibited
by subjects and only exhibited by them. There may be some properties that are universally restricted
to subjects [fn omitted], but there are certainly none that they always have. Rather, we find properties
that are exhibited by subjects in a wide range of languages, and which may be plausibly argued to be
restricted to subjects in some of them.

This observation is not surprising—it is in line with the way typological properties typically
apply (Comrie 1989). However, it violates the usual formalist preference for absolute universals,
and thus is an important caveat for any formally based theory of subjects. In addition, the fact that
typological properties typically emerge as tendencies rather than absolutes is itself something that
needs to be explained.

The first property is that if a verb has an Agent argument, the Agent is realized as subject.

 b. The kid ate the sandwich
 c. *The sandwich ate the kid.

A verb like the putative eat in (1c), in which the Patient is realized syntactically as subject and
the Agent as object, is disallowed. Of course, while all Agent arguments are subjects, not all
subjects are Agents. If the verb does not have an Agent argument, the subject will express some
other thematic role. A special case of this is the passive construction, in which the Agent loses

Another property of subjects is that the addressee of an imperative is a subject. This can
be seen in each of the following imperatives: the addressee can have a variety of thematic roles,
not necessarily Agent, but it must have the syntactic status of subject.

(2) a. Eat the sandwich!
 b. Go to school!
 c. Freeze, if that’s what you want! (Parent to child who refuses to put on a coat in
 freezing weather)
 d. Be happy!
 e. Be arrested by the municipal police, not the state police!
Another property which is apparent in the English imperative examples, although more clearly in other languages, is that the subject is more susceptible to being realized as a covert (null or empty) pronoun. It is telling that the empty-pronoun construction (or pro-drop) is often referred to in the theoretical literature as the null-subject construction, a name which is based on this higher susceptibility. We will discuss the facts in more detail in Chapter 2.

A frequently discussed property of subjects is anaphoric prominence. The exact details vary from language to language (as will be discussed in Chapter 2), but one clear consequence which can be seen in all languages with reflexive pronouns is that in a transitive clause in which the subject and object are coreferential, it is the subject which is expressed as a full NP and the object as the reflexive pronoun.

(3) a. Pnina saw herself.
 b. *Herself saw Pnina.

In some languages the antecedent of a reflexive must be a subject while in others (like English) it just has to have higher prominence, but in either case the most prominent element of the clause is the subject.

An anaphoric construction which does not exist in English, but in which the greater prominence of the subject is again apparent, is the switch-reference construction, in which a clause marks the anaphoric relation (coreference or disjoint reference) between its own subject and the subject of a superordinate and/or coordinate clause. This is exemplified in the following Diyari sentences (Austin 1981).

(4) a. Karna wapa-rna warrayi, jukudu nanda-lha.
 man go-PART AUX kangaroo kill- IMPLIC.SAME
 ‘The man went to kill a kangaroo.’
 man-ERG stone bite-PART AUX rain fall- IMPLIC.DIFF
 ‘The man bit the stone so the rain would fall.’

In (4a), the clauses have coreferential subjects, so the ‘same’ morpheme is used in the subordinate clause. In (4b), on the other hand, the subjects are disjoint in reference, and the ‘different’ morpheme is used.

Even in a language like English, which has no switch-reference system, subjects have a special status in coordination and subordination. In coordinated clauses, if the subjects of both clauses are identical, the subject can be omitted in the second clause. The object cannot be involved in this kind of relation.

(5) a. Mati kissed Pnina and hugged Yoni. (=Mati hugged Yoni; ≠Pnina hugged Yoni)
 b. *Mati kissed Pnina and Yoni hugged. (intended reading: … hugged Pnina)

More frequently discussed in the theoretical literature is the subordination construction known

1 An anonymous reviewer suggests that the data from Samoan in Chapin (1970) may be a counterexample. Chapin observes that there is no subject/non-subject asymmetry for a pronoun with a reflexive interpretation; the only condition is that the antecedent must precede the pronoun. However, he also notes that there are no distinct reflexive pronouns in the language. Since the Samoan forms are simply undifferentiated anaphoric elements, there is no reason to expect a restriction to subject.
as control (or equi). In the control construction, the subordinate subject is covert (and modeled as a special null nominal called PRO in the transformational literature) if it is identical to an element of the main clause. While the coreferential main clause element need not be subject, the subordinate clause element must be.

(6) a. They persuaded the starship captain [to kiss the alien woman].
 b. *They persuaded the alien woman [(for) the starship captain to kiss].
 c. They persuaded the alien woman [to be kissed by the starship captain].

A similar construction is raising,\(^2\) in which an element which is a thematic (semantic) argument of the subordinate clause is expressed as part of the main clause, in which it is not a thematic argument. The only kind of subordinate-clause element which can be raised in this fashion is the subject.

(7) a. It seems [that lions eat zebras].
 b. Lions seem [to eat zebras].
 c. *Zebras seem [(for) lions to eat].
 d. Zebras seem [to be eaten by lions].

Coordination, control, and raising are thus constructions in which the subject has a special status. Subjecthood interacts in various ways with long-distance (\(wh\)) dependencies. One of the best known cases is the fact, originally observed in Keenan and Comrie’s (1977) classical study of relative clauses, that subjects are more prone to \(wh\)-movement cross-linguistically than other elements. In English, paradoxically, subjects appear to be more resistant to \(wh\)-movement than other elements of the clause: non-subjects can be extracted from a clause with an overt complementizer while subjects cannot (the \(that\)-trace effect).

(8) a. Pnina thinks that Yoni gave the ball to Gabi.
 b. *Who does Pnina think that gave the ball to Gabi?
 c. What does Pnina think that Yoni gave to Gabi?
 d. Who does Pnina think that Yoni gave the ball to?

There are other subjecthood-related aspects to long-distance dependency constructions, to be discussed in detail in Chapter 4.

There are other properties that are unique to subjects. For example, many languages require every sentence to have a subject (either overt or covert), a property enshrined in transformational theory’s Extended Projection Principle (and analogous principles in other contemporary theories of syntax). Another property which has been built into the transformational model is that subjects often occupy a special “external” structural position (e.g. outside of VP), a position which provides them with structural prominence relative to other arguments of the verb. Subjects also have semantic and pragmatic prominence. For example, subjects are often definite. They also take wide scope over other elements of the clause.

\(^2\)Also known as matrix coding (Van Valin and LaPolla 1997).
Another construction which is often mentioned in the context of subject properties is Quantifier Float. While the ability to launch floating quantifiers is limited to subjects in some languages, it is clearly not true universally. We suspect that Quantifier Float is not a uniform syntactic construction cross-linguistically, but will not attempt to account for its properties here.

I follow the typographical convention of capitalizing the word Case. This notation was introduced in early Government/Binding theory as a device for disambiguating the word case, a word which happens to have a wide-ranging set of meanings: “I will follow the practice of capitalizing ‘Case’ when it is used in the technical sense, to avoid confusion with informal use, as in ‘the unmarked case’, etc.” (Chomsky 1980: 13fn18). The distinction is a useful one; in fact, taking Chomsky’s own example, one wants to distinguish between “unmarked case” (i.e., unmarked situation) and “unmarked Case” (unmarked morphological form of a noun). It is in this spirit that the capitalization is being used here. This notation has, over the years, acquired an unfortunate sense of distinguishing some abstract, theoretical notion of Case from ordinary morphological Case. In the present study, Case refers to morphological marking.

This catalog of properties\(^3\) represents the reason for the continued interest in the nature of subjects. There is no obvious pretheoretical reason for a single element of the sentence to have all these properties; the fact that one does in many languages calls out for explanation.

1.2.2. Case and Subjects

To sharpen the conception of subject properties that we outlined in the previous section, we need to consider the relationship between subjecthood and morphological marking: Case\(^4\) and, to a lesser extent, agreement. Subjects in many languages are realized with either no overt Case marking or with the same Case marking that is used with citation forms, two situations we can unify under the heading “unmarked Case.” This unmarked Case, often called nominative, is sometimes taken to be a defining property of subjects in Case-marking languages. However, typological study has shown that this is an overly simplistic view of the situation. We will outline the relevant facts in this section. Similarly, it is often stated that subjects have a special status in terms of agreement. Here again, the facts appear to be more complicated. We will return to the question of Case and agreement in Chapter 3.

Since we need to be able to refer to clausal participants without committing to their status

\(^3\)Another construction which is often mentioned in the context of subject properties is Quantifier Float. While the ability to launch floating quantifiers is limited to subjects in some languages, it is clearly not true universally. We suspect that Quantifier Float is not a uniform syntactic construction cross-linguistically, but will not attempt to account for its properties here.

\(^4\)I follow the typographical convention of capitalizing the word Case. This notation was introduced in early Government/Binding theory as a device for disambiguating the word case, a word which happens to have a wide-ranging set of meanings: “I will follow the practice of capitalizing ‘Case’ when it is used in the technical sense, to avoid confusion with informal use, as in ‘the unmarked case’, etc.” (Chomsky 1980: 13fn18). The distinction is a useful one; in fact, taking Chomsky’s own example, one wants to distinguish between “unmarked case” (i.e., unmarked situation) and “unmarked Case” (unmarked morphological form of a noun). It is in this spirit that the capitalization is being used here. This notation has, over the years, acquired an unfortunate sense of distinguishing some abstract, theoretical notion of Case from ordinary morphological Case. In the present study, Case refers to morphological marking.
Some of these (such as Dyirbal) are split ergative, meaning that some types of NPs display an ergative pattern and others a nominative-accusative pattern. A language is called nominative-accusative. In a nominative-accusative language, the traditional identification of S/A as “subject” and the hypothesis that subjects have the unmarked Case coincide.

However, in some languages, it is the S and P that have unmarked Case. The S/P unmarked Case is usually called absolutive rather than nominative. In this kind of language, the A has a marked Case which is called ergative. For this reason, these languages are usually referred to as ergative languages. As observed by Dixon (1994), ergative languages are found almost everywhere around the globe, including many languages of Australia (Dyirbal, Warlpiri, Diyari, Yidin', etc.), Eskimo languages (Inuit, Yupik), Basque, Georgian, Avar, Chukchee, Hindi-Urdu, Tongan, Samoan, and many others.\footnote{Some of these (such as Dyirbal) are split ergative, meaning that some types of NPs display an ergative pattern and others a nominative-accusative pattern. Languages of that type have distinct ergative and accusative Cases, showing that the marked Cases differ from each other. There are also a few languages (“three-way” languages) in which all NPs are marked ergative in A function and accusative in P function. It has been claimed by Woodford (1997) that there are also four-way languages, in which two distinct markings are possible for P. However, in the languages she brings as examples, Nez Perce (in which the A may also be unmarked) and Kalkatungu, one of these P Cases is unmarked morphologically. Apparently she wants to distinguish unmarked P from unmarked S (or A in Nez Perce) because unmarked S and A trigger subject agreement (as does ergative A) while unmarked P triggers no agreement. However, while Case and agreement are both methods of identifying the arguments of verbs, there is no reason (outside of a particular theory of Case and/or agreement) to expect a straightforward relation between head marking (agreement) and dependent marking (Case).}

as subjects and objects, we will follow much of the typological literature (see, for example, Comrie 1978, 1989) in using the following terminology:

\begin{enumerate}
\item Sole argument of intransitive verb: S
\item Agent-like argument of transitive: A
\item Patient-like argument of transitive: P (sometimes called O)
\end{enumerate}

The most common (and most familiar) situation is one where S and A have unmarked Case (traditionally called nominative) and P has a marked Case (traditionally called accusative). Such a language is called nominative-accusative. In a nominative-accusative language, the traditional identification of S/A as “subject” and the hypothesis that subjects have the unmarked Case coincide.

\begin{enumerate}
\item Dyirbal (Dixon 1994)
\item Greenlander Inuit (Marantz 1984)
\end{enumerate}

\begin{enumerate}
\item Dyirbal (Dixon 1994)
\begin{enumerate}
\item Ñuma banaga- n'u
father.ABS return- NFUT
‘Father returned.’
\item Ñuma yabu- ngu bura- n
father.ABS mother- ERG see- NFUT
‘Mother saw father.’
\end{enumerate}
\item Greenlander Inuit (Marantz 1984)
\begin{enumerate}
\item Anut- ip armaq tako- vaa.
man- ERG woman.ABS see- IND3sg
‘The man saw the woman.’
\item Anut autlar- puq.
man.ABS go.away- IND3sg
‘The man went away.’
\end{enumerate}
\end{enumerate}
The term “ergative language” is also generally used for languages, such as the Mayan languages, in which there is no Case marking, but agreement groups S and P together as opposed to A.

On the other hand, some ergative languages, like Warlpiri, have ergative Case marking but nominative-accusative agreement.

As noted above, nominative-accusative languages are plausibly analyzed by calling S/A the subject, and associating subject status with unmarked Case. One way to understand ergative languages would be to hypothesize that the absolutive argument, S/P, is subject instead of S/A.
But if P is subject in ergative languages, it should have subject properties. Investigation has shown that things are not that simple. In some ergative languages, such as Basque and Warlpiri, the P argument of a transitive clause has no subject properties. For languages of this kind, called “morphologically ergative,” P is clearly not the subject. (For now, we leave it open whether S/A is the subject in such languages, or whether such languages can be said to have no subject. We will discuss one morphologically ergative language, Warlpiri, in Chapter 6.) It is clear, however, that in morphologically ergative languages unmarked Case cannot be said to be a subject property. For other ergative languages, such as Dyirbal and Inuit, subject properties are split. Some subject properties are properties of (S and) A, just as in English. Other subject properties are S/P (absolutive) properties. So in some sense, A and P are both subject-like in these languages, but in different ways. Since the ergative Case-marking seems to be in some sense related to syntactic properties, these languages are said to be “syntactically ergative.” We will return to syntactically ergative languages in the next section.

In another class of languages, the Philippine-type languages, any element of the clause can have unmarked Case (usually referred to as nominative); the verb is marked with an affix designating one of its arguments as the nominative. The nominative nominal is referred to by Philippinists as the topic, but as observed by Schachter (1976), it is not a topic in the sense that the term is usually used in linguistics.6

(18) **Tagalog** (Schachter 1987)

a. Mag- aalis ang tindero ng bigas sa sako para sa babae.
 ACT- take.out NOM storekeeper ACC rice DAT sack for DAT woman
 ‘The storekeeper will take some rice out of a/the sack for a/the woman.’

b. Aalis- in ng tindero ang bigas sa sako para sa babae.
 take.out- DO ERG storekeeper NOM rice DAT sack for DAT woman
 ‘A/the storekeeper will take the rice out of a/the sack for a/the woman.’

c. Aalis- an ng tindero ng bigas ang sako para sa babae
 take.out- IO ERG storekeeper ACC rice NOM sack for DAT woman
 ‘A/the storekeeper will take some rice out of the sack for a/the woman.’

d. Ipag- aalis ng tindero ng bigas sa sako ang babae.
 BEN- take.out ERG storekeeper ACC rice DAT sack NOM woman
 ‘A/the storekeeper will take some rice out of a/the sack for the woman.’

e. Ipang- aalis ng tindero ng bigas sa sako ang sandok.
 INS- take.out ERG storekeeper ACC rice DAT sack NOM scoop
 ‘A/the storekeeper will take some rice out of a/the sack with the scoop.’

As with the term “ergative language,” the term “Philippine-type language” can also be used for languages that lack Case marking but have a similar system of marking the verb to designate one of the arguments as having a special status. These other Philippine-type languages are typically Western Austronesian languages not spoken in the Philippines, and with a less extensive marking system than the core case of Tagalog-type languages. One such language is Balinese, where the specially designated argument is preverbal.

6The morphological Case marking for non-nominative A arguments, which is often glossed as genitive, we consider to be ergative Case and gloss it accordingly. Verbal aspect is not glossed.
(19) **Balinese** (Arka 1998)
a. Nyoman ejuk polisi.
Nyoman DO.arrest police
‘A policeman arrested Nyoman.’
b. Polisi ng- ejuk Nyoman.
police ACT- arrest Nyoman
‘A policeman arrested Nyoman.’

The same question can be asked for Philippine-type languages as for syntactically ergative languages concerning subjecthood, and as we will see in the next section, the answers are similar as well: the A has some subject properties, and the specially designated (nominative) argument has others.

Finally, there are languages in which S is not treated uniformly. Instead, agentive Ss are Case-marked like A or trigger agreement like A and patientive Ss are Case-marked like P or trigger agreement like P.

(20) **Manipuri** (intransitive examples from Dixon 1994, transitive from Bhat and Ningomba 1997)
a. ñy- nò celli
I- ERG ran
‘I ran.’
b. ñy sawwi
I got.angry
‘I got angry.’
c. Nuñsit- nò ce celli.
wind- ERG paper carried
‘The wind carried away the paper.’

(21) **Lakhota** (Mallinson and Blake 1981)
a. Wa- i’.
1sgAGT- arrive
‘I arrived.’
b. Ma- si’ca.
1sgPAT- bad
‘I am bad.’
c. Ma- ya- kte.
1sgPAT- 2sgAGT- kill
‘You kill me.’

(22) **Acehnese** (Durie 1985)
a. Gopnyan ka= geu= jak u= keude.
he already 3.AGT go to market
‘He went to market.’
b. Gopnyan sakêt= geuh.
he sick 3.PAT
‘He is sick.’
This example is from the closely related language Inuktitut, spoken in Canada.

\[
\text{3.AGT bite 2.PAT}
\]

‘It’ll bite you.’

These are often called active languages. It has been claimed that concepts like “subject” are irrelevant in active languages, because the realization and properties of arguments are determined on the basis of thematic roles. We will refer to these languages provisionally as “no-subject” languages. A theory of subjecthood must address the question of whether no-subject languages truly lack subjects, and, if it is determined that they do not, why they appear to exhibit different properties from other types of languages. It is insufficient to simply deal with languages that have one or two elements with subject properties. We will return to no-subject languages in Chapter 6.

1.2.3. Second Approximation

The subject properties in (10) can be motivated for a wide range of languages, including nominative-accusative languages and possibly at least some morphologically ergative languages. We will henceforth refer to these as “uniform subject languages.” However, as alluded to in the previous section, the situation is more complicated in syntactically ergative and Philippine-type languages. In these languages, which we will call “mixed subject languages”, the subject properties are divided between two elements.

For example, consider West Greenlandic Inuit, a syntactically ergative language exemplified in (13, 10) above. The antecedent of a possessive reflexive can be S or A (i.e. subject in the familiar sense) but not P (the Inuit examples in this section from Manning 1996).

\[
\begin{align*}
\text{(23) a. Ataata- ni Juuna- p tatig(\text{i-} v)aa.} \\
\text{father- REFL.POSS Juuna- ERG trust- IND.TR.3SG.3SG} \\
\text{‘Juuna trusts his father.’} \\
\text{b. Aani illu- mi- nut ingerla- vo- q.} \\
\text{Anne house- REFL.POSS- DAT go- IND.INTR- 3SG} \\
\text{‘Anne is going to her house.’} \\
\text{c.} \text{*Anaana- mi Piita nagligi- ja\(\text{a.}\))} \\
\text{mother- REFL.POSS(ERG) Piita love- 3SG.3SG} \\
\text{‘His mother loves Piita.’}
\end{align*}
\]

In control constructions, the controller is S or A, not P.

\[
\begin{align*}
\text{(24) a. Miiqqat [Juuna ikiu- ssa- llu- gu] niriursui- pp- u- t.} \\
\text{children Juuna help- FUT- INF- 3SG promise- IND- INTR- 3PL} \\
\text{‘The children promised to help Juuna.’} \\
\text{b. Miiqqat [qiti- ssa- llu- tik] niriursui- pp- u- t.} \\
\text{children dance- FUT- INF- REFL.PL promise- IND- INTR- 3PL} \\
\text{‘The children promised to dance.’}
\end{align*}
\]

On the other hand, the P is accessible to extraction (in relative clauses), as is the S. The A is not.

\(\text{7This example is from the closely related language Inuktitut, spoken in Canada.}\)
(25) a. nanuq [Piita- p tuqu- ta- a]
polar.bear Peter- ERG kill- TR.PART- 3SG
‘a polar bear that Peter killed’
b. miiraq [kamat- tu- q]
child angry- REL.INTR- SG
‘the child who is angry’
c. *angut [aallaat tigu- sima- sa- a]
man gun take- PERF- REL.TR- 3SG
‘the man who took the gun’

As discussed by Bittner (1994), the S and P arguments obligatorily take wide scope over sentential operators such as negation, while the A need not.

student- ERG one- ERG Juuna talk.to- PERF- NEG- IND- 3SG.3SG
(i) ‘No student has talked to Juuna (yet).’
(ii) ‘One student hasn’t talked to Juuna (yet).’
b. Atuagaq ataasiq tikis- sima- nngi- la- q.
book one come- PERF- NEG- IND- 3SG
‘One book hasn’t come (yet).’
Juuna- ERG book one get- PERF- NEG- IND- 3SG3SG
‘There is a book which Juuna hasn’t got (yet).’

Thus, Inuit displays a split in subject properties, with some, as in English, as properties of the S and A arguments, and others as properties of the S and P arguments.

Another language which exhibits a split in subject properties is Tagalog, as first observed in the seminal study of Schachter (1976). Tagalog is a Philippine-type language, and is exemplified above in (18). Here the split is between those subject properties which are properties of the S or A regardless of verbal morphology and those which are properties of the nominative. As the examples in (18) show, the A argument (thematic Agent in cases like this, where the verb takes an Agent argument) is the nominative when the verb has Agent-nominative marking; otherwise it is marked with what we are glossing as ergative Case. S arguments involve the same markings as A arguments. The A argument is the one that can act as antecedent for reflexives in Tagalog.

(27) (Schachter 1976)
a. Sinakt- an ng babae ang kaniyang sarili.
hurt- IO ERG woman NOM her self
‘A/The woman hurt herself.’
b. Iniisip nila ang kanilang sarili.
think.about.DO they.ERG NOM their self
‘They think about themselves.’
c. Nag- iisip sila sa kanilang sarili.
ACT- think.about they.NOM DAT their self
‘They think about themselves.’
The A is the addressee of an imperative, regardless of nominativity.

(28) (Schachter 1987)
 a. Mag-alis ka ng bigas sa sako.
 ACT.INF- take.out you.NOM ACC rice DAT sack
 ‘Take some rice out of the/a sack.’
 b. Basah-in mo nga ang libro- ng ito.
 read- DO.INF you.ERG please NOM book- LNK this
 ‘Please read this book.’

On the other hand, it is the nominative that is accessible to extraction.

(29) (Guilfoyle, Hung, and Travis 1992)
 a. Sino ang bumili ng damit para sa bata?
 who COMP ACT.bought ACC dress for DAT child
 b. *Sino ang binili para sa bata’ ang damit?
 who COMP DO.bought for DAT child NOM dress
 c. *Sino ang ibinili ng damit ang bata’?
 who COMP BEN.bought ACC dress NOM child
 ‘Who bought the dress for the child?’

(30) a. *Ano ang bumili para sa bata ang tao?
 what COMP ACT.bought for DAT child NOM man
 b. Ano ang binili ng tao para sa bata?
 what COMP DO.bought ERG man for DAT child
 c. *Ano ang ibinili ng tao ang bata?
 what COMP BEN.bought ERG man NOM child
 ‘What was bought for the child by the man?’

(31) a. *Sino ang bumili ng damit ang tao?
 who COMP ACT.bought ACC dress NOM man
 b. *Sino ang binili ng tao ang damit?
 who COMP DO.bought ERG man NOM dress
 c. Sino ang ibinili ng tao ng damit?
 who COMP BEN.bought ERG man ACC dress
 ‘Who was bought the dress (for) by the man?’

The nominative is also the argument that undergoes Raising.

(32) (Kroeger 1993)
 a. Pinang-aakalaan si Fidel [na makakagawa
 IMPERF- think.IO NOM Fidel COMP ACT.NONVOL.FUT.do
 ng mabute].
 ACC good
 ‘Fidel is thought to be able to do something good.’
 b. Malapit na si Manuel [na hulihin ng polis].
 STAT.close already NOM Manuel COMP catch.DO ERG police
 ‘Manuel is about to be arrested by the police.’
And, as shown by the translations of (18), the nominative is interpreted as definite.

Inuit and Tagalog are thus mixed-subject languages, Inuit exemplifying the syntactically ergative subclass, and Tagalog the Philippine-type subclass. A survey of the literature on these types of languages reveals that the split in subject properties in mixed-subject languages is not random. Rather, it transpires that the set of subject properties can be universally divided into what we can call Type 1 properties and Type 2 properties.

(33) a. Type 1 subject properties (S/A)
- Agent argument in the active voice
- Most likely covert/empty argument
- The addressee of an imperative
- Anaphoric prominence
- Switch-reference systems
- Controlled argument (PRO) (in some languages)
- Discourse topic

b. Type 2 subject properties
(S/P in syntactically ergative languages; nominative in Philippine-type languages)
- Shared argument in coordinated clauses
- Controlled argument (PRO) (in some languages)
- Raising
- Extraction properties
- Obligatory element
- “External” structural position
- Definiteness or wide scope

In other words, the split in subject properties in mixed-subject languages is systematic. A theory of subjects thus needs to explain not only why subjects have the properties they do, but also why they split in this way in mixed-subject languages.

1.3. On Explanation
1.3.1. General Considerations
In order to develop an explanatory theory of subjects, we need to first determine what kind of entity a subject is. In the history of contemporary theoretical syntax, several approaches have been taken. In this section, we discuss the three primary views: subject as structural position, subject as grammatical relation, and subject as grammatical function. We show that the last of these is the most promising approach in which to develop an explanatory theory of subjects.

1.3.2. Subject as Structural Position
What is probably the leading view of subjects in formalist syntax is the one which is standard in transformational theory. Under such an approach, what distinguishes subjects from

8Of course, the term “subject” has also been used outside of syntax, either as a semantic function or a discourse pragmatic function. While there are interesting relationships between subject in the syntactic sense and subject in these other senses, and we will discuss these, our primary interest is in subject as a syntactic notion.
objects is their position in constituent structure. Objects, like other arguments of the verb, occupy a structural position in the verb’s “domain”: VP or V’, depending on the exact version of the theory. The subject, on the other hand, occupies a unique structural position outside of the verb’s domain: under S, in specifier of IP, or in specifier of VP, depending on the precise implementation. Schematically:

(34)

It is by virtue of properties stipulated for this special structural position that subjects have their unique characteristics.

Consider, for example, the structural explanation of why only subjects can raise (Chomsky 1981, 2000). Subjects, by virtue of their special structural position, have their Case assigned/checked by Infl/Tense (which is assumed to occupy a structural position as the head of an IP/TP which takes VP as its complement) rather than by the verb. Depending on the version of the theory, the Case-checking domain is defined either in terms of the structural relation of government (1981) or in terms of the SPEC-head relation (2000). The Infl/Tense element in a raising infinitive (to in English) is stipulated to be defective in some way, thus preventing it from assigning/checking the subject’s Case. In the 1981 version of the theory, the same defectiveness was attributed to the superficially identical Infl of equi (control) infinitives, but in the 2000 version the Tense of an equi infinitive assigns/checks a special “null Case” which, by stipulation, can only be carried by PRO. The subject of the raising infinitive moves in order to have its Case checked (or to have Case assigned to it). Since other elements of the clause are not in the government/checking domain of Infl/Tense (but rather of the verb), their Cases are assigned/checked in raising clauses the same way as in other clause types. Thus, the subject moves out of its clause while other arguments do not.

Structural accounts of subjecthood are claimed to be explanatory (Marantz 1982) because they do not directly attribute properties to an entity called “subject.” Instead, these allegedly independent structural properties result in the subject having certain characteristics. However, there is a circularity to this kind of argumentation. The special government properties of infinitival to (or their Minimalist equivalents), the null Case carried by PRO, etc., are stipulated because they are needed to explain various facts about subjects; they have no independent justification. Since these structural properties are hypothesized in order to account for the facts, it cannot be said that they explain the facts.

Constituent-structure–based approaches to subjecthood are also often derivational, or

9While many of the details differ, the approaches of Government/Binding theory (Chomsky 1981) and the Minimalist Program (Chomsky 2000) are fundamentally the same. The discussion here includes both: the analysis in terms of Infl and Case assignment is GB; Tense and Case checking are MP.

10If anything, the situation is worse for the earlier account of PRO, under which it is simultaneously a pronoun and a reflexive (“anaphor”). PRO does not have any reflexive-like properties—in particular, it need not have a syntactic antecedent. Arbitrary PRO, which has no antecedent, is an obvious problem for any theory that claims a reflexive-like status for PRO. Even when not arbitrary, PRO can, under certain conditions, have discourse antecedents. This analysis, which was once trumpeted as the paradigm example of the explanatory power of GB theory, is completely arbitrary and stipulative.
Attempts have been made in the structurally-oriented literature to discover indirect arguments for VP in non-configurational languages; one recent example is Legate (2001) on Warlpiri. Typically, these studies demonstrate that non-configurational languages have subject/non-subject asymmetries in some area of the grammar, such as anaphora, and then argue that such asymmetries require a VP node. However, this argumentation is circular: nobody denies the existence of subject/non-subject asymmetries—the disagreement is over how best to express them formally. Since the basic intuition behind constituent structure is that sentences are built out of hierarchically arranged "pieces" (constituents), what is missing is direct evidence for the VP as a "piece" of structure. While it is true that absence of evidence is not evidence of absence, the absence of such evidence in the literature, despite the theoretical importance of demonstrating that non-configurational languages have a VP, is, to my mind, significant.

Another problem, often downplayed (or perhaps misunderstood) by proponents of a structural approach (e.g. Baker 1997), is that the proposed structure is not appropriate for all languages. There are languages, often referred to as non-configurational languages, in which the subject and object appear to be sisters, and thus not distinguishable in terms of constituent-structure position. In fact, as discussed for Warlpiri by Simpson (1991) and Wambaya by Nordlinger (1998), there is evidence against the verb+object constituent in languages which put the auxiliary in second position, after a single arbitrary initial constituent. The putative VP in such languages does not count as a first constituent, casting doubts on its existence. Nevertheless, such languages display subject properties just as much as configurational languages do.

Finally, it is not really true that structuralist accounts do not attribute any properties to an entity called "subject." The external position is such a property. Since structural theories of subjecthood define the subject by its external position (going so far as to call it an "external argument"), the external position is stipulated and not explained. Nor is it explained by claiming, as Chomsky (1995) does, that the Agent role is assigned not by the verb itself but by a light verb \(v \) which takes the main VP as its complement. This simply changes the domain in which the explanation is required. The same is true of theories based on the concept that the VP is a syntactic predicate which must take an argument (e.g. Williams 1984); the predicate status of the VP is a stipulated property which is itself in need of explanation.

Thus, despite its leading position in formalist work, we reject the notion of subject as a structural position. The rhetoric of explanation that often accompanies expositions of the structural approach is not matched by its actual achievements.

1.3.3. Subject as Grammatical Relation

An alternative view of subjecthood sees it as a grammatical relation: a relation which is relevant to the syntax (taking "grammatical" here to mean "syntactic"). This view is most clearly represented by Relational Grammar, in which it is further claimed that grammatical relations like subject are primitive concepts of syntactic theory. We will argue here that this approach is also not a promising one for explaining the properties of subjects.

What does it mean to say that "subject" is a "grammatical relation"? Taken literally, it means that it is some sort of relationship relevant to the syntax. There are many such relations. For example, c-command is a grammatical relation, a relation relevant to the syntax. Johnson and Postal (1980) consider linear precedence to be a grammatical relation on par with such relations as subject. It is unclear what is gained by calling subject a grammatical relation. That it is a multipstratal. While it is not clear that this is a necessary property of such approaches, it does represent the major school of thought. As discussed by McCloskey (1997), a multistratal constituent-based approach treats subjects not in terms of a single structural position, but rather as a derivationally linked series of such positions. The machinery required to produce the movements of the subject-to-be tends to be rather arcane. We will return to this in Chapter 7.

11 Attempts have been made in the structurally-oriented literature to discover indirect arguments for VP in non-configurational languages: one recent example is Legate (2001) on Warlpiri. Typically, these studies demonstrate that non-configurational languages have subject/non-subject asymmetries in some area of the grammar, such as anaphora, and then argue that such asymmetries require a VP node. However, this argumentation is circular: nobody denies the existence of subject/non-subject asymmetries—the disagreement is over how best to express them formally. Since the basic intuition behind constituent structure is that sentences are built out of hierarchically arranged "pieces" (constituents), what is missing is direct evidence for the VP as a "piece" of structure. While it is true that absence of evidence is not evidence of absence, the absence of such evidence in the literature, despite the theoretical importance of demonstrating that non-configurational languages have a VP, is, to my mind, significant.
grammatical relation is clear: the question is what is the nature of the relation.

This vagueness of the concept “grammatical relation” does not reflect the actual use of the concept. In practice, grammatical relations are identified by their properties. Much argumentation in Relational Grammar consists of arguments for an analysis in terms of multistratal relational networks on the basis of splits in grammatical relation related properties. In one such study, Perlmutter (1984) argues against monostratal accounts of passivization on the grounds that what are claimed to be properties of subjects sometimes appear as properties of elements which are not surface subjects. For example, in Russian the antecedent of a reflexive in a passive clause can be either the Patient (the “derived” or surface subject) or the Agent (the deep subject; passive chômeur in RG terminology).

A passive sentence such as (36a) is analyzed as having the sequence of grammatical relations represented by the stratal diagram (36b).

(35) a. Rebenok, byl otpravlen k svoim, roditeljam.
 child.NOM was sent to REFL.GEN parents
 ‘The child was sent to his (self’s) parents.’
 b. Èta kniga byla kuplena Borisom, dlja sebjà,
 this book.NOM was bought Boris.INSTR for REFL
 ‘This book was bought by Boris for himself.’

He argues on this basis that both the Agent and the Patient must be subjects (1s in RG terminology), and therefore a multistratal theory of subjecthood (and of passivization) is needed. A passive sentence such as (36a) is analyzed as having the sequence of grammatical relations represented by the stratal diagram (36b).

(36) a. The sandwich was eaten by the student.

 b. [Diagram]

 the sandwich was eaten by the student

Nowhere does Perlmutter explain why the antecedent of a reflexive needs to be the subject; he simply assumes that this is a property which identifies subjects in Russian. Other properties of subjects (and other grammatical relations) are treated similarly. Since splits in properties are common, this kind of approach to notions like subject seems to lead invariably to multistratal analyses.

Treating grammatical relations as being essentially defined by their properties is not limited to Relational Grammar, but is in fact found widely. This is, for example, the approach of Role and Reference Grammar (RRG), as presented in Van Valin and LaPolla (1997). Van Valin and LaPolla identify grammatical relations with what they call “restricted neutralizations” of semantic and pragmatic relations. In their view, a grammatical relation can only be motivated for a particular language if there is some set of elements that cannot be defined in semantic or pragmatic terms which displays some property. They use this view of grammatical relations to
argue that grammatical relations are not universal. Since, in their view, semantic and pragmatic relations are needed independently, grammatical relations are to be invoked only as a last resort. Grammatical relations like subject are thus no more than ad hoc clusterings of construction-based properties.

A different, but equally problematic, implementation of the grammatical relations approach is that of Palmer (1994). Palmer takes the position that, because properties differ in nominative-accusative languages and in ergative languages, the two types of languages use different sets of grammatical relations: subject and object in nominative-accusative languages and ergative and absolutive in ergative languages. While this may be useful for a preliminary description of the facts, it does not hold any possibility of explaining the cross-linguistic properties of subjects.

The inadequacy of the grammatical relations approach has been noted in the structural literature. For example, Marantz (1982) notes that undefined grammatical relations cannot serve as a basis for explaining properties such as the subject properties discussed earlier in this chapter. At best, properties of this kind need to be stipulated as part of Universal Grammar. In a similar vein, Williams (1984) notes that, in the absence of some definitional characterization of what makes subjects different from other elements in the clause, the subject/non-subject distinction is no different from any other arbitrary distinction (such as indirect object/non-indirect object). Given that subjects display an impressive list of unique properties, the grammatical relations approach is flawed.

It should be clear that the notion of grammatical relation, under any implementation, is not a fruitful one for explaining the properties of subjects. If “subject” means “entity with some subset of subject properties,” there can be no explanation why subjects have the properties they do. The problem is even worse than that faced by the structural approach. For the structural approach, the external position of the subject is a defining, and thus stipulated, property. For the grammatical relations approach, all properties are stipulated as defining the subject.

1.3.4. Subject as Grammatical Function

There is a third way to approach the nature of subjects, which we will refer to as the grammatical function approach. It is based on the idea that a syntactic structure is defined both in terms of the constituents of which it is composed and the function(s), or purpose(s), they serve in the structure. For example, the italicized element of the sentence in (37a) serves both of the functions listed in (37b); the names we will give these functions are listed in parentheses.

(37) a. What did you put on the shelf?
 b. introducing a new element into the discourse (FOCUS)
 expressing the Theme argument of the verb put (OBJ)

At the level of constituent structure, what will be a DP in the specifier position of the matrix CP. However, the representation of the functionality of elements in the sentence, functional structure, will show that what has the two functions noted above:

12These studies usually confuse grammatical relations, as discussed here, with grammatical functions, to be discussed in the next section. They therefore incorrectly take their arguments to apply against the approach of Lexical-Functional Grammar, and to support a structural account.
Constituent structure and functional structure are parallel linguistic representations, related to each other by universally-constrained language-specific rules of mapping. Other dimensions of language (pragmatic, thematic, phonological, morphological, and so on) will be represented by other types of representations, each with its own vocabulary, geometry, and primitives.

Although it is often supposed that “grammatical function” is synonymous with “grammatical relation,” there is a significant difference between them. As we have seen, grammatical relations are, by their very nature, unexplanatory. Grammatical relations have no inherent properties, and therefore all of their properties are stipulated. Grammatical functions are something quite different: they are the purposes that grammatical elements serve. Properly understood, the functions that elements have are the basis for their properties. If we can properly identify the functions, the properties should follow.

Grammatical functions differ from grammatical relations also in that the former are necessarily monostratal. We have seen that one element can have more than one function; however, it is incoherent to say that two elements have the same function at different strata of representation. Consider the passive sentence in (36) again. Under the multistratal analysis, both the sandwich and the student are subjects. This may be an appropriate analysis under a property-driven grammatical relations approach, if it can be shown that properties that are typical of subjects in the language are shared by the two nominals. However, these two nominals clearly do not have the same function in the sentence: they express different arguments of the verb. If subjecthood is defined in functional terms, it is incoherent to speak of these two elements as both being subjects. They must have different functions. (Note, though, that it is possible, as in the case of adjuncts, for more than one entity to have a particular function, but simultaneously, not at different strata.) Where we find a split in properties, we need to determine why the properties split the way they do, not propose multiple strata of the same grammatical function and imagine that we have accounted for something.

This kind of approach to explanation in syntax requires us to break down the common arbitrary distinction between “formal” and “functional” approaches to the study of language. Like Jackendoff (1997, 2002), it rejects the syntactocentric approach to language typical of much formalist theorizing. It is based rather on the idea that formal and functional properties of language coexist. Language has formal structures which serve various functions. Among these functions, in addition to the familiar discourse-based functions, are grammatical functions, which are functions within the formal syntactic system. The formal and the functional are inextricably intertwined, and explanations of linguistic phenomena will often involve the formal properties of functions.

This kind of approach also requires us to adopt a parallel-architecture approach to syntax, as structure and function are distinct modular aspects of syntactic representation. As discussed extensively by Jackendoff (2002), parallel architecture holds numerous advantages over other potential theoretical architectures for language. One of the most important points for us is that parallel architecture, because it involves relations of correspondence between formally distinct
dimensions, will necessarily involve imperfect correspondence and occasional mismatches between levels. (A similar point is made by Bresnan 2001.) The “soft” character of subject universals, noted in the citation from Andrews (1985) earlier in this chapter, will emerge as being largely the result of imperfect correspondence between levels.

Under the grammatical function approach we will pursue here, subject properties are not stipulations about the nature of subjects, as in the grammatical relations approach, nor a consequence of a series of interconnected stipulations about structural relations, as in the structural approach. Instead, subjects will be defined (or characterized) in terms of their function(s), and the properties will be derived from the function(s). Properties like anteceding reflexives and having an external structural position are not primitive properties under this view. They are observations in need of explanation, and the explanation will come from an understanding of the function(s) of subjects.

1.4. The Formal Framework

The subject-as-grammatical-function approach, and the consequent mixed formal-functional conceptualization of syntax, is most typical of the theoretical framework of Lexical-Functional Grammar (LFG), a theoretical framework originally developed by Joan Bresnan and Ron Kaplan in the late 1970s, and described in Bresnan (2001), Falk (2001), and Dalrymple (2001). The formal portions of the present study will therefore be couched in the notation and terminology of LFG. In this section, we will outline most of the aspects of the LFG formalism which will be relevant in this study. We will not relate to subjecthood-related issues here.

LFG is based on a parallel-architecture model of language, in which constituent structure and grammatical functions are represented as distinct dimensions of linguistic structure. The functional structure in (38) is a simplified version of the formal LFG representation of grammatical functions: the f-structure. F-structure is an “attribute-value matrix” (AVM), a table-like representation of “attributes” (grammatical functions and grammatical features) and their values.

\[
\begin{array}{cc}
\text{ATTRIBUTE 1} & \text{VALUE 1} \\
\text{ATTRIBUTE 2} & \text{VALUE 2} \\
\text{ATTRIBUTE 3} & \text{VALUE 3} \\
\text{ATTRIBUTE 4} & \text{VALUE 4} \\
\end{array}
\]

As we have done in (38), where the internal structure of an f-structure element is unimportant, an orthographic representation of the element enclosed in double quotes can be used. This is the f-structure equivalent of a constituent structure triangle.

Unlike in structurally-based theories, the structure-function mapping is taken to be defined by language-specific constraints (albeit constrained by universal principles; Bresnan 2001). It is these constraints which form the heart of the descriptive power of LFG. Consider the c-structure and f-structure of the sentence (40a).

\(40\) a. The baby will put a book on the shelf.
Elements of the c-structure and elements of the f-structure are in a relation of correspondence with each other. The correspondence function mapping from c-structure to f-structure is usually called ϕ, and the mapping relation from f-structure to c-structure is its inverse, ϕ^{-1}.

The DP *the baby* corresponds to a functional element which is the value of the attribute SUBJ, while the DP *a book* corresponds to a functional element which is the value of the attribute OBJ. Or, informally, *the baby* is the SUBJ and *a book* is the OBJ. This is because *the baby* is a daughter of the IP node and *a book* is a daughter of the VP node, and the grammar of English associates each of these structural positions with a particular grammatical function. Similarly, the PP under VP is associated with an oblique argument function. Unlike constituent-structure-based theories, these associations of structural positions with grammatical functions are not assumed to be universal; this allows for languages with different associations between structure and function, as in non-configurational languages.

The grammar of English therefore must include constraints of the following nature:\(^\text{13}\)

\(^\text{13}\)All c-structure positions are optional, including structural heads. Missing heads in LFG correspond roughly to empty heads in transformational theory.
Oblique arguments are more complicated than suggested by this characterization, since the exact oblique function (goal, benefactive, locative, etc.) is determined by the preposition. This is irrelevant for the present study. The full formal expression can be found in the standard LFG references mentioned at the beginning of this section.

The symbols \uparrow and \downarrow are technically defined in terms of the ϕ mapping function: if the current node of the tree is represented by \ast, and each of the surrounding nodes is represented by an arrowhead pointing in the appropriate direction of the tree (i.e., the mother node is \ast, the left sister is $<\ast$, and the right sister is $>\ast$), \downarrow is $\phi(\ast)$ and \uparrow is $\phi(\ast)$. For more on the technical details of the formalism, see Dalrymple (2001).
We will return to this in Chapters 3 and 4.

Functional constraints also appear in lexical entries. For example, the lexical entry of the word baby includes the following constraints:

\[(\uparrow \text{PRED}) = \text{‘baby’}\]
\[(\uparrow \text{NUM}) = \text{SG}\]

The PRED feature is a representation of the meaningfulness of syntactic elements, which is one aspect of their functionality. For most lexical items, the value of this feature is an atomic expression, conventionally represented as the word in single quotes. Pronouns have a special value for the PRED feature, ‘PRO’. In the case of argument-taking predicates, the value of the PRED feature includes a specification of the arguments selected. The lexical entries of forms of the verb put for example, include:

\[(\uparrow \text{PRED}) = \text{‘put } ((\uparrow \text{SUBJ})(\uparrow \text{OBJ})(\uparrow \text{OBL}_{\text{Loc}}))\text{’}\]

The list of selected arguments is a projection of the verb’s argument structure; we will discuss some aspects of LFG’s theory of argument structure in Chapter 2. The \(\uparrow\) in the specification of each argument function is a formal indication that the arguments must be local: the OBJ of put must be in put’s local f-structure, while the OBJ of on must be in on’s local f-structure. In general, each of the argument functions specified in the value of the PRED feature must be present in the local f-structure. The principle that specifies this is called the Completeness Condition. Conversely, the principle that disallows other (unlicensed) argument functions from appearing is called the Coherence Condition. Taken together, the Completeness and Coherence Conditions enforce the selectional properties of the predicate, and correspond approximately to the \(\Theta\) Criterion of Government/Binding theory.

In addition to argument functions, LFG hypothesizes adjunct functions (primarily ADJ) and grammaticized discourse functions (such as FOCUS and TOPIC). These elements are not selected, but must still be licensed as specified in an extension of the Coherence Condition. The Extended Coherence Condition requires adjuncts to modify meaningful elements. For the grammaticized discourse functions, the Extended Coherence Condition specifies that any item bearing one of those functions must also bear an argument or adjunct function. For example, in our example (38) the same item that bears the FOCUS function also bears the argument OBJ function. An element that bears only the FOCUS function is ruled out by the Extended Coherence Condition.

The f-structure in (38) is more standardly drawn as follows:
Here, a curved line is used to show that one element has two different functions (or, more formally, is the value of two different attributes). It is more useful than the bracket we used informally earlier, as it can be used when the two functions are in two different clauses.

Formalism in linguistics provides a way to express descriptive generalizations precisely. In addition, if the formalism is well designed, properties of the formalism can themselves turn out to be part of the explanation of linguistic phenomena.

1.5. A Look Ahead

This book can be seen as a case study of the concept of grammatical functions, as well as an attempt to understand subjects. The analysis to be proposed here builds on ideas which have their origin in the work of Schachter (1976), Dixon (1994), and others. We will propose that subjects in familiar uniform-subject languages have two distinct functions: the expression of the most prominent argument of the verb (\(\tilde{G}_{T}\)) and the singling out of a particular clausal actant to be the element of cross-clausal continuity (PIV, or pivot). These two functions, both of which are syntactic functions represented at f-structure, will be discussed in Chapters 2 and 3. These functions are dissociated in mixed-subject languages, resulting in the (predictable) split of properties that these languages display.

Chapters 4 and 5 will focus on two families of subject-sensitive constructions: long distance dependencies and control constructions, respectively. We will show how the proposed theory of subjecthood, combined with aspects of the LFG formalism, explains the properties of these constructions. Chapter 6 will then turn to the no-subject languages, and discuss the presence of each of these two grammatical functions in such languages.

The theory of subjects proposed here differs in important respects from the previous LFG analysis of subjects: that of Manning (1996). In Manning’s theory, there is one grammatical function, called either SUBJ or PIVOT. This function is characterized as an argument function, unlike the characterization of the PIV function in the present study. Manning has no direct analog of the \(\tilde{G}_{T}\) function to be proposed here, considering our \(\tilde{G}_{T}\)-related properties to be based on argument structure. The theory proposed here also contrasts with functionalist and typological characterizations of the pivot function (e.g. Dixon 1994, Van Valin and LaPolla 1998), in that we view pivothood as a language-wide function rather than construction-specific. We will contrast our account with Manning’s and functionalist-typological approaches throughout the book, and especially in Chapter 7. Chapter 7 will also discuss structurally-based theories; it will argue that, despite the conceptual elements shared by all these theories, the implementation proposed here is superior.
CHAPTER 2
MOST PROMINENT ARGUMENT

2.1. Argumenthood

The subject is generally considered to be an argument. This is true in GB/MP, where the
subject is characterized as the “external argument.” It is also true in RG, where the relation 1
(subject) is a Term Relation, and LFG, where SUBJ is an argument function. In this chapter, we
will examine the notion of subject as argument function. We will determine exactly what is
meant by that concept, and we will see what properties follow as a result of characterizing the
subject in those terms. We will also contrast the approach taken here with that of such works as

2.1.1. First Approximation

It is well established that (at least in the uniform-subject languages) there is a standard
mapping from thematic roles to grammatical functions. A canonical transitive verb takes two
arguments, one of which performs an action which affects the other. Semantically, following
current terminology, these can be characterized as Agent and Patient. (We will say more about
this in §2.1.2.) These two semantic arguments are uniformly mapped into syntactic (grammatical)
argument functions. Traditionally, the function that expresses Agents is called “subject” (SUBJ)
and the one that expresses Patients is called “object” (OBJ). In many languages, there can be
additional Patient-like arguments realized as “secondary objects” or “restricted objects” (OBJ2
or OBJ3). Finally, additional nominal arguments are marked (generally by prepositions or Case)
to indicate the thematic role explicitly; these are called obliques (OBL). With the exception of
the division of labor between OBJ and OBJ2 (discussed in Dryer 1986), the syntactic realizations
of semantic arguments of canonical transitive verbs is the same in all uniform-subject languages.

(1) a. **English**
 The teacher (Agent/SUBJ) put the book (Patient/OBJ) on the shelf (Location/OBL).

 b. **Hebrew**
 Ha- more sam et ha- sefer al ha- madaf.
 the- teacher put ACC the- book on the- shelf
 Agent/SUBJ Patient/OBJ Location/OBL
 ‘The teacher put the book on the shelf.’

 c. **Latin** (Palmer 1994)
 Puer hominem planxit.
 boy.NOM man.ACC hit
 Agent/SUBJ Patient/OBJ
 ‘The boy hit the man.’

Given the foregoing, we can propose our first, provisional characterization of the function
of SUBJ.
This analysis is motivated on the basis of "object" properties that nonagentive ("unaccusative") subjects display. For discussion of the interplay between syntax and semantics, see Levin and Rappaport Hovav (1995).

(2) The SUBJ is the element with the function of expressing the Agent argument.

Appealing though it may appear, this characterization is problematic both conceptually and empirically. It is conceptually problematic because it stipulates an arbitrary relation between a specific thematic role and a specific grammatical function. Stipulation of this kind is inherently unexplanatory: the goal should be to explain the relationship between Agenthood and subjecthood, not to stipulate it. To put it slightly differently, this stipulation of a relationship between a specific thematic role and a specific grammatical function is simply a restatement of the problem. Empirically, this characterization is too simple for most languages. Some languages allow Agents to appear as what has been argued to be object in the existential construction. Note the following example from Norwegian; it is argued by Lødrup (2000) that the Agent has the grammatical function of OBJ.

(3) Det lekte noen barn i gresset.

it play.PST some children in grass.DEF

‘Some kids played in the grass.’

(Literally: ‘There played some kids in the grass.’)

More crucially, in most languages the sole argument of an intransitive is expressed syntactically as SUBJ, regardless of its thematic role. For example, in English, where subjects have an unmarked preverbal position, take nominative Case forms, undergo Raising, and so forth, the sole argument of an intransitive verb invariably displays these properties regardless of its thematic role. This is illustrated here with position and Case. (The intended reading in (4c,d) is an inchoative reading of broke, meaning ‘They (e.g. the dishes) broke’, and this is the reading under which the marking as ungrammatical holds.)

(4) a. I (*Me) broke them (*they).
b. They (*Them) sneezed.
c. They (*Them) broke.
d. *(It/There/θ) Broke them.

In derivational and multistratal theories, such facts can be brought into line with our characterization of the SUBJ function by limiting it to the underlying representation or initial stratum. Intransitive verbs whose sole argument is nonagentive can be analyzed as involving the initial assignment of the argument to the function OBJ with a subsequent advancement to SUBJ. This analysis has its origins in the RG analysis of Perlmutter (1978), and has been adopted in GB/MP as a result of the work of Burzio (1986).1

(5) a.

\[\text{they} \quad \text{broke} \]

1This analysis is motivated on the basis of “object” properties that nonagentive (“unaccusative”) subjects display. For discussion of the interplay between syntax and semantics, see Levin and Rappaport Hovav (1995).
This follows the thematic hierarchy as discussed in Jackendoff (1990: 258). The description of the thematic hierarchy in Bresnan (2001) places Beneficiary and Recipient right under Agent, as described here, but Patient considerably farther down. This is very typical of descriptions of the thematic hierarchy. The reason is that these descriptions consider Patient (affected entity) and Theme (entity in motion) to be the same. However, as discussed in detail by Jackendoff (1987), Patient and Theme are distinct thematic roles. The Theme role is lower on the hierarchy, but Patient belongs high, along with the other undergoer roles. Also, as noted by Jackendoff (1990), descriptions of the thematic hierarchy which place Goal above Theme base this on the properties of possessional Goals, which are also Beneficiaries.

Our approach to grammatical functions is nonderivational and monostratal, and therefore does not allow such an analysis. We must therefore take a closer look at the nature of argumenthood and argument mapping, a question which has been addressed much in the literature.

2.1.2. Argument Structure and Hierarchies

Argumenthood lies at the interface between syntax and lexical semantics. In the usual situation, a verb (or other argument-taking predicate) selects elements syntactically based on open positions in its conceptual (or lexical semantic) representation. For example, the verb *put* selects three syntactic arguments (SUBJ, OBJ, and OBL) because its conceptual representation includes open positions for Agent, Patient/Theme, and Location. As noted above, the mapping of arguments from semantics to syntax is usually predictable from the (semantic) thematic roles: Agents typically map to SUBJ and Patients to OBJ. Since the aspect of semantic/conceptual structure that is relevant to argumenthood is thematic roles, we will refer to the semantic representation informally as thematic structure, and represent it as a list of thematic roles.

Thematic structure, in the informal approach we are adopting here, can be thought of as a list of relatively coarse-grained labels generalizing over ways in which actants can participate in an event. While such labels alone cannot account for the variety of verb meanings, it is generally accepted that these coarse-grained thematic roles are what is relevant for the syntax. In taking this kind of approach, we are abstracting away from specific theories of lexical semantic/conceptual representation, which are irrelevant to the issues here. The coarse-grained approach to thematic roles is compatible with approaches as varied as those of Jackendoff (1990), Dowty (1991), and Palmer (1994).

It is generally accepted in the literature that there is a natural hierarchy in the conceptualization of events, represented generally as a hierarchy of thematic roles (originally proposed by Jackendoff 1972). A typical transitive event includes a doer (Agent) and an undergoer (Patient, Beneficiary, or Recipient). The Agent outranks the element with an undergoer role (henceforth Patient) because it is the Agent’s act that results in the Patient’s affectedness. Other semantic argument types are hierarchically lower. This “thematic hierarchy” is not a primitive of the
linguistic system, but rather a consequence of the semantic/conceptual nature of thematic representation. As observed by Rappaport Hovav & Levin (2003), different proposals for thematic hierarchies have differed from each other because they encode different things: once one realizes that a thematic hierarchy is a derivative description rather than an actual part of language, many of the apparent conflicts between proposed thematic hierarchies vanish. For example, the thematic hierarchy that we are assuming here is reflected in the formalism for conceptual representations in theories like that of Jackendoff (1990). In Jackendoff’s theory, conceptual representation consists of two tiers: the action tier, which represents Actor-Patient relations, and the thematic tier, which represents the abstract spatial aspects. Jackendoff’s description of the thematic hierarchy is:

(6) Order the A-marked arguments in the action tier from left to right, followed by the A-marked arguments in the main conceptual clause of the thematic tier, from least embedded to most deeply embedded.

In informal representations such as we are using here, the thematic hierarchy is reflected in the linear order of the thematic roles:

(7) put: Agent, Patient/Theme, Location

However, our interest here is in syntactic selection, or syntactic argumenthood, not thematic structure. While there is a relation between them, syntactic argumenthood cannot be identified with thematic argumenthood. Sometimes the mapping of arguments is not predictable from the semantics. Note the following contrast.

(8) a. The dinosaur went into the room.
b. The dinosaur entered the room.
c. Hebrew
 Ha- dinozaur nixnas l- a- xeder.
 the- dinosaur enter.PST to- the- room
 ‘The dinosaur entered the room.’

In all three sentences, the room is the Goal of the action, but with the English verb enter (but not the synonymous Hebrew verb nixnas), this argument is realized idiosyncratically as OBJ. This is a syntactic fact, not a semantic/thematic one. Another difference between thematic and syntactic argumenthood is a consequence of the fact that verbs sometimes select arguments which are not part of the semantics: expletives (such as the SUBJ in the Norwegian sentence (3) above and in the English (9a)) and idiom chunks (such as the OBJ in the English (9b)).

(9) a. It seems that the dinosaur ate the students.
b. We kept tabs on the dinosaur.

For these reason, many theories (including LFG) posit a syntactic level of argument structure (or a-structure) in addition to the thematic level. The (semantic) thematic structure includes

3A-marking in Jackendoff’s system is a diacritic in lexical conceptual structure indicating the syntactically realized arguments.
information about the thematic roles of the open arguments in the verb’s semantics, while the (syntactic) a-structure includes all elements selected syntactically, including expletives and idiom chunks, and constrains their mapping to the syntax.

A-structure must therefore project the syntactically relevant aspects of thematic structure, while simultaneously giving expression to the purely syntactic aspects of argumenthood. The thematic structure is reflected primarily in the hierarchical ranking of the arguments: the thematic arguments are ranked in accordance with the conceptually based hierarchy of thematic roles, a ranking which is conventionally represented by the linear ordering of elements in the a-structure. Following standard terminology in LFG, we will refer to the highest ranked argument (represented graphically as the leftmost argument in the a-structure) as $\hat{\theta}$. At the same time, a-structure will include elements which are selected syntactically but not semantically, and will constrain the mapping of the arguments.

Expressing arguments of predicates is one of the functions that syntactic elements serve. For this reason, the framework within which we are working formalizes argument selection in terms of grammatical functions, not structural position. There is a clear distinction between two classes of argument-expressing grammatical functions: SUBJ and OBJ on the one hand, and the OBL$_0$ (in English, preposition-marked) functions on the other. The latter are little more than grammaticalizations of thematic roles, while the former are more strictly syntactic in nature. Following the terminology of Bresnan (2001), we will refer to the more syntactic grammatical functions as core functions, and the oblique functions as non-core functions. Standardly, Agents, Patients, and Themes are mapped to core functions and other thematic roles to non-core functions, but as illustrated above with enter exceptions are possible. A-structure must therefore include the syntactic information of whether arguments are core or non-core.

For the purposes of this book, arguments are core unless otherwise specified.

(10) a. put: $\langle x, y, z_{\text{noncore}} \rangle$
 b. enter: $\langle x, y \rangle$
 c. nixnas (Hebrew ‘enter’): $\langle x, y_{\text{noncore}} \rangle$

In each of these a-structures, the leftmost argument (arbitrarily designated x here) is the $\hat{\theta}$.

As noted above, non-thematic arguments, elements which are not part of the thematic structure, are represented in the a-structure. Their presence is either the result of the existence of an idiom or, in the case of expletives, licensed by lexical rules. A lexical rule will specify what position in the hierarchical arrangement of arguments an expletive occupies; they are very frequently introduced as $\hat{\theta}$. For example, the a-structure of the verb in the Norwegian existential (3) is:

(11) leke: $\langle \text{det}, \hat{\theta} \rangle$

Here, it is the expletive det which is the $\hat{\theta}$. Since a-structure includes such nonthematic

4Secondary objects (OBL$_0$) seem to be transitional between core and noncore. This is reflected in the LFG analysis (Bresnan 2001, Falk 2001) by treating the secondary object function as a core function but characterizing it as being thematically restricted like the oblique functions.

5This is not to say that this is the only information in a-structure that constrains the mapping of arguments to syntax. The standard LFG theory of a-structure, Lexical Mapping Theory (LMT), is more fine-grained than this. However, this will suffice for our purposes.
arguments, the a-structure hierarchy is not strictly speaking identical with the thematic hierarchy, although it is derived from it. Despite this, we will retain the familiar term thematic hierarchy here. Similar remarks apply to the notation θ.

It has often been noted that grammatical functions representing arguments are related to each other in a hierarchy, a hierarchy which has been referred to variously as the accessibility hierarchy (Keenan and Comrie 1977), the obliqueness hierarchy (Pollard and Sag 1994), the functional hierarchy (Dalrymple 2001), and the relational hierarchy (Perlmutter 1983, Bresnan 2001).

\begin{equation}
\text{SUBJ} > \text{OBJ} > \text{OBJ}_0 > \text{OBL}_0
\end{equation}

Unlike the thematic hierarchy, the relational hierarchy seems to be an arbitrary fact about syntax; presumably part of the characterization of the argument functions. The relational hierarchy is based partially on classes of grammatical functions: the core functions SUBJ and OBJ (and OBJ$_0$) outrank the non-core functions. However, even within these larger groupings the functions are ranked. In particular, SUBJ outranks OBJ. We can think of the function names SUBJ and OBJ as nothing more than shorthand for “first core argument on the relational hierarchy” and “second core argument on the relational hierarchy.”

2.1.3. Most Prominent Argument

Given the thematic hierarchy and the relational hierarchy, we can characterize the nature of argument realization in syntax. In the unmarked case (for example, actives as opposed to passives), the hierarchical relations between the arguments at the functional level match the hierarchical relations at the argument level. If we treat the mapping of arguments as a hierarchy-to-hierarchy mapping (as in, inter alia, Jackendoff 1990), we can derive the correct mappings.

\begin{equation}
\text{Argument Mapping (informal)}
\end{equation}

The highest available argument maps to the highest available grammatical function, the next argument to the next grammatical function, and so on, respecting the constraints on mapping which are expressed in the a-structure.

Limiting our attention to core arguments, we derive mappings such as the following:

\begin{equation}
\text{(14) a. thematic roles Agent Patient}
\end{equation}

\begin{equation}
\text{a-structure } \langle x \theta \rangle y
\end{equation}

\begin{equation}
\text{grammatical functions } \text{SUBJ OBJ OBJ}_0
\end{equation}
A hierarchy-to-hierarchy mapping of this kind is more principled than a one-to-one mapping of thematic roles and grammatical functions. As noted above, a one-to-one mapping of thematic roles and grammatical functions is unexplanatory: it simply stipulates an arbitrary relationship between a particular thematic role and a particular syntactic expression. On the other hand, research on linguistic hierarchies (particularly in Optimality Theory) shows that hierarchies align “harmonically” (Aissen 1999): different linguistic dimensions often reflect each other’s hierarchical prominences. From a communicative perspective, this is a very useful design feature of language. The hierarchy-to-hierarchy mapping between thematic roles and grammatical functions is an example of harmonic alignment, and thus a principled and explanatory theory of argument mapping.

Given this hierarchy-to-hierarchy view of argument mapping, we can now improve our characterization of the argumenthood status of the subject.
(15) The SUBJ is the element with the function of expressing the hierarchically most prominent core argument.

Unlike our first approximation, this correctly expresses the fact that SUBJ is not inherently linked to a particular thematic role. It does not stipulate an arbitrary relation between the syntactic concept of subjecthood and the thematic concept of agenthood. Instead, it explains the affinity between subjects and Agents: since Agent is (conceptually) the highest role on the thematic hierarchy and SUBJ is (by definition) the highest function on the relational hierarchy, a hierarchy-to-hierarchy mapping could do nothing other than map Agent to SUBJ in the case of a verb which takes an Agent argument and does not have a higher ranked expletive argument.

Since, as we will show in the next chapter, the traditional notion of subject involves a second function, we will not use the name SUBJ for the most prominent argument function. Instead, we will extend the LFG notation and use the name Γ for the relationally most prominent argument function, the traditional SUBJ. We therefore update our definition.

(16) The Γ is the element with the function of expressing as a core argument the hierarchically most prominent argument.

2.1.4. Mismatches Between Argument Structure and Grammatical Functions

The approach to argument mapping which we are taking here posits two different argument-related hierarchies: the argument hierarchy at a-structure (the thematic hierarchy, in the sense that we are using the term here) and the hierarchy of grammatical functions at f-structure (the relational hierarchy). There are thus two ways in which an argument can be more prominent than other arguments: it can be the most prominent on the thematic hierarchy, the $\hat{\theta}$, or the most prominent on the relational hierarchy, the Γ. Since argument expression in the syntax is the result of a hierarchy-to-hierarchy alignment, this leads one to expect that, under normal circumstances, the same argument will function as both $\hat{\theta}$ and Γ. On the other hand, since parallel architecture leaves open the possibility of mismatches between levels, one might expect that situations would arise in which these two concepts of most prominent argument do not coincide. Furthermore, since rules of grammar can be expected to be able to refer to either the argument level or the functional level (or both), both of these types of prominence should be reflected in linguistic data. Constructions in which there is a mismatch in the two types of prominence would then be valuable in distinguishing $\hat{\theta}$ properties and Γ properties.

Mismatches of this kind do occur, and the ability to account for them is one of the strengths of a parallel-architecture theory. Theories which assume a non-parallel architecture account for constructions in which such mismatches occur in a variety of ways. Typically, they consider both $\hat{\theta}$ properties and Γ properties to be “subject properties,” and allow clauses to have multiple subjects, either through a derivational or multistratal architecture in which different elements are subjects at different strata, or through a process of clause union or incorporation under which a superficial clause is analyzed as biclausal (and thus containing two subjects, one for each clause).

The simplest, and most common, situation in which such a mismatch arises is when the $\hat{\theta}$ is not mapped to the syntax: the passive construction. This is exemplified in the following examples (drawn from Perlmutter & Postal 1977/1983).

(17) a. **English**
That book (Γ) was reviewed by Louise ($\hat{\theta}$).
b. **Turkish**

Bavul Hasan tarafından aç- il- di.
suitcase Hasan by open- PASS- PST

\[\hat{\theta} \]

‘The suitcase was opened by Hasan.’

c. **Latin**

Puerī ā magistr- ō laud- antur.
boys.NOM by teacher- ABL praise- PASS.3PL

\[\hat{\theta} \]

‘The boys are praised by the teacher.’

In multistratal frameworks this construction is analyzed as involving different subjects at different strata (Chomsky 1965, Perlmutter & Postal 1977/1983). The standard lexically-based analysis of passivization (Chomsky 1981, Bresnan 2001), which we will adopt here, is that the passive represents an alternative mapping of arguments to the syntax. In passivization, the \(\hat{\theta} \) argument is suppressed: marked as not mapped to a grammatical function. If expressed at all, it is expressed as an adjunct (by phrase).\(^6\)

(18) a. **Active argument mapping**

<table>
<thead>
<tr>
<th>thematic roles</th>
<th>Agent</th>
<th>Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-structure</td>
<td>(x)</td>
<td>(y)</td>
</tr>
<tr>
<td>(\langle \hat{\theta} \rangle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grammatical functions</td>
<td>(G_F)</td>
<td>OBJ</td>
</tr>
</tbody>
</table>

b. **Passive argument mapping**

<table>
<thead>
<tr>
<th>thematic roles</th>
<th>Agent</th>
<th>Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-structure</td>
<td>(x)</td>
<td>(y)</td>
</tr>
<tr>
<td>(\langle \hat{\theta} \rangle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grammatical functions</td>
<td>(G_F)</td>
<td></td>
</tr>
</tbody>
</table>

Thus in passive clauses argumenthood rank differs from functional rank, and \(\hat{\theta} \) and \(G_F \) are two distinct elements. Phenomena sensitive to argumenthood rank (the thematic hierarchy) will pick

\(^6\) An alternative analysis of the by phrase is that it is an oblique argument, as argued for Balinese by Arka (1998). This does not really change much in terms of the discussion here: there is still a mismatch between \(\hat{\theta} \) and \(G_F \).
out the Agent as the most prominent argument, while those sensitive to functional rank (the relational hierarchy) will pick out the Patient.

Another type of construction in which \emptyset and G_F can be distinguished is one in which two argument-taking predicates combine to form a single complex syntactic predicate. A very common complex predicate construction is the causative, discussed in LFG by Alsina (1992). In a causative, a single functional clause corresponds to two argument structures, one embedded in the other. Each argument structure has its own \emptyset, but since there is only one array of grammatical functions expressing the arguments, only the outer \emptyset is mapped to G_F. For example, the Chichewa sentences in (19) have the causative verb ‘cause-cook’.\footnote{The parenthesized numbers in the glosses are the classes to which the nouns belong.}

(19) a. Nungu i- na- phik- its- a muungu kwá (IX)porcupine IX.SUBJ- PST- cook- CAUS- VWL (VI)pumpkins to kâdzidzi. (Ia)owl
 ‘The porcupine had the pumpkins cooked by the owl.’

 b. Nungu i- na- phik- its- a kadzidzi muungu (IX)porcupine IX.SUBJ- PST- cook- CAUS- VWL (Ia)owl (VI)pumpkins
 ‘The porcupine had the owl cook the pumpkins.’

Under Alsina’s analysis, the basic a-structure of this verb is:

(20) \langleAgent$^{_{\text{CAUS}}}$, Patient$^{_{\text{CAUS}}}$ \langleAgent$^{_{\text{cook}}}$, Patient$^{_{\text{cook}}}$)\rangle

The causee argument (Patient of causation) is identified with one of the arguments of the base verb, reflecting whether the causation is exerted on the Agent or Patient of the subordinate predicate. Alsina and Joshi (1991) show that languages differ on which of these identifications is possible, some allowing only one, others allowing both, and still others allowing different identifications for different classes of verbs. Chichewa allows both identifications, and the result is the two mappings of arguments realized in the sentences in (19).

(21) a. thematic roles

 a-structure

 grammatical functions

\[\begin{array}{l}
\begin{array}{c}
\text{thematic roles} \\
\text{a-structure} \\
\text{grammatical functions}
\end{array}
\end{array} \]
Complex predicates thus have more than one $\hat{\theta}$ (‘porcupine’ and ‘owl’ in (19)), but only one $\hat{\theta}$ (‘porcupine’). Other types of complex predicate constructions can also be found. For example, Manning (1996) discusses “double transitive affixes” in Inuit, where affixes meaning ‘say’, ‘think’, ‘want’, ‘intend’, and so on, can be added to the verb and add a layer of a-structure.

(22) a. Aani- p miiqqat Juuna- mut paasi- sur(i- v)- a- i.
 Aani- ERG children Juuna- DAT understand- think- IND- TR- 3SG.3PL
 $\hat{\theta}_{\text{think}}$ $\hat{\theta}_{\text{understand}}$
 $\hat{\theta}$
 ‘Aani thinks that Juuna understands the children.’

b. Aani- p miiqqat qasu- nirar- p- a- i.
 Aani- ERG children be.tired- say- IND- TR- 3SG.3PL
 $\hat{\theta}_{\text{say}}$ $\hat{\theta}_{\text{be.tired}}$
 $\hat{\theta}$
 ‘Aani said that the children were tired.’

Other frameworks often analyze complex predicate constructions as involving biclausal structure, in which each $\hat{\theta}$ is the subject of a distinct clause.

Finally, in some languages there are verbs (primarily experience verbs) in which the $\hat{\theta}$ is mapped to a lower grammatical function (and typically marked with dative Case), and a hierarchically lower argument (if there is one) is mapped to $\hat{\theta}$. In a recent insightful study of this construction, referred to in the Relational Grammar literature as Inversion (and analyzed with different subjects at different strata), Moore and Perlmutter (2000) contrast this construction in Russian with true dative $\hat{\theta}$. They show that in Russian both inversion and dative $\hat{\theta}$ constructions exist; the latter have full subject properties (Russian is a uniform-subject language), but the former only have a limited set of such properties by virtue of their $\hat{\theta}$ status, as we will see when we discuss anaphora. There are two cases of Inversion in Russian: the better known example involves experience predicates and is illustrated in (23a,b): in both of these cases ‘Boris’ is the $\hat{\theta}$ but ‘shirt(s)’ is the $\hat{\theta}$. The other instance of Inversion is illustrated in (23c): it involves an unergative verb (‘think’ in this case) to which the “reflexive” suffix sja has been added. The addition of this suffix does not create a reflexive or unaccusative verb: semantically, it adds modality to the meaning (note the translation of the sentence), and syntactically it maps the $\hat{\theta}$ argument (‘me’ here) to a non-$\hat{\theta}$ function.
With predicates of this kind, the mapping of arguments goes as follows (assuming, with Moore and Perlmutter, that the Inversion nominal is an indirect object):

(24) thematic roles
thematic roles
Experiencer Theme

a-structure
(x
(θ)
y)

grammatical functions
GΦ OBJindirect

Here the Experiencer is the highest in argumenthood rank (θ), but the Theme is the highest in functional relational rank (GΦ).

In all three of these types of constructions, the usual situation under which the same element serves as both θ and GΦ does not hold. Such constructions are therefore important for teasing apart properties of θ and GΦ.

2.1.5. Mapping in Mixed-Subject Languages

The approach to mapping adopted here makes an important prediction concerning mixed-subject languages. The heart of the mapping system is a universal alignment of the hierarchy of arguments (the thematic hierarchy) and the hierarchy of grammatical functions (the relational hierarchy). While some cross-linguistic variation is to be expected (this is discussed in the next section), and marked mappings such as Inversion apparently exist, the basic system should be universal. The essential claim is that syntactic (functional) prominence levels are anchored in conceptual/semantic prominence.

This approach contrasts sharply with an approach which has been taken in some of the literature on mixed-subject languages. As we observed in Chapter 1, studies of subject properties in mixed-subject languages show that they divide neatly into two classes, which we have dubbed Type 1 properties and Type 2 properties. The alternative view, dubbed “inverse mapping” by Manning (1996), takes the position that mixed-subject languages differ from uniform-subject languages in the nature of argument mapping. Specifically, it is claimed that the element with Type 2 properties is the grammatical subject: in a transitive clause in a syntactically ergative language, this means that the P argument is the subject and the A is the object. As Marantz (1984: 196) puts it:
Within the present theory it is an arbitrary fact about English that verbs usually assign theme and patient roles [i.e. that Themes and Patients are internal arguments, and thus objects] whereas predicates assign agent roles [i.e. Agents are external arguments, and thus subjects]….

In an LFG-based analysis, Manning (1996) proposes that argument structure prominence universally matches conceptual/semantic prominence, but syntactically ergative languages reverse the prominence in the mapping to grammatical functions.

(25) Argument mapping according to Manning

a. Uniform subject languages

<table>
<thead>
<tr>
<th>Thematic roles</th>
<th>Agent</th>
<th>Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argument structure</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>((\hat{\theta}); Manning’s a-subject)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grammatical functions</td>
<td>SUBJ</td>
<td>OBJ</td>
</tr>
</tbody>
</table>

b. Syntactically ergative languages

<table>
<thead>
<tr>
<th>Thematic roles</th>
<th>Agent</th>
<th>Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argument structure</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>((\hat{\theta}); Manning’s a-subject)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grammatical functions</td>
<td>SUBJ</td>
<td>OBJ</td>
</tr>
</tbody>
</table>

Wechsler and Arka (1998) extend this to the Philippine-type language Balinese by defining the two types of mappings as both being available in the same language. In the formalism of HPSG, they define acc-verb and erg-verb as sorts of active-verb:

(26) Argument mapping according to Wechsler and Arka

a. acc-verb : [SUBJ \(\llbracket I\rrbracket\)]
 [ARG-S \(\llbracket \ldots \rrbracket\)]

b. erg-verb : [ARG-S \(\llbracket \ldots \rrbracket\)] \(\lor\) [ARG-S \(\llbracket \ldots \llbracket \ldots \rrbracket\)]
 [STEM \(\text{intrans-stem}\)] [STEM \(\text{trans-stem}\)]

That is to say, in a transitive ergative verb, an argument other than the most prominent is realized
as subject.

Under this approach, the Type 2 subject (P in syntactically ergative languages) is the highest-ranked element at the level of grammatical functions. Any situation where A has to be taken to outrank P (i.e. in Type 1 properties) must therefore be a consequence of the a-structure hierarchy. In other words, the universal “subject” identity of A is as the most prominent a-structure element: what we, following standard LFG terminology, have called θ. This contrasts with the approach taken here, in which A (normally) has both argument-structure prominence and functional prominence: i.e. it is both θ and Gf.

The inverse-mapping theory thus conflates our θ and Gf. Our claim is that these two notions of most-prominent-argument while closely related (by virtue of the hierarchy-alignment nature of argument mapping) need to be kept distinct. We have discussed this in the abstract in the previous section, where we saw three types of constructions in which θ and Gf can be distinguished. We will see concrete examples of the distinction in the discussion of anaphora.

We take this distinction between our approach and Manning’s to be crucial. In the theory proposed here, Agents map to Gf in all languages, regardless of typological classification. Our approach conforms to the idea that prominence hierarchies align harmonically; inverse mapping violates this.

2.1.6. Further Thoughts on Argument Mapping

This discussion has not exhausted the question of the nature of argument mapping. Even within the bounds of what we have discussed, a theory of argument mapping must allow for differences between languages, and must be able to express differences between agentive Gf’s and non-agentive ones.

One potential problem that might be raised is the nature of mapping in “active” languages: languages in which non-agentive arguments of intransitive verbs are (apparently) not mapped as Gf, but as OBJ. One such language is the Arawakan language Waurá, in which the Gf is preverbal and triggers agreement on the verb while the OBJ is postverbal and does not trigger agreement (Dixon 1994).

(27) a. Yanumaka inuka p-itsupalu.
 jaguar 3SG.kill 2sgPOSS-daughter
 ‘The jaguar killed your daughter.’

b. Wekíhi katumala- pai.
 owner 3SG.work- STAT
 ‘The owner worked.’

c. Usítya ikitsii.
 catch.fire thatch
 ‘The thatch caught fire.’

Minimally, such a language shows the need for a more sophisticated view of the mapping of arguments. As a first approximation, under the controversial (but, we believe, correct)

Manning calls this the a-structure subject, or A-SBJ.
We return in Chapter 6 to the question of whether argument mapping in these languages, which fall under the umbrella of what we are calling no-subject languages, requires reference to grammatical functions at all. We will argue there that it does.

We can hypothesize that in such languages the statement of argument mapping is (28) rather than (13).

(28) Argument Mapping in “Active” Languages (informal)
The highest argument role maps to the highest grammatical function, the next argument to the next grammatical function, and so on. Grammatical functions whose corresponding argument role is missing are skipped.

Such languages do not call into question the hierarchy-to-hierarchy nature of argument mapping, they simply require a different implementation. Similarly, in languages like English where Agent arguments cannot appear as OBJ in existential constructions, a different implementation of hierarchy-to-hierarchy mapping will be used.

A theory of argument mapping such as the Lexical Mapping Theory of LFG (Bresnan 2001, Falk 2001, and references cited there) provides a better framework in which to address such questions. In Lexical Mapping Theory (LMT), argument structure elements are underspecified grammatical functions based on thematic roles. LMT provides a framework within which language-specific differences in argument mapping can be formally expressed in terms of parametric differences in the mapping principles. LMT also (as observed by Bresnan and Zaenen 1990) allows one to capture differences between agentive and non-agentive arguments of intransitive verbs (the unergative/unaccusative distinction) in a monostratal non-derivational theory of syntax. However, at its core, LMT is a formalization of the hierarchy-to-hierarchy view of argument mapping. For the purposes of the present study, an informal hierarchy alignment will suffice.

2.2. Specification of Argument Properties
2.2.1. Introductory Remarks
We conclude from the foregoing that, on one understanding, the subject is G. It is the grammatical element which has the function of expressing the most prominent core argument of the verb. Given our characterization of grammatical functions as the basis of explanation, we should expect certain properties to follow from this concept of subject. We also expect such properties to be constant across languages: mixed-subject languages should not differ from uniform-subject languages.

Since the G function is characterized in terms of its hierarchical position relative to other argument-expressing functions, the kinds of properties we should expect G to have are ones relating to hierarchies of argumenthood. Properties of this kind can be said to be explained by the nature of the G function, while other types of arguments would be stipulations. We claim that G properties, which correspond to what we have dubbed Type 1 properties, have precisely the character that we predict.

One way that an argument hierarchy might be relevant in the present context involves the alignment of the relational hierarchy with other prominence hierarchies. In fact, we have already seen one example of such a property: the fact that if a verb has an Agent argument, it will be mapped to the G function in the syntax. The relation between the thematic role Agent and the grammatical function SUBJ (or, rather, G) follows as a consequence of our characterization of

9We return in Chapter 6 to the question of whether argument mapping in these languages, which fall under the umbrella of what we are calling no-subject languages, requires reference to grammatical functions at all. We will argue there that it does.
the function, and need not be stipulated.

A less obvious hierarchy-alignment-related property of \(\text{Gr} \) is the fact that it generally displays prominence at the discourse level; specifically, it is most commonly the discourse topic (Andrews 1985). This has been shown to be true in mixed-subject languages as well (as shown by Cooreman 1988 for Dyirbal and Cooreman, Fox, and Givón 1988 for Tagalog). We propose that this is a consequence of the harmonic alignment of the relational hierarchy with a hierarchy of discourse prominence. Since topics are the most prominent elements from a discourse perspective, the harmonic alignment of the discourse hierarchy with the relational hierarchy will result in the topicality of \(\text{Gr} \).

The harmonic alignment of the functionally most prominent argument, \(\text{Gr} \), with most prominent elements on the thematic and discourse dimensions thus provides us with an explanation of two very frequently noted properties of subjects. One or the other of these is often taken, especially pedagogically, to be a definition of subject (Huddleston 1984).

A second way argument hierarchies can be involved in grammatical rules involves the licensing ability of heads. While LFG is less “head-driven” than some other theoretical frameworks, it is generally accepted that heads serve to determine much of the environment in which they occur. This includes selecting their arguments, but it also includes licensing some of the arguments’ functional properties. This licensing of arguments’ properties is what is known in traditional grammar as government. Taking the notion of a functionally-based relational hierarchy, this licensing ought to be subject to the relative prominence expressed in the hierarchy. Thus, \(\text{Gr} \) should be the argument most susceptible to such specification. As we will see in the remainder of section 2.2, this has interesting consequences.

The relation between argument hierarchies and anaphora is less clear initially, so we will defer discussion until section 2.3. However, as we will see, the anaphoric prominence of \(\text{Gr} \) is also a consequence of its prominent-argument status.

2.2.2. Null Arguments

One often discussed property of languages is the ability of some, but not others, to leave certain arguments with no overt (audible) expression, interpreted as a kind of pronoun; a construction often called pro-drop. While the description of this property varies between theories, there does seem to be general agreement that this ability is licensed by a head; in a lexicalist framework like LFG, the licensing head must be the verb. The claim we will make here is that this licensing follows the relational hierarchy, resulting in the property that if a language allows any argument of the verb to be null, it allows the \(\text{Gr} \) to be null. We note in passing the initial plausibility of this claim by observing the frequent use of the term “null-subject” to describe languages that allow this.

2.2.3. Imperative Addressee

It is stressed in the typological literature (e.g. in Dixon 1994) that the addressee of an imperative (henceforth addressee) universally corresponds to the element which would be the addressee of the imperative in English, even in mixed subject languages. That is to say, imperatives do not exhibit “ergative” behavior.

(31) Tagalog (Schachter 1976)

\[
\begin{align*}
a. \quad \text{Mag- bigay ka} & \quad \text{sa} \quad \text{kaniya ng} \quad \text{kape.} \\
& \quad \text{ACT- give} \quad 2\text{SG.NOM} \quad \text{DAT} \quad \text{him} \quad \text{ACC} \quad \text{coffee} \\
& \quad \text{‘Give him some coffee.’}
\end{align*}
\]
Of course, in some of these cases a circumlocution is more natural.

b. Bigy-an mo siya ng kape.
give-IO 2SG.ERG him.NOM ACC coffee
‘Give him some coffee.’

c. I-bigay mo sa kaniya ang kape.
INS-give 2SG.ERG DAT him NOM coffee
‘Give him the coffee.’

This is to be expected under the current theory. An imperative verb will specify that one of its arguments is a second person pronoun. Given the relational hierarchy, the most likely argument to be thus specified will be 2F.

While the facts of imperatives are not in dispute, the need for a syntactic account is. For example, Dixon (1994) suggests that the identity of the addressee is the consequence of the semantics: someone can only be ordered to do something that they have control over. Therefore, only Agents can be addressees, and since Agents are invariably realized in the syntax as 2Es, it follows that only 2E can be the addressee. This is correct as far as it goes. In fact, it provides us with an explanation of why addressees appear to differ from other null pronominals in not going farther down the relational hierarchy. In other words, given the cross-linguistic behavior of null pronominals, we might expect to find languages in which both 2Es and OJs are available as addressees. The semantic explanation correctly predicts that OJs will never be addressees.

However, parallel architecture leaves open the possibility that the choice of addressee involves syntactic factors as well. Affirming the relevance of syntax does not entail a denial of the semantic aspect. We will provide two arguments, based on English, for the relevance of syntax.

In the first place, an imperative verb must license the syntactic properties of the construction. This will include the specification of an unexpressed pronominal second-person subject (2).

\[
\begin{align*}
\uparrow 2 & \leadsto \text{PRO} \\
\uparrow 2 & \leadsto 2
\end{align*}
\]

Crucially, even English, in which finite inflection generally disallows null pronominals, has an unexpressed 2 in the imperative construction. Furthermore, the distinction between null and overt pronominals is a syntactic fact, not a semantic one. There must therefore be a syntactic constraint licensing null addressees.

In the second place, nonagentive subjects can be the addressees of imperatives in some languages (including English), with a coerced agentive reading. (Dixon notes this as well, but does not draw the logical conclusion.)

\[
\begin{align*}
\text{a. } & \text{Be happy!} \\
\text{b. } & \text{Be registered before the semester starts!}
\end{align*}
\]

The coerced agentive reading\(^{10}\) follows from the semantic aspect of imperatives: the addressee must be understood as an Agent. But it is curious that inherently nonagentive 2s should be available as imperative addressees; this is unexpected under a purely semantic account. Under

\(^{10}\)Of course, in some of these cases a circumlocution is more natural.
a syntactic approach such as we are proposing, the availability of these Gûs as addressees follows.

We concur with Dixon (1994) that apparent counterexamples to this universal generalization are not true counterexamples. He discusses cases where verbal agreement in imperatives operates on an ergative basis; for example, in Tsimshian the A agreement affix can be omitted from an imperative but the S affix cannot, while the reverse is true in Nadëg. Following Dixon, we take such facts to show that morphosyntactic systems, such as agreement, are subject to their own principles, which include the obligatoriness or optionality of cross-referencing particular arguments on the verb. As in the general case of null pronouns, the interaction between the syntax and the morphosyntax result in a complex combination of properties.

In conclusion, the choice of addressee is subject to both syntactic and semantic constraints. On the syntactic side, the imperative verb licenses the properties of the addressee. The limitation of addressees to Gû is a consequence of the relational hierarchy.

2.3. Anaphora

2.3.1. Anaphoric Prominence

One of the clearest places where argument status and hierarchies of arguments are implicated is anaphora. Various hierarchy effects, both relational and thematic, have been observed in the literature. We will explore these in this section.

It is not immediately clear why argument hierarchies should be relevant to anaphora. Unlike null pronouns and imperatives, anaphora does not involve a head specifying information about its arguments. Nevertheless, the observation that argument status is relevant to the operation of binding is not new. It is, for example, enshrined in the standard transformationalist view of anaphora (Chomsky 1981), under which Binding Theory is about A-binding, i.e. binding by an argument. Why this should be so is somewhat mysterious; one possible reason might be that, as suggested by Jackendoff (1990), anaphora is a grammaticalization of a relation in lexical conceptual structures where one entity has two “thematic roles.” If this is correct, we would expect anaphora to be essentially a relation between arguments, and thus be sensitive to argumenthood.

The exact nature of the binding-theoretic prominence of subjects (Gû under the analysis proposed here) is more complicated than often thought. The central observation is that in a transitive clause in which the two arguments have the same reference, it is the OBJ which is expressed as a reflexive pronoun, and the Gû is its antecedent:

(35) a. Joan saw herself.
 b. *Herself saw Joan.

As has been noted in the literature on mixed-subject languages, it is the A in such cases that displays the subject-like behavior, the argument we are claiming is the Gû. This can be illustrated with an example from the Philippine-type language Toba Batak (discussed by Manning 1996), which, like most Philippine-type languages outside of the Philippines, has no Case marking but has morphological marking on the verb indicating which argument is the distinguished element of the clause. In Toba Batak, mang- designates the Gû as this special element and di- designates the OBJ. (Neither of these is an agreement marker.) Manning argues that this morphologically designated element is outside the VP, while the other core argument (whether Gû or OBJ) is inside. Note the anaphoric pattern.
I am not aware of any language in which the antecedent of some anaphor must be the first argument in its clause. Linear order seems to differ in this way from the relational and thematic hierarchies.

Seg also has non-anaphoric uses, in which it appears to be a coargument of its “antecedent”.

(36) a. \([_{\text{VP}} \text{Mang- ida diri- na}] \text{ si John.}\]
 \(\text{ACT- see self- his PROP John}\)
 ‘John saw himself.’

b. \(*[_{\text{VP}} \text{Mang- ida si John} \text{ diri- na.}\]
 \(\text{ACT- see PROP John self- his}\)
 ‘Himself saw John.’

c. \(*[_{\text{VP}} \text{Di- ida diri- na}] \text{ si John.}\]
 \(\text{DO- see self- his PROP John}\)
 ‘Himself saw John.’

d. \([_{\text{VP}} \text{Di- ida si John} \text{ diri- na.}\]
 \(\text{DO- see PROP John self- his}\)
 ‘John saw himself.’

The conventional structure-based account attributes this to the c-command relation: the reflexive must be c-commanded by its antecedent. However, the Toba Batak examples show that this cannot be maintained: the argument picked out by the “voice” morphology on the verb c-commands the other argument, regardless of which is the \(\text{GR}\) and which is the \(\text{OBJ}\), yet the \(\text{GR}\) antecedes the \(\text{OBJ}\).

The basic idea behind what the c-command condition is supposed to capture can be stated, somewhat vaguely, as follows.

(37) The antecedent of an anaphor must be more prominent than the anaphor.

What this statement leaves open is the nature of the prominence involved. Viewed from this perspective, c-command is a popular hypothesis as to the nature of this prominence. It is, however, only a hypothesis. A cross-linguistic survey of anaphora, with facts such as those in Toba Batak, raise questions about its correctness. Work on anaphora in LFG (Dalrymple 1993, Bresnan 1995) suggests a more complex picture, under which prominence at three different dimensions of syntax is relevant: constituent structure (linear order), functional structure (the relational hierarchy), and argument structure (the thematic hierarchy). At the functional level, this results in the situation where \(\text{GR}\) binds \(\text{OBJ}\), and not vice versa.

For some kinds of anaphors in some languages, the relative prominence constraint is strengthened:

(38) The antecedent of an anaphor must be the most prominent element in its clause.

This prominence can be either in terms of functional status or argument status. In such languages, the antecedent of one type of anaphor must be either an element bearing the grammatical function \(\text{GR}\) or one with the argumenthood status of \(\text{GR}\).\(^{11}\) It should be noted that while these anaphors are often called reflexives, a terminological convention we will be following here, \(\text{GR}/\text{GR}\) orientation is distinct from locality. For example, Dalrymple (1993) shows that the Norwegian anaphor \text{seg}\(^{12}\) must be bound by a \(\text{GR}\) in the minimal finite clause that contains it, but may not be bound by a

\(^{11}\) I am not aware of any language in which the antecedent of some anaphor must be the first argument in its clause. Linear order seems to differ in this way from the relational and thematic hierarchies.

\(^{12}\) Seg also has non-anaphoric uses, in which it appears to be a coargument of its “antecedent”.

I am following the standard, though controversial, view that *zibun* is constrained syntactically.

In this kind of language, reflexive locality is determined by argument structure.

(39) a. non-coargument
Jon hørte oss snakke om seg.
‘Jon heard us talking about self
‘Jon, heard us talking about him.’

b. non-CAF
*Jeg lovete Jon å snakke pent om seg.
I promised Jon to talk nicely about self
‘I promised Jon, to speak nicely about him(self),’

c. coargument
*Jon snakket om seg.
Jon talked about self
‘Jon, talked about himself.’

Teasing apart the effects of the relational hierarchy and the thematic hierarchy is not easy. Since argument mapping is essentially an alignment of the two hierarchies, in most cases it is impossible to tell which is relevant. As we have seen, though, there are constructions in which the most prominent argument at a-structure (\(\delta\)) is not identical to the element bearing the most prominent argument function (CAF): passivization, complex predicates, and inversion in particular. Such constructions provide an invaluable way to investigate the roles of the two hierarchies.

As we have seen, the argument structure of a complex predicate, such as a causative, is as follows, where the causative Patient is identical with one of the arguments of the base verb.

(40) \(\langle\text{Agent}_{\text{CAUS}}, \text{Patient}_{\text{CAUS}} \langle\text{Agent}_{\text{base-verb}^+} \text{Patient}_{\text{base-verb}^+}\rangle\rangle\)

This argument structure contains two argument domains, and thus two \(\delta\)s. In complex predicate constructions, many languages allow the \(\delta\) of either predicate to antecede the reflexive, as in the Japanese example (41);\(^{13}\) a variant of this is only allowing the embedded \(\delta\) to antecede a reflexive corresponding to a lower argument of the embedded predicate, as in the Chimwiini examples (42).\(^{14}\) (Both of these from Baker 1988.)

(41) John ga Mary ni *zibun no uti de hon o yom-a-se-\(\text{ta}\).
John NOM Mary DAT self GEN house in book ACC read- CAUS- PST
‘John made Mary read the book in his/her own house.’

(42) a. Mi m- phik-ish-ize rhu-y-a chakuja.
I 1SG- cook- CAUS- ASP myself food
‘I made myself cook food.’

\(^{13}\)I am following the standard, though controversial, view that *zibun* is constrained syntactically.

\(^{14}\)In this kind of language, reflexive locality is determined by argument structure.
In the Inuit example, the reflexive (incorporated into the verb as an agreement marker) cannot be coreferential with the subject in its own clause because of a non-coargument condition (like that applying to Norwegian seg) which holds if the reflexive bears a core function, as discussed by Manning.

b. Mi ni-m-big-ish-ize mwa:na ruhu-y-e.
 I 1SG- OBJ- hit- CAUS- ASP child himself
 ‘I made the child hit himself.’

 I 1SG- OBJ- hit- CAUS- ASP Ali myself
 ‘I made Ali hit myself.’

In such languages, it is clear that it is argument-structure prominence that is relevant, since the causee is 0 but not ð. Facts of this kind have often been taken, under non-parallel theoretical architectures, to be evidence for the biclausality of causatives. Since the antecedent of a reflexive must be a subject, so the argument goes, this is evidence for two subjects and thus two clauses. Under the parallel architecture we are assuming, there is no need for a biclausal analysis.

However, complex predicate constructions do not provide any conclusive evidence on whether reference to functional prominence is also necessary, since the ð is one of the 0s. More instructive are the constructions in which there is a dissociation between ð and ã. One such construction is the passive: the Agent is ð and the Patient is ã. Similarly, in the inversion construction the Experiencer is ð and the Theme (if there is one) is ã. As observed by Manning (1996), there are languages which allow either of these elements to antecede a reflexive. Examples of this in Russian passives were given in Chapter 1; here are examples of passives from the uniform-subject language Sanskrit and the mixed-subject language Inuit, and an example of ð anteceding a reflexive in Russian inversion.

(43) Sanskrit
 a. Sarpas tenātmanā svālayaṃ nīṭaḥ.
 snake.NOM himself.INSTR self.house.ACC brought.PSPRT.NOM
 ‘The snake was brought by him, himself to self,’s house.’
 b. Anṛtaṃ tu vadan daṇḍyaḥ svavittasyāṃśaṃ.
 untruth.NOM but telling.NOM fine.GER.NOM self.property.GEN.part.ACC
 ‘But a perjurer, is to be fined one eighth (lit. part) of self,’s property.’

(44) Inuit
 Naja Tobiasi- mit uqaluttuun- niqar- p- u- q taa- ssu- ma
 Naja Tobias- ABL tell- PASS- IND- INTR- 3SG DEM- SG- ERG
 itigartis- sima- ga- a- ni.
 turn.down- PERF- PART.TR- 3sgERG- REFL.ABS
 ‘Naja, was told by Tobias, that he had turned self/ij down.’

(45) Russian
 Borisu žal sebja i svoju sem’ju.
 Boris.DAT sorry self and self`s family
 ‘Boris, feels sorry for himself, and his, family.’

For a language like Russian, Sanskrit, or Inuit, the antecedent of a reflexive can be either ð or ã.

15In the Inuit example, the reflexive (incorporated into the verb as a agreement marker) cannot be coreferential with the subject in its own clause because of a non-coargument condition (like that applying to Norwegian seg) which holds if the reflexive bears a core function, as discussed by Manning.
In languages like these, the conflation of $\hat{0}$ and GR in theories such as that of Manning (1996) appears justified. For the inverse mapping theory, where our GR is simply a variety of $\hat{0}$, the antecedence of reflexives can simply be stated in terms of a-structure. In our framework, we need to say that any X can be the antecedent.

However, there are other languages which restrict reflexives to be antecedent only by GR or only by $\hat{0}$. This is unexpected under the inverse mapping theory, since it has no way to distinguish between the two types of prominence. One example of this type of language is Malayalam (Mohanan 1982, Manning 1996), in which only the GR can antecede the reflexive. This is shown in the following causative and passive examples.

(46) a. Amma kutiyeKonṭā aanaye swaṇṭam wiṭṭil wecca
 mother.NOM child.INSTR elephant.ACC self’s house at
 pinch.CAUS.PST
 ‘Mother made the child pinch the elephant at self’s house.’

b. Jōniyaal meeri swaṇṭam wiṭṭil wecca nulappēttu.
 John.INSTR Mary.NOM self’s house.LOC at pinch.PASS.PST
 ‘Mary was pinched by John in self’s house.’

On the other hand, in Marathi, the long-distance reflexive $aapan$ can only take a $\hat{0}$ antecedent (Dalrymple 1993).16

(47) John laa Bill kaṭṭuun aaplyaa gharii maarle gele.
 John ACC Bill by self.GEN house.LOC hit PASS
 ‘John was hit by Bill at self’s house.’

We thus see that languages that limit the antecedent of a reflexive to be the most prominent argument of its clause may allow it to be either GR or $\hat{0}$ or both.17 The existence of languages that restrict antecedence to either GR or $\hat{0}$ provides an argument for a theory like ours, which does not conflate the two concepts of most prominent argument.

As we predict, even mixed-subject languages display this kind of behavior. For example, as we have seen above, Inuit requires the antecedent of a reflexive to be either $\hat{0}$ or GR (Manning 1996). Crucially, there appears to be no language in which the P argument outranks the A for the purposes of anaphora, as one might expect under an inverse mapping analysis. As Dixon (1994: 138–9) puts it:

The important point is that, in reflexives [which use an anaphoric element], if one of the coreferential constituents is A or S then this will be the antecedent (maintaining its normal form), while the other constituent goes into the reflexive form… In every ergative language, as in every accusative language, the ‘antecedent’, i.e. the controller of reflexivity is A (or S, where it is extended to intransitives).

16Dalrymple shows that the accusative-marked NP is the grammatical subject.

17A mismatch between $\hat{0}$ and GR in which the $\hat{0}$ is the antecedent also appears to be involved in cases discussed by Dixon (1994: 138 in 34), in which verbs referring to mental processes allow the GR to be the reflexive and the $0Bj$ to be its antecedent. Dixon mentions such cases in Basque, Modern Greek, and Dargwa, and notes that the normal pattern for each of these languages is for the A (GR) to be the antecedent. While much remains mysterious about the nature of thematic roles in psych verbs, it is plausible that these are cases like the Inversion construction discussed earlier for Russian, and the Experiencer $0BJ$ is the $\hat{0}$.
2.3.2. Switch-Reference

Some languages have a construction that has come to be known in the literature as switch-reference (sometimes called obviation, as in Cole 1983 and Hale 1992). In a switch-reference system, when clauses are combined there is some morphological marker indicating whether the clauses have the same “subject” or different “subjects”. This is exemplified in the following Diyari sentences (Austin 1981), repeated from Chapter 1.

 man go- PART AUX kangaroo.ABS kill- IMPLIC.SAME
 ‘The man went to kill a kangaroo.’

 man- ERG stone.ABS bite- PART AUX rain fall- IMPLIC.DIFF
 ‘The man bit the stone so the rain would fall.’

Similarly, note the following Mojave sentences (Langdon & Munro 1979).

(49) a. ?in’eč pap ?- əkčoř- k ʔ- sal’i: k.
 me potato 1- peel- SAME 1- fry- TNS
 ‘After I peeled the potatoes, I fried them.’

b. ?in’eč pap ?- əkčoř- m Judy- č sal’i: k.
 me potato 1- peel- DIFF Judy- SUBJ fry- TNS
 ‘After I peeled the potatoes, Judy fried them.’

Switch-reference marking can also appear in coordination structures, as in the following sentences from Maricopa (Gordon 1983) and Lenakel (Lynch 1983).

(50) Maricopa
a. Nyaa ’- ashvar- k ’- iima- k.
 me 1SUBJ- sing- SAME 1SUBJ- dance- ASP
 ‘I sang and danced.’

b. Bonnie- sh ashvar- m ’- iima- k.
 Bonnie- SUBJ sing- DIFF 1SUBJ- dance- ASP
 ‘Bonnie sang and I danced.’

(51) Lenakel

a. I- im- vin (kani) m- im- apul.
 1exclSUBJ PST- go and SAME- PST- sleep
 ‘I went and slept.’

b. I- im- vin (kani) r- im- apul.
 1exclSUBJ PST- go and 3sgSUBJ PST- sleep
 ‘I went and he slept.’

Switch-reference bears some similarity to control/equi, to be discussed in Chapter 5, but it is a distinct construction. The differences are discussed by Hale (1992): the most important is that in switch-reference, the identity of the antecedent is a property of the switch-reference morphology, while in control there is no overt marking of antecedent.

Following previous researchers (such as Finer 1985, Hale 1992, Déchaine & Wiltschko
This is not to say that the function of switch-reference is disambiguation. As Finer (1985) points out, if it were just a disambiguation mechanism one would not expect it to be required in situations that are unambiguous. It is an anaphoric mechanism.

We analyze switch-reference as being essentially anaphoric in nature. There are several reasons to take such a view. In the first place, it often disambiguates what would be an ambiguous anaphoric construction in other languages. In the following example from Mojave (Langdon & Munro 1979), for example, the English translation is ambiguous (which is why the annotation with referential indices is necessary) while the Mojave sentences are unambiguous.

(52) a. Nya- isvar- k ima- k
 when- sing- SAME dance- TNS
 ‘When he sang, he danced.’

b. Nya- isvar- m ima- k
 when- sing- DIFF dance- TNS
 ‘When he sang, he danced.’

Perhaps a more convincing argument is the possibility of same-reference marking when the subjects of the two clauses overlap in reference. This use of same-reference marking can be seen in the following Diyari examples (Austin 1981).

(53) a. Ngathu nganyja- yi, ngalda diyari yawada
 I.ERG want- PRES we.DU.INCL.NOM Diyari language
 yathayatha- lha.
 speak- IMPLIC.SAME
 ‘I want us to speak Diyari.’

b. Yula wapa- mayi, ngayana nhayi- lha
 you.DU.NOM go- IMP we.PL.INCL.NOM see- IMPLIC.SAME
 nhanha.
 her.ACC
 ‘You two go, and we’ll all see her.’

Overlapping reference is also apparent in the following sentences from the Uto-Aztecan language Huichol (Comrie 1983).

(54) a. Taame te- haata?azia- ka, nee ne- petia.
 we 1PL- arrive- SAME I 1SG- leave
 ‘When we arrived, I left.’

 I 1SG- arrive- SAME together 1PL- leave
 ‘When I arrived, we left together.’

The use of same marking with overlapping reference is not obligatory in all languages, as shown in the following Mojave sentence (Langdon & Munro 1979).

18This is not to say that the function of switch-reference is disambiguation. As Finer (1985) points out, if it were just a disambiguation mechanism one would not expect it to be required in situations that are unambiguous. It is an anaphoric mechanism.
In the Benue-Congo language Gokana (which marks same-subject but not different-subject), same-subject marking is optional if the (third-person) subordinate subject includes the matrix subject, and impossible if the matrix subject includes the subordinate subject.

Despite the different implementation in different languages, the possibility of same-reference marking for overlapping reference is a clearly anaphor-like property of switch-reference systems. Finally, the existence of markings for coreference and disjoint reference with an element which is structurally close is reminiscent of the reflexive/non-reflexive pronoun distinction in anaphoric binding.

Note that we are not claiming that the switch-reference morpheme is necessarily itself a kind of incorporated pronoun. In the different-reference sentences, it clearly is not a pronoun as there can be overt subjects in the subordinate clause. Even in same-reference clauses, while overt subjects are less common, they are attested, as in the Diyari examples in (53). Instead, switch-reference defines anaphoric possibilities for the subject, and is at best optionally pronominal itself. In this respect, switch-reference is similar to agreement, which can also be optionally pronominal. We thus agree with Haiman & Munro (1983), who suggest that switch-reference is an agreement-like construction.

The crucial question concerning switch-reference is what is meant by “subject”. If switch-reference is a kind of anaphora, we would expect some combination of $\overline{G}\hat{r}$ and $\hat{\Theta}$ to be the relevant concept. That switch-reference marking can involve $\hat{\Theta}$ has been demonstrated by Farrell, Marlett, and Perlmutter (1991) in their discussion of switch-reference in the Hokan language Seri. They show that in passives, it is the by-phrase which counts as subject, not the Patient argument. (In Seri, same-reference is not overtly marked.)

(55) 1- arrive- SAME / DIFF John RECIP 1- talk- TNS
‘When I arrived, John and I talked together.’

(56) a. Aè kə baè də- ë.
 he said they fell- SAME
 ‘He said that they fell.’
b. Aè kə baè də.
 he said they fell
 ‘He said that they fell.’

(57) a. Baè kə aè də.
 they said he fell
 ‘They said that he fell.’
b. *Baè kə aè də- ë.
 they said he fell- SAME

(58) a. M- yo- a?- kašni kokašni šo m- t- a?o ma / *Ø.
 2sgSUBJ- DIST- PASS- bite snake a 2sgSUBJ- REAL- see DIFF
 ‘You were bitten, after you had seen a snake.’
To be more precise, we predict that the antecedent, the element in the unmarked clause, will be 0 or 0. We make no prediction about the anaphoric element in the marked clause. In most cases, it is also some combination of 0 or 0; in fact, it is the same as the antecedent. This is plausibly a result of functional pressure for parallelism. However, if switch-reference marking is similar to agreement, we would expect other possibilities. One example of a system in which the element in the subordinate (marked) clause is not limited to 0 is Gokana (Comrie 1983), in which the antecedent is limited to subject, but the element in the subordinate clause can have any function.

(59) a. Aè kɔ aè do- è.
 he said he fell- SAME
 ‘He, said that he, fell.’

b. Aè kɔ oɔ div- ëè e.
 he said you hit- SAME him
 ‘He, said that you hit him.’

c. Aè kɔ oɔ ziv- ëè a ɡiা.
 he said you stole- SAME his yams
 ‘He, said that you stole his, yams.’

In mixed-subject languages, we would expect the A of a transitive clause to be the antecedent “subject” for the purposes of switch-reference marking, not the P. The existence of switch-reference marking in mixed-subject languages is controversial, but one convincing case is the Dyirbal 珺ra construction. The suffix -珺ra, which replaces tense inflection, goes on the verb in a clause if its S/P is identical to the A in the previous clause and if the action of the second clause is immediately after the action of the first clause. The suffix replaces tense inflection. The nominal in the second clause is optionally present; it is more commonly omitted (Dixon 1972: 77–8).

(60) a. Bala yugu bəngul yara- ngu mada- n (bayi yara) wayn’ji-珺ra.
 IV stick I.ERG man- ERG throw- NFUT I man go.uphill- IMM.SAME
 ‘The man threw the stick and then he [immediately] went uphill.’

b. Balan jugumbil bəngul yara- ɲgu balga- n (bayi yara) bəngul gambaru
 II woman I.ERG man- ERG hit- NFUT I man I.ERG rain.ERG
 punch- IMM.SAME
 ‘The man hit the woman until the rain started to fall on him.’

Dixon (1994: 167) resists the analysis of 珺ra as a switch-reference marker. He states that switch-reference systems have two markers: one for same-subject and one for different-subject, and that Dyirbal has no different-subject marker. However, as can be seen in the above examples, not all systems have two contrasting markers. He also argues that switch-reference marks sameness or difference of reference for the same element in both clauses, while with 珺ra it is
the A of the first clause and the S/P of the second clause. Here again, Dixon’s characterization of switch-reference appears to be too narrow. The fact that *njurra* can optionally cooccur with an overt argument makes it look very much like a switch-reference construction, and it is not clear to us what alternative analysis it could be given. Crucially for the issue at hand, the antecedent of the *njurra* construction is the A argument.\(^{19}\) This is as we predict, and rather unusual for Dyirbal, where S/P relations predominate in cross-clausal phenomena. The rarity of switch-reference in mixed-subject languages is not problematic;\(^{20}\) our discussion of switch-reference in Chapter 6 leads us to expect that there will be few mixed-subject (or uniform-subject) languages with switch-reference constructions. The limited evidence that exists agrees with the consensus in the typological literature that switch reference operates along “accusative” rather than “ergative” lines; i.e. subject is S/A, not S/P (Palmer 1994, Dixon 1994).

The switch-reference construction behaves the way we would expect an anaphoric construction to behave. The targeted element is the “subject” in the sense of either G\(\text{F}\) or \(\emptyset\).

2.4. Summary

In this chapter, we have explored the nature of subjecthood from the perspective of argumenthood. We have concluded that one aspect of subjecthood is the expression of the highest-ranked argument of the verb as a core argument. The “subject” grammatical function which is involved, which we have dubbed G\(\text{F}\), displays properties relating to the hierarchical nature of argument realization. The properties of G\(\text{F}\) follow from the functional nature of G\(\text{F}\): properties resulting from the alignment of the relational hierarchy with other hierarchies (Agents as G\(\text{F}\); G\(\text{F}\) as default topic); properties based on a hierarchical effect of specification of argument properties (null pronouns; imperative addressee); and binding-theoretic properties (anaphoric prominence; switch-reference target).

In this respect, there is no difference between uniform-subject languages and mixed-subject languages. We thus reject the idea (Marantz 1984, Manning 1996) that there are languages with an inverse mapping system, in which the hierarchical relations between arguments are reversed in the a-structure–f-structure mapping. Such an inverse mapping is conceptually undesirable in any case, since the usual tendency in language is for prominences at different hierarchies to align with each other.

\(^{19}\)The coreferential element in the *njurra*-marked clause is S/P, not A, but as we have observed, the theory proposed here does not predict that the element in the switch-reference clause must be A; see the discussion of Gokana above.

\(^{20}\)Another possible case is the Eskimo languages, which have a construction which is sometimes identified as switch-reference, e.g. by Finer (1985), the so-called fourth person affix. However, it differs from switch-reference in that it is not limited to adjacent clauses. (In addition, the subordinate position need not be a subject; as we have seen, however, this is not an absolute requirement for switch-reference.) A more plausible analysis, which we have followed above, is that the verbal affix in question is an incorporated reflexive (Manning 1996). In any case, the antecedent for the Eskimo fourth-person is x, not P, so if it is a switch-reference construction it conforms to our prediction.
CHAPTER 3
PIVOT

3.1. The Pivot Function
3.1.1. The Concept

In the previous chapter, we examined the concept of subject from the perspective of argumenthood, and concluded that the subject is the most prominent core argument of the verb, γ. We saw that some subject properties, specifically those that are shared by uniform-subject languages and mixed-subject languages (Type 1 properties), are explained by this view of subjecthood. These are properties which are based in one way or another on the relational hierarchy of argument functions: the alignment of the relational hierarchy with other hierarchies (agenthood, topichood), the specification of properties of arguments by the head verb (null pronominals, imperative addressee), and anaphora (anaphoric prominence, switch-reference).

However, we still need to account for the Type 2 properties, the ones that differ in uniform-subject and mixed-subject languages. These properties are the following.

(1) a. Shared argument in coordinated clauses
 Controlled argument (PRO) (in some languages)
 Raising
 Extraction properties
b. Obligatory element
 Definiteness or wide scope
 “External” structural position

These “subject properties” differ from the ones discussed in the previous chapter. The properties of γ are the result of the status of γ as an argument in hierarchical relation with other arguments: they are relative properties which are, in some languages, shared with other arguments. The properties in (1) are related neither to argumenthood nor to hierarchies. They have nothing to do with hierarchies because they are unique properties of a single distinguished element in the clause. They have nothing to do with argumenthood because they are not properties that relate the “subject” to a head that selects it. We therefore would not expect the γ function to result in these properties; they must be the consequence of a different grammatical function. The fact that these properties characterize a different element from the argument-related properties in ergative and Philippine-type languages reinforces the conclusion that these properties do not follow from the nature of the function γ.

We propose that the Type 2 properties are associated with a grammatical function which we call PIV (pivot), loosely following Foley and Van Valin (1984) and Dixon (1979, 1994). The familiar concept of subject in uniform-subject languages is thus an amalgam of two distinct grammatical functions: γ and PIV. The realization that there is more to subjecthood than argumenthood has led some researchers in LFG (such as Bresnan 2001) to cross-classify the SUBJ function as a grammaticized discourse function, but the Type 2 properties are no more discourse related than they are argument related. We therefore do not consider PIV to be a grammaticized discourse function. We need to take a closer look at the PIV-related properties to determine the nature of the PIV function.

We begin our discussion of the PIV function by considering the properties in (1a), which
we take to be the core properties of PIV. These properties relate to the sharing of a single element by more than one clause. In the coordination construction in question, an argument is shared by the coordinate clauses. In control and raising constructions, the main clause and subordinate clause share an argument. Since extraction is often long-distance, cross-clausal sharing of an element is often a factor in extraction constructions as well. These properties are inherently non-local, and lead to the conclusion that the PIV function is the function of cross-clausal connections, or cross-clausal continuity.

(2) The PIV is the element with the function of connecting its clause to other clauses in the sentence.

This function is unrelated to questions of argument realization. It thus contrasts sharply with the \(\mathcal{G} \) function discussed in the previous chapter, and is not inherently related to it.

We will have less to say about the properties in (1b), which we take to be secondary properties. Unlike the (1a) properties, these properties do not relate elements of different clauses. However, they are similar to those other PIV properties in that they are not related to argument hierarchies either. Instead, they seem to be based on the notion that the PIV is a distinguished element of the clause, with properties beyond being in a particular position on the relational hierarchy. There is also a topic-like quality to some of these properties, in particular definiteness and wide scope. We will discuss these properties briefly later.

In order to understand the PIV function better, we begin by noting that the grammatical functions generally assumed in theories like LFG (as in, for example, Bresnan 2001) can be divided into three groups:

(3) a. Argument functions: local, selected by predicate
\(\mathcal{G} \)
OBJ
OBJ_0 (or OBJ_2 or OBJ_{indirect})
OBL_0
COMP, XCOMP, etc.

b. Adjunct functions: local, not selected by predicate
ADJ, XADJ, etc.

c. Grammaticized discourse functions: not local, related to discourse
TOPIC
FOCUS
etc.

Of these, the argument and adjunct functions are local in their scope—they function to express relations within their clause, and they are locally licensed. Argument functions are licensed by being selected, and adjuncts by modifying meaningful elements. The grammaticized discourse functions (FOCUS, TOPIC, etc.), on the other hand, relate otherwise-licensed elements to the larger discourse within which they are embedded. That is to say, all elements are locally licensed,\(^1\) but

\(^1\)A possible exception to this can be found in a subset of what are sometimes known as topic-oriented languages. We will discuss this briefly in Chapter 6.
an argument (or adjunct) can be assigned an additional, not locally relevant, function. This is reflected in LFG’s Extended Coherence Condition (and in transformational notions such as D(eep) structure and Merge at 0 position, which give argument “positions” a special status). This property of the grammaticized discourse functions is captured particularly well terminologically in RG, where these functions are referred to as overlay functions (or relations). We will follow the RG terminology here.

Something is missing from this set of relations expressed by grammatical functions. We have grammatical functions that are local to the clause in which they are located and grammatical functions that relate a clause to the larger discourse. What we seem not to have is a function expressing the relation between elements of a clause and the sentence (i.e., larger syntactic structure) of which it is a part. It is this gap that we propose to close with the function PIV. The PIV is a kind of sentence-internal topic. Just as a discourse topic (represented syntactically in many languages as the grammatical function TOPIC) identifies a single participant as the common thread running through a discourse, the PIV is the common thread running through clauses that make up a sentence. Every clause in a syntactic structure (sentence) will have a PIV.

As we conceive of it here, PIV is an overlay function, but crucially not a discourse function. There is nothing inherently discourse related about the PIV. It relates exclusively to syntactic properties. In this sense it is sui generis, although, as an overlay function, it is related to the discourse functions.

3.1.2. Formalization: The Pivot Condition

In a formal theory like LFG, the idea that PIV is the function of syntactic cross-clausal continuity needs to be expressed in terms of the technical concepts of the framework. It is the role of the formalism to provide a precise expression of intuitions of linguistic analysis. This formal instantiation will play a major role in our understanding of the properties of PIV.

As we saw in Chapter 1, the major formal tool for expressing relations between elements in LFG is the functional constraint, annotated to phrase structure rules or encoded in the lexicon. It was noted in passing in Chapter 1 that these functional constraints designate paths through the f-structure. To take an example from the previous chapter, if a verb includes the information that its object is a (covert) pronoun (that is to say, the OBJ has the attribute PRED with the value ‘PRO’), this is expressed formally through the following constraint in the verb’s lexical entry.

(4) \(\uparrow \text{OBJ PRED} = \text{‘PRO’} \)

The parenthesized expression on the left side of this equation defines a path through the f-structure, where \(\uparrow \) represents the local f-structure where the path begins:

\[
\uparrow: \begin{array}{c}
\vdots \\
\text{OBJ} \\
\vdots \\
\end{array} \begin{array}{c}
\vdots \\
PRED \\
\vdots \\
\end{array} \rightarrow \begin{array}{c}
\vdots \\
\text{‘PRO’} \\
\vdots \\
\end{array}
\]

In early LFG (Kaplan and Bresnan 1982) it was proposed that such paths be limited to

2In class lectures on this material, I have anthropomorphized the concept and referred to the PIV as the clause’s ambassador to the rest of the sentence. I think that this metaphor actually goes a long way towards explaining the concept and some of its consequences.
a length of 2, by what was called the Functional Locality Condition. This idea was subsequently abandoned with the advent of the formalism of functional uncertainty (Kaplan and Zaenen 1989) for licensing long-distance dependency constructions. The abandonment of the Functional Locality Condition, justified though it was, has left LFG with no formal expression of the intuitive idea that arguments are beholden exclusively to the predicates of which they are arguments. The PIV function allows us to return to the intuition that the theory needs to express this.

The core of Kaplan and Bresnan’s Functional Locality Condition is the idea that a functional expression should not be allowed to directly specify properties of an argument function in a lower or coordinate clause. As suggested in the previous paragraph, this follows from the nature of argumenthood. Arguments are selected by their local predicates. As we saw in Chapter 2, the properties of arguments can be determined by their local predicates. Arguments are strictly local in their scope. A formal theory based on grammatical functions should express this.

The PIV function is not an argument function, and therefore is not local in its scope. It is an overlay function, a second function assigned to a locally licensed element. Assigning the PIV function to an element which bears an argument function provides a formal escape hatch to the locality of arguments: it allows higher clauses to specify information about it. We propose to formally restrict functional designations in such a way that the only way to refer to a function in a lower or coordinate clause is through the function PIV. We refer to this as the Pivot Condition.

The Pivot Condition needs to constrain two types of paths: the path inward from a superordinate argument domain to a subordinate one (argument or adjunct), and the path from one conjunct of a coordinate structure to the other. The former case can be shown schematically as follows:

\[
\begin{array}{c}
\text{PRED} \\
\end{array}
\begin{array}{c}
\text{P IV} \\
\end{array}
\begin{array}{c}
\text{f} \\
\end{array}
\begin{array}{c}
\vdots \\
\end{array}
\begin{array}{c}
\text{g} \\
\end{array}
\begin{array}{c}
\text{PRED} \quad \\text{P} \quad \langle \ldots \rangle \\
\end{array}
\]

A functional constraint associated with \(f \) cannot refer to a non-PIV function inside \(g \): it cannot assert its identity to an element in \(f \) or specify any features for it. It is crucial that \(g \) be a distinct predicate-argument domain; we do not want to rule out reference to, say, the object of a non-predicative “Case-marking” preposition by a designator such as (\(\uparrow \text{OBL}_0 \text{OBJ} \)). The formal statement will therefore have to distinguish argument-taking PREDs. The second kind of path is illustrated by the following f-structure and corresponding c-structure.

\[
\begin{array}{c}
\text{S} \\
\text{S}_1 \\
\text{S}_2 \\
\end{array}
\begin{array}{c}
\text{h} \\
\vdots \\
\text{i} \\
\end{array}
\begin{array}{c}
\text{h} \\
\vdots \\
\text{i} \\
\end{array}
\]

Here, the restriction will be against a constraint associated with \(h \) referencing a non-PIV element
of i, and against a constraint associated with i referencing a non-PIV element of h. We can think of a path from h into i or from i into h informally as a sideways path.² Formally, we want to restrict the form of a path stated in terms of “f-structure element corresponding to the right sister”—$\phi(\leftrightarrow)$—or “f-structure element corresponding to the left sister”—$\phi(\leftarrow)$. We include both an informal version of the Pivot Condition and a formal version.

(7) **The Pivot Condition**

informal statement:
A path inward through f-structure into another predicate-argument domain or sideways into a coordinate f-structure must terminate in the function PIV.

formal statement:
In a functional designation of the form $\leftarrow \ldots \alpha \ldots \beta \gamma \rightarrow$ where $\rightarrow \text{PRED ARG1}$, or $(\phi(\leftarrow \ldots \beta \gamma))$ or $(\phi(\leftrightarrow \ldots \beta \gamma))$, if β is a grammatical function and either $\gamma=\emptyset$ or γ is a feature, $\beta = \text{PIV}$

The Pivot Condition is the formal statement of the functional role of PIV. It plays a major role in pivot properties, because it restricts reference from one clause to a lower (or coordinate) clause to the PIV of the lower clause.

3.2. Uniform Subjects and Mixed Subjects

The foregoing says nothing about which element of the clause is the PIV. Unlike the GF function, PIV is not part of a hierarchical system which is associated with another hierarchical system. Since PIV is an overlay function, and thus subject to LFG’s Extended Coherence Condition, it must be an element which is also locally licensed. But nothing else follows. We are thus led to expect that different languages will make different choices about which element is the PIV. We already know that this is true, since PIV properties (Type 2 subject properties) are associated with different elements in different languages. This is what differentiates uniform-subject languages from mixed-subject languages.

One very common assignment of the PIV function is to identify it with the GF. In languages which make this identification, every verb will have the following predictable lexical specification.

(8) $(\uparrow \text{PIV}) = (\uparrow \text{GF})$

This is the assignment which defines what we have been referring to as uniform-subject languages. It appears to be the unmarked assignment, perhaps because it enhances the high prominence of the GF argument by assigning it a different kind (albeit not hierarchical) of

²The term “sideways” is perhaps not the most felicitous, as it fits the visual orientation of c-structure rather than f-structure.

³The off-path constraint checks for argument-taking PREDs only. The notation comes from Kaplan and Maxwell (1996), and checks for the presence of a first argument in the value of the PRED feature.
prominence. It results in a single element, the “subject”, which has both the function of \(G_F \) and the function of PIV, and thus one element with “subject properties.” Because this is the PIV identification in familiar European languages, it has led to the illusion that subject is a universal of language.

However, nothing requires the identification of PIV with \(G_F \). Since PIV is not part of a hierarchy, there is no hierarchy-alignment involved here as there is in the topicality and agentivity of \(G_F \). If a different element is assigned the PIV function, the result is what we have been calling a mixed-subject language. In such a language, there is no single element which can be referred to as subject in the traditional sense, since the traditional concept of subject is an entity which is both \(G_F \) and PIV. One type of mixed-subject language is the syntactically ergative language; in such a language, the PIV is the OBJ if there is one.

(9) \((\uparrow OBJ) \Rightarrow (\uparrow PIV) = (\uparrow OBJ)\)

This is what results in the mixed character of the subject properties in syntactic ergative languages: in a transitive clause those properties which are a consequence of the \(G_F \) function will be properties of the A argument \((G_F)\) while those which are a consequence of the PIV function will be properties of the P argument \((OBJ)\).

The difference between uniform-subject languages and mixed-subject languages can be illustrated with f-structures of corresponding sentences in the two types of languages. We showed in Chapter 1 that Inuit is a mixed-subject (syntactically ergative) language, with the P argument displaying Type 2 subject properties (extractability and wide scope). We present here the f-structure of an Inuit sentence (from Marantz 1984) and its translation into English, a uniform-subject (nominative-accusative) language.

(10) **Inuit**

 man-ERG woman see-IND3sg3sg
 ‘The man saw the woman.’

b. \[
\begin{array}{c}
G_F \\
OBJ \\
TENSE \text{ PAST} \\
PRED \text{ ‘see } (\uparrow G_F)(\uparrow OBJ)’ \\
PIV \\
\end{array}
\]

(11) **English**

a. The man saw the woman.

\(^6\)I'd like to thank Chris Manning (personal communication) for suggesting this to me.

\(^7\)Otherwise, it is the \(G_F \). I assume this is a result of the need for the PIV to be identified with something, and the \(G_F \) being the only available element. The double-shanked arrow here is a conditional: “if \((\uparrow OBJ)\) exists, then …”.
The arguments map to the same grammatical functions in the two languages: the Agent is GF and the Patient is OBJ. The only difference is the identity of the PIV.

In Philippine-type languages, the lexical marking on the verb is governed by the “voice” morphology. As we showed in Chapter 1, the nominative nominal is the element with Type 2 subject properties (such as extractability and accessibility to raising), and thus it is the PIV.

(12) with “Active voice” morphology: \((\uparrow \text{PIV}) = (\uparrow \text{GF})\)
with “Direct object voice” morphology: \((\uparrow \text{PIV}) = (\uparrow \text{OBJ})\)
with “Indirect object/locative voice”: \((\uparrow \text{PIV}) = (\uparrow \text{OBJ}_{\text{Indirect}})\)
with “Instrumental voice” morphology: \((\uparrow \text{PIV}) = (\uparrow \text{OBL}_{\text{Instr}})\)

For each of these sentences, the lexical entry of the verb and the full f-structure are as follows.

(13) a. Mag-aalis ang tindero ng bigas sa sako para sa babae.
 ‘The storekeeper will take some rice out of a/the sack for a/the woman.’

b. Aalis-in ng tindero ang bigas sa sako para sa babae.
 ‘A/the storekeeper will take the rice out of a/the sack for a/the woman.’

c. Aalis-an ng tindero ng bigas ang sako para sa babae.
 ‘A/the storekeeper will take some rice out of the sack for a/the woman.’

d. Ipag-aalis ng tindero ng bigas sa sako ang babae.
 ‘A/the storekeeper will take some rice out of the sack for a/the woman.’
b. aalisin: \((\uparrow \text{PRED}) = \text{‘take-out} \left\langle (\uparrow \text{GF})(\uparrow \text{OBJ})(\uparrow \text{OBJ}_{\text{Source}})(\uparrow \text{OBL}_{\text{Ben}}) \right\rangle\)’ \\
\((\uparrow \text{TENSE}) = \text{CONTEMP} \) \\
\((\uparrow \text{PIV}) = (\uparrow \text{OBJ})\) \\
\[\text{PRED} \quad \text{‘take-out} \left\langle (\uparrow \text{GF})(\uparrow \text{OBJ})(\uparrow \text{OBJ}_{\text{Source}})(\uparrow \text{OBL}_{\text{Ben}}) \right\rangle\)’ \\
\text{TENSE} \quad \text{CONTEMP} \\
\text{PIV} \quad \text{[‘storekeeper’]} \\
\text{GF} \quad \text{[‘rice’]} \\
\text{OBJ} \quad \text{[‘woman’]} \\
\text{OBJ}_{\text{Source}} \quad \text{[‘sack’]} \\
\text{OBL}_{\text{Ben}} \quad \text{[‘storekeeper’]}\]

c. aalisan: \((\uparrow \text{PRED}) = \text{‘take-out} \left\langle (\uparrow \text{GF})(\uparrow \text{OBJ})(\uparrow \text{OBJ}_{\text{Source}})(\uparrow \text{OBL}_{\text{Ben}}) \right\rangle\)’ \\
\((\uparrow \text{TENSE}) = \text{CONTEMP} \) \\
\((\uparrow \text{PIV}) = (\uparrow \text{OBJ})\) \\
\[\text{PRED} \quad \text{‘take-out} \left\langle (\uparrow \text{GF})(\uparrow \text{OBJ})(\uparrow \text{OBJ}_{\text{Source}})(\uparrow \text{OBL}_{\text{Ben}}) \right\rangle\)’ \\
\text{TENSE} \quad \text{CONTEMP} \\
\text{PIV} \quad \text{[‘sack’]} \\
\text{GF} \quad \text{[‘storekeeper’]} \\
\text{OBJ} \quad \text{[‘rice’]} \\
\text{OBJ}_{\text{Source}} \quad \text{[‘woman’]} \\
\text{OBL}_{\text{Ben}} \quad \text{[‘woman’]}\]

d. ipagaalis: \((\uparrow \text{PRED}) = \text{‘take-out} \left\langle (\uparrow \text{GF})(\uparrow \text{OBJ})(\uparrow \text{OBJ}_{\text{Source}})(\uparrow \text{OBL}_{\text{Ben}}) \right\rangle\)’ \\
\((\uparrow \text{TENSE}) = \text{CONTEMP} \) \\
\((\uparrow \text{PIV}) = (\uparrow \text{OBL}_{\text{Ben}})\) \\
\[\text{PRED} \quad \text{‘take-out} \left\langle (\uparrow \text{GF})(\uparrow \text{OBJ})(\uparrow \text{OBJ}_{\text{Source}})(\uparrow \text{OBL}_{\text{Ben}}) \right\rangle\)’ \\
\text{TENSE} \quad \text{CONTEMP} \\
\text{PIV} \quad \text{[‘woman’]} \\
\text{GF} \quad \text{[‘storekeeper’]} \\
\text{OBJ} \quad \text{[‘rice’]} \\
\text{OBJ}_{\text{Source}} \quad \text{[‘sack’]} \\
\text{OBL}_{\text{Ben}} \quad \text{[‘woman’]}\]
Under the theory proposed here, then, there is a natural account of the typological distinction between the uniform-subject languages and the different types of mixed-subject languages. The difference is not, as in Inverse Mapping theories, in the mapping of the arguments, but rather in the assignment of the PIV function to an argument. The unity of “subject” seen in uniform-subject languages is something of an illusion—a consequence of the identification of PIV with \(\mathcal{F} \). PIV is not a type of subject, or a subclass of the larger class of subjects. The split of subject properties in mixed-subject languages is more revealing of the nature of the properties and the functions from which they derive: local, hierarchical, argumenthood properties are properties of \(\mathcal{F} \) while cross-clausal properties are properties of PIV.

3.3. Pivothood and Constructions

3.3.1. Types of Constructions

The concept of pivothood which we have developed here owes much to previous work in the typological and functionalist literature, especially Dixon (1994). However, our PIV differs in one crucial respect from the pivot of these other researchers. Under our conception, the choice of PIV is determined by the grammar of the language: pivothood is a language-wide concept. In this respect, PIV is no different from any other grammatical function. However, the typological and functionalist literature often takes pivothood to depend on the construction involved, with different constructions using different pivots. For example, Dixon (1994: 175) states that “[s]ome languages combine S/A pivots and S/O pivots” and refers to these as mixed-pivot languages. Van Valin and LaPolla (1997: 275–278) are very emphatic about this.

A very important feature of the concepts of controller and pivot is that they exist only with reference to specific morphosyntactic phenomena, and each grammatical phenomenon may define one controller and/or one pivot. Pivots are construction-specific.

Moreover, as we said above, controller and pivot are construction-specific [emphasis in the original]. The usual notion of subject in syntactic theory, on the other hand, is not construction-specific but rather is a feature of the grammatical system as a whole. For this reason one does not talk about ‘the subject of finite verb agreement’ or ‘the subject of the matrix-coding construction’, since subject is not a construction-specific notion; rather, one can talk about ‘subject in English’ or ‘subject in Malagasy’, etc. Conversely, one does not speak of, for example, ‘the pivot of English’ or ‘the controller of English’, as there is no such concept. We can only speak in terms of the controllers and pivots of specific phenomena or constructions, such as ‘the controller of finite verb agreement’ and ‘the pivot of the matrix coding-construction’ in English.

In contrast to the position expressed by Van Valin and LaPolla, we claim that there is such a thing as the pivot of English/Dyirbal/etc. The grammar of English identifies the PIV as being a second function borne by the \(\mathcal{F} \), the grammar of Dyirbal identifies PIV with OBJ, and the grammars of some languages supply a tool (such as verbal morphology in the Philippine-type languages) to assign the PIV function. We address the issue of alleged multiple pivots in this section.

We believe that the typological/functionalist approach is based on a misunderstanding of the concept of construction in cross-linguistic study. Our approach is based on a mixed formalist/functionalist perspective combined with the parallel architecture of the formal system we are assuming. From the functionalist perspective, we can identify a construction with the

8This misunderstanding is not limited to researchers in the typological and functionalist traditions; one also finds it in much work in formalist frameworks. See the next footnote for an example.
In some formal theories of syntax, particularly those in the GB/MP tradition, many of the methods used to distinguish the two major participants in a transitive clause are subsumed under “Case marking.” This is an example of formalist conflation of notional and formal constructions.

It should not be controversial that notional constructions and formal constructions are distinct. The case discussed briefly in the previous paragraph is a relatively straightforward case. We will discuss one more example before returning to issues of pivothood. Suppose one wishes to express a transitive sentence with a generic (or arbitrary) Agent.”Transitive sentence with a generic Agent” is a notional construction. Different languages use different formal tools (i.e. different formal constructions) to express this. For example, in English one would use the passive, in Spanish the reflexive, in French a generic subject pronoun, and in Hebrew (a language in which subjects must be overt in the present tense, and generally in the third person in all tenses) a (third person) plural verb form with no overt subject.

(15)

<table>
<thead>
<tr>
<th>Language</th>
<th>Sentence in Native Form</th>
<th>Analysis</th>
<th>Translation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. English</td>
<td>English is spoken in America.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Spanish</td>
<td>Se habla español en México.</td>
<td>REF. speak.PRES.3SG Spanish in Mexico</td>
<td>‘Spanish is spoken (lit. speaks itself) in Mexico.’</td>
<td></td>
</tr>
<tr>
<td>c. French</td>
<td>On parle français à Paris.</td>
<td>one speak.PRES.3SG French at Paris</td>
<td>‘French is spoken (lit. one speaks French) in Paris.’</td>
<td></td>
</tr>
<tr>
<td>d. Hebrew</td>
<td>Medabrim ivrit be Yisrael.</td>
<td>speak.PRES.M.PL Hebrew in Israel</td>
<td>‘Hebrew is spoken (lit. [they] speak Hebrew) in Israel.’</td>
<td></td>
</tr>
</tbody>
</table>

These four languages exhibit four different formal constructions for the same notional construction.

This distinction between notional and formal constructions is also relevant, we claim, for constructions that are potentially pivot related. The piv function is part of the formal syntactic system; more specifically, the Pivot Condition is a restriction on the form of formal syntactic constraints. Sensitivity to pivothood is therefore a property of formal constructions. It is inappropriate to define constructions notionally for the purpose of identifying pivots, as is often done in the functionalist and typological literature. In the coming chapters, we will take a detailed look at long-distance dependency constructions and especially control constructions, where the

9In some formal theories of syntax, particularly those in the GB/MP tradition, many of the methods used to distinguish the major participants in a transitive clause are subsumed under “Case marking.” This is an example of formalist conflation of notional and formal constructions.
availability of more than one formal construction obscures the basic facts about subject properties. At this point, we will take a look at shared elements in coordination. Consider the following contrasting sentences in English and Dyirbal (Dixon 1994: 15).

(16) a. **English**
 You saw us and returned.
 = ‘You saw us and you returned.’

b. **Dyirbal**
 N'urra ŋana- na bura- n banaga- n\’u.
 you.all.NOM we.all- ACC see- NONFUT return- NONFUT
 = ‘You saw us and we returned.’

This contrast has often been cited (e.g. Comrie 1989, Dixon 1994, Palmer 1994) as evidence that English has an S/A (uniform-subject) pivot while Dyirbal has an S/P (mixed-subject syntactically ergative) pivot. However, a closer look reveals that the situation is more complicated. Give the formal tools of LFG, there are at least three formal ways for conjoined clauses to appear to share an element. Of these three formal constructions, only one is sensitive to pivothood. We will illustrate the three possibilities using the English sentence, and then return to the question of the correct analysis in English and Dyirbal.

One possible formal construction is subclausal constituent coordination, such as VP coordination.

(17) \[S \]
 \[\begin{array}{c}
 \text{DP} \\
 \text{you} \\
 \text{VP} \\
 \text{and} \\
 \text{VP} \\
 \text{V} \\
 \text{saw} \\
 \text{DP} \\
 \text{us} \\
 \text{Y} \\
 \text{returned}
 \end{array} \]

Under the LFG theory of coordination (Sadler 1999, Dalrymple and Kaplan 2000, Dalrymple 2001), coordinate structures are functionally sets. Some attributes which belong to the whole coordinate structures (including grammatical functions) are distributed over the conjuncts (that is to say, they are parts of both elements of the set). The constituent \([dp, you] \), which happens to bear the grammatical function PIV, is distributed over the two conjuncts. The two clauses thus share the PIV, but not because of any functional properties of the PIV. VP coordination is the result of c-structural properties—the ability of VP to be coordinated—as licensed by a phrase structure rule such as the following.

10 Following some analyses in LFG, we assume here, and throughout, that English sentences without auxiliaries (or with inverted auxiliaries in C) are S rather than IP. Readers who would prefer to see IP in the tree are welcome to make the appropriate substitutions. For some conceptions of constituent structure, the sentence in question might be better analyzed as T coordination rather than VP coordination.
The function-sharing between the two clauses is merely a consequence of the c-structure properties of the language. Since, in English (and many other languages, but not universally), pivots have an external structural position, it is possible to coordinate constituents in such a way that the pivot will be shared. But pivothood (in our sense) is not directly implicated in constituent coordination. In fact, a topicalized OBJ can also be shared.

This kind of salad, I like and you hate.

This formal construction, as a structural (not functional) construction, is thus not pivot-sensitive.

A second possible formal method of achieving the result of not having to repeat a shared element in both conjuncts is to use some anaphoric device, such as a null pronoun or an incorporated-pronoun agreement form (for the distinction between these, which are normally both called pro-drop, see Chapter 2). Under such an analysis, the non-initial conjuncts have a pronoun which is coreferential with an element in the first conjunct; however, this pronoun is not an overt pronounced element. This can be represented in the framework assumed here as the c-structure–f-structure pair (20), or in conventional c-structure-centric theories as (21).
In an anaphoric construction like this, there is no actual sharing of elements in the syntax; the elements in the conjuncts are merely coreferential, and the sharing is thus semantic rather than syntactic. From the perspective of the notional construction, the distinction between syntactic sharing and coreference is irrelevant, but formally the properties are very different. Pivothood is completely irrelevant here. As discussed in Chapter 2, the possibility of a true null pronoun is governed by the relational hierarchy and the availability of incorporated pronouns is based on the language’s agreement system. This is therefore a second way to achieve the result of only naming a shared element once without using a pivot-related construction.

On the other hand, it is also possible to achieve the shared-argument notional construction through a constraint directly licensing a single syntactic element as having grammatical functions in more than one clause. Essentially following Dixon, we will refer to this kind of multifunctionality of a single syntactic element in coordination as chaining. Schematically, this would involve a phrase structure rule such as the following, where, as in the formal statement of the Pivot Condition, ‘ϕ(<*)’ means ‘the f-structure corresponding to the left sister’ and ‘ϕ(*>)’ means ‘the f-structure corresponding to the right sister’.

\[
S \rightarrow S \quad \text{CONJ} \quad S
\] \(\downarrow \in \uparrow\) \(\phi(<*) \text{GF}) = (\phi(*) \text{GF})\) \(\downarrow \in \uparrow\)

The two functional designations in the constraint associated with the conjunction are subject to the Pivot Condition. Only the PIV function may be specified at the end of a path in a subordinate or coordinate clause. (22) thus reduces to (23).

\[
S \rightarrow S \quad \text{CONJ} \quad S
\] \(\downarrow \in \uparrow\) \(\phi(<*) \text{PIV}) = (\phi(*) \text{PIV})\) \(\downarrow \in \uparrow\)

This licenses sentences with c-structures and f-structures that look like the following.
Note the curved lines in the f-structure: the f-structure element corresponding to you has four different functions.

\[S \rightarrow S \text{ and } S \]
\[\text{DP} \rightarrow \text{you} \]
\[\text{VP} \rightarrow \text{saw} \text{ us } \text{returned} \]

In a language which uses the chaining construction, unlike the other two constructions, elements shared across coordination will be pivots.

3.3.2. Distinguishing formal constructions

Given the distinction between formal constructions and notional constructions, we can now turn to constructional properties. The properties of a construction in a particular language are a consequence of both the notional identity of the construction and its formal identity. It is often easier to determine the notional construction than the formal construction, because the notionally related properties are generally easier to identify, but a proper consideration of the question of multiple pivothood requires us to distinguish between formal constructions.

A closer look at some of the other characteristics of the language often helps tease them apart. Consider our example of the different formal constructions which can be used to realize sharing across coordination. In the case of English, a VP coordination analysis appears to be the right one. The anaphoric analysis is clearly wrong for English: subject agreement in English is anti-pronominal. Coordination is very free in English: any constituent can be coordinated. The grammar of English includes a rule of the form:

\[X^n \rightarrow X^n \text{ CONJ } X^n \]

\[\downarrow \epsilon \uparrow \]

\[^{11} \text{Note the curved lines in the f-structure: the f-structure element corresponding to you has four different functions.} \]
Given the ease with which constituents of any category can coordinate in English, it would be very surprising if VPs were unable to coordinate, rendering the VP coordination analysis more plausible than the chaining analysis. But if this is true, sharing of elements across coordination in English does not constitute evidence for pivothood, contra Dixon (1994). In Dyirbal, on the other hand, a pivot-restricted chaining analysis appears to be correct. Coordination of VPs (or any other subclausal constituent) is not a possible analysis, given the order of elements: the unshared ‘you’ is farther from the verb than the shared ‘us’, so the shared element cannot be structurally higher. That is to say, there is no constituent that could be coordinated. In addition, Dyirbal does not allow free subclausal coordination the way English does (Dixon 1972). An analysis in terms of null pronouns is also untenable for Dyirbal. Dyirbal allows null pronouns only for transitive (A), not for OBJ or intransitive (S) (Dixon 1979), so a sentence like (16b) cannot involve a null pronoun. Unlike English, then, argument sharing in coordination does seem to be pivot-based in Dyirbal.

We can illustrate the kinds of properties that formal constructions have by comparing multifunctionality constructions (like chaining) and null/incorporated pronoun constructions: two of the three formal constructions that can be used for the notional construction of sharing across coordination. As we will see in Chapter 5, these two formal constructions are also involved in (at least some types of) control constructions. It is easy to see why these two formal constructions should be in competition to express the same notional constructions. Both constructions provide a way to avoid using an extra nominal phrase to mention an element overtly, resulting in a more economical expression. Both constructions involve the sharing of an element: in the case of multifunctionality directly in the syntax, and in the case of null/incorporated pronouns at a semantic/pragmatic level incorporating a representation of reference. However, despite their notional similarity, the two constructions are formally different. The difference results from the fact that multifunctionality is a purely syntactic construction, while anaphora (overt or covert) involves the interaction of several components of the grammar: reference (semantics/discourse), information structure, and thematic roles, as well as syntax. In fact, one can argue that the role of syntax in anaphora is relatively small. One of the characteristics of syntax is that it tends to be more rigid in its requirements than other components of language. The pure syntactic nature of sharing as opposed to the largely non-syntactic nature of anaphora therefore means that one would expect sharing to be stricter in its requirements than null/incorporated anaphora.

The flexibility of anaphoric constructions is easy to demonstrate. It is well known, for example, that anaphoric constructions do not always involve strict coreference. For example, (26a) involves overlapping reference (given the relevant pragmatic context) and (26b) demonstrates a split antecedent.

(26) a. Bill said that they enjoyed dinner with us last night. (they = Bill + others)
 b. Bill persuaded Jane that they should see the new Star Trek movie. (they = Bill + Jane)

Another type of flexibility involves pragmatically determined preferences in interpreting a pronoun. For example, in English, if there is a pronoun in a subordinate clause and a single possible antecedent in a higher clause, the usual preferred reading is for the pronoun to be coreferential with the higher nominal. However, given an appropriate discourse context, another

12The word order here corresponds to the most frequent word order in Dyirbal, but Dixon (1972) emphasizes that word order is very free in Dyirbal.
reading may become more salient.

(27)
 a. Sara said that she wants to major in generative basketweaving. (preferred reading: she = Sara)
 b. A lot of people told me that Miriam is going to study nuclear physics in college. However, Sara said that she wants to major in generative basketweaving. (preferred reading, she = Miriam)

While not all anaphoric constructions are equally flexible, some degree of flexibility is to be expected from a null/incorporated pronoun construction. A multifunctionality construction, on the other hand, should display none of these properties. The requirement that a certain element must be PIV, as a formal condition on the licensing constraint, should be absolute. Since a single syntactic element is literally being shared by two clauses, there should be no departures from strict identity.

In this context, it is useful to consider coordination sharing in Yidiny. As noted in much of the literature (such as Comrie 1989 and Dixon 1994), argument sharing across coordination in Yidiny differs from the Dyirbal construction: the shared elements bear unmarked Case. Since Yidiny has a split-ergative Case-marking system, this means P (OBJ) for lexical NPs and A (\(\bar{G}\)) for pronouns. This is very much unlike the Dyirbal situation, where (in transitive clauses) the shared element is invariably P (OBJ)—the PIV in Dyirbal. The Yidiny situation cannot be expressed in terms of pivothood, since the PIV in a transitive clause cannot be based on whether the argument in question is a lexical noun or as pronoun. For other constructions (such as extractability in relativization), as Dixon observes, Yidiny has a clear S/P pivot. From the perspective of the theory being developed here, we would want to claim that the Yidiny PIV is S/P (as in Dyirbal). We therefore hypothesize that the coordination structure is not true pivot-based chaining. In addition, as in Dyirbal, the Yidiny word order facts make it unlikely to be a case of subclausal coordination. We therefore analyze argument sharing in Yidiny as a null-pronoun construction. Critically, this theoretically driven analysis receives clear empirical support, based on the difference in properties between null pronoun constructions and multifunctional constructions. For instance, while the preference for unmarked Case elements in Yidiny is apparently very strong, it is only a preference, one which can be overridden by pragmatic considerations. This is illustrated by the following sentences (Dixon 1977).

(28)
 a. Dayu buŋa wawa: l ĭr ĭmy.
 I.NOM woman see.PST be.frightened.PST
 ‘I saw the woman and she was frightened.’
 *‘I saw the woman and I was frightened.’
 b. Dan’any buŋa- nā wawa: ĭr ĭmy.
 I.ACC woman- ERG see.PST be.frightened.PST
 ‘The woman saw me and she was frightened.’
 *‘The woman saw me and I was frightened.’

This is not the behavior one expects from a syntactically-conditioned pivot-based chaining construction, in which the restriction to a particular element is a result of the formal nature of the construction. Instead, this is a null-pronoun construction in which there is a strong preference for the pronoun and its antecedent to be null-Case elements. Other facts about the language also support this analysis: unlike Dyirbal, Yidiny freely allows OBJs as well as \(\bar{G}\)s to be null pronouns.
The differences between formal constructions are relatively subtle, and published language descriptions do not always include all the relevant information. In some cases, we must propose an analysis on the basis of the incomplete information available. Such an analysis, however, always makes predictions about other properties of the construction and the language.

3.3.3. Multiple pivots

The Yidin’ coordination-sharing facts bring us back to the question of multiple pivots. Dixon (1994) cites these facts as an example of multiple pivots in a language, with Yidin’ having an S/P pivot for relativization and some cases of coordination, and S/A for other cases of coordination. Our analysis, for which we have presented independent evidence, is a counterargument to Dixon’s analysis. Dixon’s claim that Yidin’ has multiple pivots for coordination is odd in light of his rejection of a similar claim for Dyirbal by Heath (1979). Heath notes that Dixon (1972) cites sequences of clauses in which there appear to be shared A arguments. Dixon cites sequences such as the following.

(29) a. Bala yugu bąŋgul yara-ŋgu nudi-n. Bayi n’aŋga bunju-n. IV tree LERG man-ERG cut-NFUT I child spank-NFUT
 ‘The man cut the tree. [He] spanked the child.’

b. Daja bala yugu yuba-n. Balan jugambil jilwa-n. me IV stick put.down-NFUT II woman kick-NFUT
 ‘I put down the stick; [and] kicked the woman.’

Sequences like (29a), with a full NP, are relatively rare; those like (29b) with a pronoun are more common. Both of these are apparent counterexamples to the claim that sharing across coordination always involves S/P, and Heath argues that there is no S/P condition, or, in more current terms, that there is no uniform S/P pivot. However, Dixon (1979) rejects this conclusion and notes that, since ฑľ can pro-drop freely, (29) could (and should) be analyzed as involving a null pronoun.\(^\text{13}\) This is what we have argued for in the case of Yidin’. Yidin’y is thus not a case of a language with different pivots for coordination and for relativization: it is a language with an S/P pivot (a mixed-subject language of the syntactically ergative type) in which the coordination construction is not pivot-dependent.

Our view is that all the cases that have been cited in the literature for constructions with different pivots in the same language will turn out, on closer inspection, to involve at least some formal constructions which are not pivot-restricted. We cannot discuss every such case here, but the basic approach that we used for Yidin’y needs to be applied to other alleged multiple pivot languages. As one final example, consider the case of the Mayan language Jakaltek, which Van Valin and LaPolla (1997) claim has multiple pivots. The following are the constructions that they mention.

\(^\text{13}\) Dixon also notes that the Dyirbal sequences in (29) do not have the intonation of single syntactic units, but rather appear to be sequences of separate sentences in discourse. This is reflected in the way we have presented the sequences.
(30) **Jakaltek** (Van Valin and LaPolla 1997)

Control constructions:
- subject-triggered equi: controllee must be S of intransitive
- object-triggered equi: controllee either S of intransitive or derived passive S (→P)
- raising: either of the above, depending on dialect

Long-distance dependencies:
- relatives: S or P (or derived S (→A) of antipassive)
- wh questions: S or P (or derived S (→A) of antipassive)
- clefting: S or P (or derived S (→A) of antipassive)

Coordination:
- preference for sharing S, passive S, A

Even a superficial survey of this list reveals that different formal constructions are involved. The coordination case looks like an incorporated pronoun and a preference for \(\stile \) to be interpreted as the shared element, presumably because it is the most natural discourse topic. The limitation to S/A is only a preference, not an absolute requirement, and therefore displays the flexibility that one would expect from an anaphoric construction. In addition, agreement in the Mayan languages is pronominal, so the overall structure of the language supports an incorporated-pronoun analysis. Coordination thus does not involve pivots in Jakaltek. The long-distance dependency constructions seem to have a clear “ergative” pivot, like Dyirbal. In control and raising constructions, there may be a combination of a pivot-based construction with a semantic constraint ruling out P as controllee. In Chapter 5 we will propose such a semantic constraint. If this is correct, Jakaltek does not have different **PIV**s for different constructions. It has one **PIV**: an ergative S/P **PIV**.

The concept of different pivots for different constructions is inherently less interesting and less explanatory that the approach we are taking here. Stipulating that different constructions have different pivots does not explain why the constructions in question differ in this way. Under our approach, we can utilize the non-one-to-one relationship between notional constructions and formal constructions to explain why different constructions target different elements of the clause.

It is also important to realize that the distinction that we are drawing between notional and formal constructions is necessary in any case. The LFG formalism allows for all three methods of sharing elements between coordinated clauses that we have discussed. Nothing needs to be added to the framework to allow for these options: in fact, the theory would have to be complicated to prevent these three methods from all being available.

In conclusion, a formal multidimensional approach allows us to see past the appearance of multiple pivots. We do not believe that the difference between our approach and those of researchers in the typological/functionalist tradition is primarily a difference in the understanding of the concept of pivot, but rather a difference in the understanding of constructions. By recognizing the existence of distinct formal constructions that can be used to express notional constructions, we can come to a clearer understanding of the constraints governing various constructions.

3.4. Clause-Internal **PIV** Properties

We turn now to a brief discussion of properties of **PIV** which are not cross-clausal, the properties mentioned in (1b). We view these properties as less central than the cross-clausal...
Arguments to the contrary that appear in the literature are circular, as they generally are based on showing that the language exhibits subject-object asymmetries. An argument of this kind only holds if one takes it as given that such asymmetries are to be explained on the grounds of asymmetrical constituent structure.

3.4.1. External Position

Perhaps the most interesting of these properties is the external position which PIVs occupy in configurational languages. In c-structure–centric theories, this external position is taken to be a property which defines the subject, and thus is a stipulated property. Specifically, it is stipulated as an argumenthood property (the subject is often called the “external argument”): the Agent argument is said to be projected into the syntax externally.

There are several serious deficiencies in this relatively standard view of the external position of subjects. In the first place, the notion of Agent as external argument is entirely stipulative. Second, though it is generally thought to be true universally, it has been shown by Nordlinger (1998) and others that nonconfigurational languages do not have the same type of structure, and in particular do not have the subject in an external position.\(^{14}\) Third, the evidence suggests that in mixed-subject languages, if one element of the sentence is external, it is the PIV, not the O or. This is suggested by constituent-order facts from ergative languages discussed by Dixon (1994), which appear to show that the PIV has a unique position in c-structure. Dixon mentions, without examples, the Maku language Nadēb, in which the S can either precede or follow the verb, and P can either precede or follow the sequence A-V. This suggests a structure in which A-V form a verb-final constituent, with a higher structural position for S/P (which has free ordering relative to the A-V constituent). This is entirely parallel to the gross structure of configurational languages like English, but with A and P reversed.

(31) a. **English**

```
       S/A
       /   \
V     P
```

b. **Nadēb**

```
       S/P
       /   \
A     V

       “VP”

       A     V
```

```
       “VP”

       S/P
```

Such a structure makes no sense under the view that subjects have an external position because A is an external argument. Dixon (1994: 178) notes that argument-sharing in coordination in Nadēb involves S and P arguments, but not A; if this is a true PIV-based chaining construction, as in Dyirbal, Nadēb is demonstrably a syntactically ergative language (i.e. a mixed-subject language in which the PIV in a transitive clause is the OBJ), and the external position occupied by

\(^{14}\) Arguments to the contrary that appear in the literature are circular, as they generally are based on showing that the language exhibits subject-object asymmetries. An argument of this kind only holds if one takes it as given that such asymmetries are to be explained on the grounds of asymmetrical constituent structure.
S/P is the structural position of the PIV. Another language mentioned in this context by Dixon is the Western Nilotic language Pârî, which has S/P-V(-A) order.

(32) a. Úbûr á- tûuk’.
 Ubûr COMPL- play
 PIV / Gî
 ‘Ubûr played.’

b. Jòobi á- kêel úbûrr- i.
 buffalo COMPL- shoot Ubûr- ERG
 PIV / OBJ Gî
 ‘Ubûr shot the buffalo.’

Andersen (1988) takes the common structural position for S and P to be evidence of ergativity in Pârî. Specifically, it appears that Pârî is syntactically ergative: in transitive clauses the OBJ is the PIV, and the preverbal position is the pivot position. The VP would then be verb-initial, but would follow the PIV (as in English). Further suggestive evidence that pre-verbal position is outside of the VP comes from the fact that if A is topicalized it also precedes the verb (and the P). Unfortunately, Andersen does not present any evidence from cross-clausal constructions for the ergativity of Pârî (for example, the controlled element is S/A, which is allowed since being controllee is a Type I property in some languages, and anything can be focused or clefted), but the facts are certainly suggestive.

From the perspective of a multidimensional approach to syntax, the question of constituent structure position takes on a different complexion. Constituent structure is the overt expression of syntactic elements, and thus can be expected to reflect information about other dimensions. This leads to a problem, since different dimensions have different kinds of information and relations between elements, and it is impossible for constituent structure to simultaneously express all of them. The existence of different constituent structure patterns in different languages is expected under a parallel multidimensional approach to language: it is the consequence of differences in which dimensions of linguistic information are reflected in constituent structure. In many languages, for example, there is a flat structure with relatively free ordering, and the actual order reflects degrees of discourse prominence. In such languages, constituent structure expresses primarily aspects of information structure. Configurational languages, on the other hand, appear to design constituent structure in such a way that it is an iconic representation of grammatical functions.

The PIV is an element of a clause which is distinguished by being singled out as the element of cross-clausal continuity in a sentence. As noted earlier, this makes it similar to TOPIC, which is the function of cross-sentence continuity in a discourse. However, PIV is purely syntactic in its scope, not relating to discourse. It is thus intermediate in its scope between the local argument and adjunct functions on the one hand and the discourse-related functions on the other. The structural position of PIV reflects this intermediate status. The structural position for arguments in configurational languages is as sister to the lexical heads of which they are arguments, the closest possible structural position to the head. Adjuncts are typically adjoined to a higher node, farther away from the head. Elements bearing discourse functions are farther

\(^{15}\)Dixon does not provide any further information, so the analysis is not certain. Dixon himself concurs with the analysis that S/P is the pivot, as does Manning (1996).
still, either adjoined to IP or in \([\text{SPEC, CP}]\). The structural position typically associated with PIV, \([\text{SPEC, IP}]\), is closer to the lexical head than the place of discourse functions but farther than most adjuncts. The general picture that emerges is that configurational languages represent grammatical functions iconically in the c-structure, and the external position of the PIV is part of this iconicity. To put it slightly differently, while c-structure–centric theories take the position that structure determines function, our view is that (in configurational languages) function determines structure.

(33) Clause structure in configurational languages

This approach thus provides an explanation for what in purely c-structural theories is a stipulated property of subjects: the “external” structural position.

3.4.2. Other Clause-Internal Properties

The external position of pivot in configurational languages is an example of clause-internal properties that pivots often have. From the perspective of the theory proposed here, these can be thought of as secondary properties. Other examples are obligatoriness, wide scope, definiteness, and inflectional properties of Case marking and agreement. These properties are secondary because they are not a direct result of the cross-clausal continuity function of the pivot. Instead, by virtue of being singled out as the element of cross-clausal continuity, the pivot has a certain functional prominence relative to the other elements of the clause. The secondary properties build on, or enhance, this functional prominence. We will briefly discuss obligatoriness, wide scope, and definiteness in this section, and then turn to a more lengthy discussion of morphological properties in the following section.

Since it establishes a relation between a clause and the larger sentence in which it is embedded, many languages require every clause to have a PIV.\(^{16}\) The idea that every clause must have a “subject” is a well known stipulated principle of many theories (such as the Extended Projection Principle of modern transformational theory, the Final 1 Law of Relational Grammar, the Subject Condition of LFG). Mixed-subject languages show that it is the PIV that is required. For example, Mosel and Hovdhaugen (1992) observe that in the ergative Polynesian language

\(^{16}\)The “ambassador” metaphor mentioned in footnote 2 is appropriate here.
Samoan the A argument of a transitive clause is optional, and when omitted it is interpreted existentially (similarly to a passive agent), but the P argument (the PIV) is only omissible if derivable from context (i.e. interpreted referentially and anaphorically). That is to say, the PIV is present, even if as a null pronoun, while the non-PIV \bar{G} is not.

It has been claimed that pivots take wide scope over other elements in the sentence (Bittner 1994), or must be interpreted as definite (Schachter 1976 on Tagalog). Compare the following Inuit (from Bittner) and English sentences; the transitive $G\bar{F}$ and OBJ have opposite scopal properties in the two languages, but one can describe both by saying that the PIV must take wide scope over VP operators.

\[(34)\]
student- ERG one- ERG Juuna talk.to- PERF- NEG- IND- 3SG3SG
(i) ‘No student has talked to Juuna (yet).’
(ii) ‘One student hasn’t talked to Juuna (yet).’
\[
\text{either ‘one student’ (}$G\bar{F}$\text{) or ‘}¬\text{‘} \text{can take wide scope}
\]

\[b.\] Atuagaq ataasiq tikis- sima- nngi- la- q.
book one come- PERF- NEG- IND- 3SG
‘One book hasn’t come (yet).’
‘one book’ (}$G\bar{F}/\text{PIV}$\text{) has wide scope

\[c.\] Juuna- p atuagaq ataasiq tigu- sima- nngi- la- a.
Juuna- ERG book one get- PERF- NEG- IND- 3SG3SG
‘There is a book which Juuna hasn’t got (yet).’
‘one book’ (OBJ/PIV) has wide scope

\[(35)\]
\[a.\] One student has not talked to Juuna yet.
‘one student’ (}$G\bar{F}/\text{PIV}$\text{) has wide scope

\[b.\] One book hasn’t come yet.
‘one book’ (}$G\bar{F}/\text{PIV}$\text{) has wide scope

\[c.\] Juuna hasn’t gotten one book yet.
\[
\text{either ‘one book’ (OBJ) or ‘}¬\text{‘} \text{can take wide scope}
\]

Manning (1996) discusses these data and points to the difficulty in distinguishing between descriptions in terms of scope and definiteness. Whatever the correct description, though, this appears to be another property of PIVs. Such properties may also be due to the distinguished element status of the PIV, a way of enhancing its prominence. They also may be a consequence of the overlay status of the PIV function: a pairing of the purely syntactic status of PIV with semantic/discourse properties more commonly associated with topics.

The syntactic and semantic secondary pivot properties are less central to the theory of pivoothood, and, as mentioned above, only indirectly related to the function of the pivot. Their distribution cross-linguistically is less clear, as they have been less studied in the typological literature. Nevertheless, they provide an interesting insight into the architecture of syntax, in that they show that prominence at different dimensions are often related.

3.5. Some Morphology

We turn now to a consideration of the morphological properties of subjects. The conventional wisdom is that the PIV is unmarked for Case (nominative/absolutive) and triggers
agreement. While the conventional wisdom is right up to a point, it glosses over many details. To the extent that it is correct, it is another instance of non-syntactic enhancement of the syntactic prominence of pivots.

In the first place, the relation between unmarked Case and the triggering of agreement needs to be clarified. Case and agreement are both formal morphological devices, and they serve essentially the same function: distinguishing the core arguments of a predicate from each other. The morphological marking can be directly on the arguments, in which case we can speak of dependent marking, or Case. Alternatively, the marking can be on the verb (or on an auxiliary), in which case what is involved is head marking, cross-referencing, or agreement. Some languages use only Case, others use only agreement, while others use both. (Of course, there are also languages that use neither.)

The interesting case is languages which are primarily dependent-marking (i.e. Case languages), but in which the head is marked with agreement cross-referencing one of the elements of the clause. In such languages, the element cross-referenced on the verb is generally the element with unmarked Case. This is quite striking in Hindi-Urdu (Butt 1993): the SUBJ (GF and PIV) can be either marked with ergative Case or unmarked and the OBJ can be either marked with accusative Case or unmarked. The verb agrees with the highest ranked unmarked nominal, whether it is the SUBJ or OBJ. If there is no unmarked nominal, the verb displays default (masculine) agreement. (The agreement trigger and agreement features on the verb are bolded in the word-by-word gloss.)

(36) a. Naadyaa xat likh- tii hai.
 Nadya(F) letter(M) write- IMPF.F.SG be.PRES.3SG
 ‘Nadya writes a letter.’

b. Naadyaa ne xat likh- aa hai.
 Nadya(F) ERG letter(M) write- PERF.M.SG be.PRES.3SG
 ‘Nadya has written a letter.’

c. Naadyaa ne citthi likh- ii hai.
 Nadya(F) ERG note(F) write- PERF.F.SG be.PRES.3SG
 ‘Nadya has written a note.’

d. Naadyaa ne citthi ko likh- aa hai.
 Nadya(F) ERG note(F) ACC write- PERF.M.SG be.PRES.3SG
 ‘Nadya has written a (particular) note.’

It should be noted that the correlation is one-way: Caselessness triggers agreement, but agreement is not the trigger for Caselessness. This is clear because of the existence of sentences in which both the GF and the OBJ are unmarked; the verb only agrees with the GF in such a situation. Agreement with an unmarked argument makes good functional sense: since Case marking serves to make it easier for the hearer to match overt elements to argument positions, it is reasonable to have an alternative identification system available for something that is not so marked.

Similar effects are discernable in other languages, although not generally described in these terms. Consider the English existential construction.
Of course, (i) is grammatical.

(i) There's three hamsters in the cage.

This seems to be a matter of register; neutral third person singular agreement seems to be possible only in less formal styles of English. Since the discussion here is going to focus on whether are is grammatical, the treatment of sentences like (i) is irrelevant. An anonymous reader of this book states that in his/her idiolect, sentences like There is me are only grammatical in the same informal register that allows (i). While this does not match my intuitions (or the lack of obligatory reduction of is), I do not think it is relevant to the point being made here. For all native speakers of English I have asked, it is impossible to get the agreeing form *There am me on the existential reading in any register. (There am I may be grammatical for some as a locative construction, but that is a different sentence.) Since my claim is that agreement is impossible with a Case-marked (i.e. pronominal) post-verbal element in English existential constructions, register limitations on There is me are besides the point.

(37) a. There is/*are a hamster in the cage.
 b. There are/*is three hamsters in the cage.

When marked with Case, the postverbal position in existentials in Modern English is accusative, not nominative.

(38) a. There is him.
 b. *There is he. [* on the existential reading; ?? as locative inversion]

In English, pronouns (aside from you and it) exhibit a distinction between nominative and accusative forms; lexical nouns do not. Suppose that lexical nouns are never accusative. This would follow the usual pattern for Case split: lexical nouns are less likely to be marked accusative than pronouns. A consequence would be that, if agreement is with the nominative, we should expect to find agreement with a postverbal lexical noun but not with a postverbal pronoun. This prediction is borne out. (Since the postverbal nominal in these examples is definite, these are grammatical only on a list reading.)

(39) a. There are the linguists.
 b. There is/*are us.
 c. There is/*am me.
 d. There is/*are them.

This is an otherwise strange distribution of agreement. It would not work to say that the postverbal nominal agrees in number but not person, because the verb form is singular in all these examples. However, it follows from what seem to be principles of UG if nominals superficially unmarked for Case really are unmarked, and Caselessness triggers agreement.

One final example is Modern Hebrew, which seems to display a similar array of facts, although some of the details are murky. Like English, Hebrew does not have the usual kinds of constructions that allow one to tease apart nominative Case and subjecthood as the trigger for agreement. However, evidence can be gleaned from possessive sentences. Possessive sentences in Hebrew have the structure: ‘be’ – possessor (in the dative) – possessed.

17 Of course, (i) is grammatical.

(i) There's three hamsters in the cage.
This seems to be a matter of register; neutral third person singular agreement seems to be possible only in less formal styles of English. Since the discussion here is going to focus on whether are is grammatical, the treatment of sentences like (i) is irrelevant. An anonymous reader of this book states that in his/her idiolect, sentences like There is me are only grammatical in the same informal register that allows (i). While this does not match my intuitions (or the lack of obligatory reduction of is), I do not think it is relevant to the point being made here. For all native speakers of English I have asked, it is impossible to get the agreeing form *There am me on the existential reading in any register. (There am I may be grammatical for some as a locative construction, but that is a different sentence.) Since my claim is that agreement is impossible with a Case-marked (i.e. pronominal) post-verbal element in English existential constructions, register limitations on There is me are besides the point.

18 An interesting residual problem with the English is the status of it and you. The question is whether they, like lexical nouns, are never accusative, or whether these are simply cases of morphological syncretism, with the nominative and accusative forms coincidentally looking the same. I don't know of any way to test for the status of it, although its being always Caseless (nominative) would be consistent with the animacy hierarchy. On the other hand, the existential construction suggests that you can be accusative:

(i) There is/*are you.
This is what one would expect, given the animacy hierarchy. I would like to thank Cindy Allen (personal communication) for first suggesting to me that you may be a coincidence unrelated to the animacy hierarchy.
Two possible explanations for the uncertainty of the judgments reported by Ziv. One, Ziv's explanation, is that we are observing syntactic change in progress, and the fuzziness is a result of the transitional stage the language is in now. An alternative explanation might be the influence of prescriptive norms, which are very strong in Hebrew. Both explanations seem to me to be plausible, and in either case I think that idealizing the judgments is legitimate.

This is not the conclusion that Ziv reaches. For more discussion, see Falk (1996).

Historically, the possessed nominal was the subject. It thus was unmarked for Case and triggered agreement on the verb. Such usage is still considered normative. However, in actual spoken Hebrew, the possessed nominal appears to have been reinterpreted as an object. This means that it is marked with accusative Case; in Hebrew, accusative Case only surfaces on definite nominals.

As observed by Ziv (1976), the presence or absence of accusative Case is correlated with the absence or presence of agreement (Ziv's (11) and (17)).

If we idealize the judgments and read the question marks as asterisks, the result again clearly correlates agreement with the absence of Case.

This seems to be a common pattern in languages with dependent-marking and a limited one-argument head-marking. We therefore consider Case marking to be the central construction, and hypothesize that agreement with a single argument is often triggered by Caselessness, rather than by the marking of Case.

19Two possible explanations for the uncertainty of the judgments reported by Ziv. One, Ziv's explanation, is that we are observing syntactic change in progress, and the fuzziness is a result of the transitional stage the language is in now. An alternative explanation might be the influence of prescriptive norms, which are very strong in Hebrew. Both explanations seem to me to be plausible, and in either case I think that idealizing the judgments is legitimate.

20This is not the conclusion that Ziv reaches. For more discussion, see Falk (1996).
There are various ways this could be expressed formally. One would be to accept the idea that Case (K) is a functional category, and that Case-marked nominals are KP rather than NP or DP. Agreement could then be keyed to an absence of the K(P) category.

For more on morphologically ergative languages, see §6.3.3.4.

The Case marking facts themselves are more complex than the conventional view would have it, since the conventional view does not take into account such factors as differential marking of arguments based on such criteria as animacy and definiteness; nevertheless, it is correct in the sense that there is a clear tendency for PIVs to be unmarked for Case. Given the status of PIV as the distinguished element in the clause, often with a unique structural position, the lack of explicit dependent marking on PIV is unsurprising. Morphological identification is less important for the PIV than for other elements of the clause. A more complete approach to Case marking of core elements of the clause would include the following three (informal) constraints.

(44) a. PIV is unmarked.
 b. OBJ is unmarked if it is higher than position x on the animacy/definiteness hierarchy.
 c. OBJ is unmarked if it is lower than position y on the animacy/definiteness hierarchy.

(For more on the animacy and definiteness hierarchies, see Comrie 1989, Dixon 1994, and references cited there.) Constraints (44b,c) are responsible for morphologically ergative languages, split ergative Case marking, the absence of accusative Case on inanimate and/or indefinite objects in many nominative-accusative languages, and other Case-marking oddities related to OBJ marking. Given the richness of typological and theoretical literature on these issues, and the peripherality of these issues to our interests in the present study, there is no point in rehashing the evidence here. In different languages, the constraints are ranked differently in terms of importance. This suggests an Optimality Theoretic approach; the constraints in (44b,c) have been partially formalized in OT by Aissen (1999; 2003). For our purposes, the important point is the frequent non-marking of the PIV, a consequence of the fact that it can often be identified by other means, and the concomitant triggering of agreement in single-agreement languages.

The agreement facts in exclusively head-marking languages are also interesting. Head-marking languages typically register all core arguments on the verb, so there is not one element triggering agreement. Nevertheless, there often is an agreement affix that is triggered by the PIV. This is true, for example, in the mixed-subject (syntactically ergative) Mayan languages. Consider the following data from Quiché (Larsen 1987).

(45) a. X- at- b’iin- ik.
 PERF- 2sgABS- walk- SUFF
 ‘You walked.’
 b. X- oj- b’iin- ik.
 PERF- 1plABS- walk- SUFF
 ‘We walked’

21 There are various ways this could be expressed formally. One would be to accept the idea that Case (K) is a functional category, and that Case-marked nominals are KP rather than NP or DP. Agreement could then be keyed to an absence of the K(P) category.

22 For more on morphologically ergative languages, see §6.3.3.4.
c. X-at-qa-ch’ay-o.
PERF- 2sgABS- 1plERG- hit- SUFF
‘We hit you.’

d. X-oj-a-ch’ay-o.
PERF- 1plABS- 2sgERG- hit- SUFF
‘You hit us.’

It is clear from these examples that Quiché has agreement markers (glossed ABS) such as -at- for second person singular and -oj- for first person plural which agree with the PIV regardless of whether it is \(\text{gF} \) or OBJ, while agreement with non-PIV \(\text{gF} \) is expressed with different morphemes (-a- and -qa-).

The conclusion is that inflectional morphology often does treat PIVs differently from other elements. As observed above, this is not surprising in light of the PIV’s status as the designated element of the clause. However, such morphological effects are secondary to the syntactic properties of pivots.

3.6. Forthcoming Attractions

In the last two chapters, we have factored the traditional grammatical function subject into two distinct, and intrinsically unrelated, grammatical functions: \(\text{gF} \) and PIV. We have shown that the properties of subjects, including the split in properties that one finds in split-subject languages, follow from this analysis: properties relating to argument hierarchies are \(\text{gF} \) properties, and properties relating to elements shared between clauses are PIV properties.

In the coming two chapters, we will further flesh out this picture by focusing on the analyses of extraction and control constructions, two central types of constructions. We will show how the notions of PIV and \(\text{gF} \) provide the basis for an explanation of the observed patterns.
4.1. About Long-Distance Dependencies

In this chapter, we will discuss the nature of long-distance dependency constructions (also known as unbounded dependencies, extraction, wh movement, and Â dependencies) and their interaction with subjecthood. We will see that the theory of pivots proposed in the previous chapter, combined with certain formal aspects of LFG, explain the special status of subjects in long-distance dependencies. In doing so, we will need to delve a little deeper into technical aspects of the LFG formalism.

Despite the image long-distance dependency constructions have as the epitome of the structure-dependent construction, it has long been known that subjecthood is relevant to long-distance dependency constructions. The fact that extraction of subjects is different from other types of extraction can be shown in many ways. For example, in many languages, only subjects (PIVs) can extract (Keenan and Comrie 1977) and subjects are often resistant to being resumptive pronouns (Keenan 1976). Subjects and non-subjects behave differently in across-the-board extraction. In English, matrix subject questions do not require do support. Subject extraction has been shown experimentally to involve a lower processing load than non-subject extraction (see references in Hawkins 1999). Paradoxically, subjects also sometimes appear to be harder to extract, as in the case of the infamous that-trace effect. The formal analysis of long-distance dependency constructions should allow for an elegant account of facts of this kind. In this section, we will examine the LFG analysis of long-distance dependencies and its interaction with the theory of subjecthood being developed here. We will see that the higher ease of extracting subjects than non-subjects follows automatically. In subsequent sections we will examine other issues, such as across-the-board extractions and the that-trace effect.

4.1.1. Functional Uncertainty

It is often supposed in the transformational literature that the essence of long-distance dependency constructions is displacement: an element appears in one part of the sentence even though it is semantically interpreted in a different part of the sentence. It has even been alleged that theoretical frameworks which claim to be non-transformational have what amounts to a notational variant of displacement. Thus, Chomsky and Lasnik (1993: 525) talk about “a relation between a ‘displaced element’ and the position in which such an element is standardly interpreted… Such displacement relations are a fundamental feature of human language, which must be captured somehow. Apparent differences among alternative formulations often dissolve, on inquiry, to notational questions about how this property is expressed…” In a similar vein, Chomsky (2000: 119-120) states about displacement constructions that “[s]uch phenomena are pervasive. They have to be accommodated by some device in any adequate theory of language, whether it is called ‘transformational’ or something else.” However, this is not entirely accurate. Displacement is not an empirical observation, but rather a theoretical description based on an

1 A better, though unwieldy, name for the construction would be “potentially long-distance dependency”, since a construction of this type can involve a very local domain. We will retain the conventional name here.
Despite this, we will continue to use the term “extraction” because of its intuitive appeal. This use is current in the constraint-based literature. The reader should mentally place scare quotes around the term wherever it appears.

What lies at the heart of long-distance dependency constructions is the existence of a single element which bears two distinct functions, often in different clauses. For example, the italicized element in (47a) bears the two functions in (47b).

(47) a. \[\text{Who does Jerry think [clause2 that Elaine said [clause3 that Kramer claimed [clause4 saw Newman]]]?} \]

 b. FOCUS of clause1 and SUBJ (\(\hat{G}F + \hat{PIV} \)) of clause4

Using the same curved-line notation that we have already used to show that a single element bears two grammatical functions, this can be represented with the following f-structure.

(48)

This multifunctionality is, we believe, the observational core of long-distance dependency constructions—something every theory has to express somehow. Such a construction becomes a displacement only under two additional (and conceptually unnecessary) assumptions: first, that grammatical functions are invariably associated with specific constituent-structure positions, and second, that only argument and adjunct functions (or positions) are relevant for “interpretation”. Such assumptions lie at the heart of transformational grammar in its various incarnations, but are not part of the theoretical framework here. Without these additional assumptions, there is no reason to assume a movement (displacement) analysis.

From the perspective of the LFG formalism, a single element can have more than one function if there is a constraint (in the form of a functional equation) stating that the values of the two attributes (grammatical functions) are identical. Such constraints have already appeared in

\[\text{\footnotesize{2Despite this, we will continue to use the term “extraction” because of its intuitive appeal. This use is current in the constraint-based literature. The reader should mentally place scare quotes around the term wherever it appears.}} \]
this study in our discussions in Chapter 3 about the assignment of the PIV function and the chaining construction. In the case of the present example, the following constraint, associated with the main clause, will license who having both the upstairs FOCUS function and the downstairs PIV function, without any displacement.

\[(49) \quad (\uparrow \text{FOCUS}) = (\uparrow \text{COMP} \text{COMP} \text{COMP} \text{PIV})\]

More generally, as first observed by Kaplan and Zaenen (1989), the relation between the two functions in a long-distance dependency can be expressed as follows (where DF means grammaticized discourse function):

\[(50) \quad (\uparrow \text{DF}) = (\uparrow \text{COMP}^* \text{GF})\]

The use of the Kleene star is a formal expression of the unbounded nature of extraction: there is no principled limitation on the distance between the two functions that the extracted element has. Such expressions are referred to as functional uncertainty, as there are potentially infinite f-structures that will satisfy them (because of the Kleene star).

An analysis of this kind has several advantages over a displacement analysis of long-distance dependencies. Conceptually, it is simpler as it expresses the multifunctionality directly, without the need to refer to structural positions and movement. Empirically, as noted by Kaplan and Zaenen, one important advantage is the characterization of the path between the two functions in terms of grammatical functions. Cross-linguistic study reveals that the nature of this path varies from language to language; furthermore, grammatical functions are superior to constituent structure configurations as the description of this path. Here, we will (for the most part) abstract away from language-specific differences in the nature of the path, and simply represent the functional uncertainty equation as follows.

\[(51) \quad (\uparrow \text{DF}) = (\uparrow \text{PathGF}^* \text{GF})\]

The exact set of grammatical functions that make up PathGF will vary from language to language, resulting in different “island constraints” for different languages. Empirical evidence shows that island constraints are a matter of cross-linguistic variation; for example, while English prohibits extraction from PIV (“subject”), Tagalog requires extraction to be from PIV (Kroeger 1993). An LFG account also has no problem with multiple extractions in the same domain: some languages allow multiple focuses and topics in a single clause (modeled formally by allowing the functions FOCUS and TOPIC to take sets of f-structure elements as their values). One example of such a language is Russian, which has been discussed from an LFG perspective by King (1995).

To complete this picture, we need to consider the status of the functional uncertainty constraint (51). As we have seen, constraints in LFG are associated with nodes in the c-structure, either lexically (as parts of lexical entries) or constructionally (part of the phrase structure rules). Kaplan and Zaenen propose that the constraint is associated constructionally with the node occupied by the filler—[SPEC, CP] in the case of wh elements. However, this cannot be correct, since long-distance dependencies with no overt filler are possible. One clear example of this is the non-wh relative clause in English.

\[(52) \quad \text{a. \quad [The baby [that I think saw me]] is cute.}\]
There is no [SPEC, CP] node here with which to associate the constraint. We propose that, for English at least, the constraint is associated lexically with the verb that heads the clause. Since this is redundantly a property of every clausal head (verb), it is a clausal property.

4.1.2. Pivots and Non-Pivots

Under Kaplan and Zaenen’s formulation, the functional uncertainty expression in (51) is what licenses all long-distance dependencies. Extractions of different grammatical functions over various distances are all covered, without any need for displacement, null constituent structure, or any of the other machinery required in some other theoretical frameworks.

However, viewed from the perspective of the theory of subjecthood developed here, an additional consideration must be introduced. Recall that in Chapter 3 we formalized the nature of the PIV function by stating the Pivot Condition, which we repeat here.

(53) The Pivot Condition

 informal statement:
 A path inward through f-structure into another predicate-argument domain or sideways into a coordinate f-structure must terminate in the function PIV.

 formal statement:
 In a functional designation of the form \((\uparrow \ldots \alpha \ldots \beta \gamma)\) where \((\rightarrow \alpha_{\text{PRED ARG1}})\), or \((\phi(\leftrightarrow \ldots \beta \gamma))\) or \((\phi(\leftrightarrow \ldots \beta \gamma))\), if \(\beta\) is a grammatical function and either \(\gamma = \emptyset\) or \(\gamma\) is a feature, \(\beta = \text{PIV}\).

The functional uncertainty expression in (51) is a path inward through the f-structure. As such, it is subject to the Pivot Condition, and must terminate in the function PIV. Contrary to Kaplan and Zaenen’s view, this mode of licensing long-distance dependencies should therefore only be able to license extraction of PIV.

As first noted by Keenan and Comrie (1977), PIVs are the most easily extractable function cross-linguistically. There are languages which conform to what appears to be the prediction...
made by the Pivot Condition, and only allow $\textsc{ piv}$ to extract.\(^3\)

(54) **Tagalog** (Philippine-type; Schachter 1976)

a. Matalino ang lalaki- ng bumasa ng diyaryo.
 intelligent NOM man- LNK PERF.ACT.read ACC newspaper
 ‘The man who read a newspaper is intelligent.’

b. Interesante ang diyaryo- ng binasa ng lalaki.
 interesting NOM newspaper- LNK PERF.DO.read ERG man
 ‘The newspaper that the man read is interesting.’

c. *Interesante ang diyaryo- ng bumasa ang lalaki.
 interesting NOM newspaper- LNK PERF.ACT.read NOM man
 ‘The newspaper that the man read is interesting.’

 intelligent NOM man- LNK PERF.DO.read NOM newspaper
 ‘The man who read a newspaper is intelligent.’

(55) **West Greenlandic Inuit** (syntactically ergative, Manning 1996)

a. nanuq [Piita- p tuqu- ta- a]
 polar.bear Peter- ERG kill- TR.PART- 3SG
 ‘a polar bear that Peter killed’

b. miiraq [kamat- tu- q]
 child.ABS angry- REL.INTR- SG
 ‘the child who is angry’

c. *angut [aallaat tigu- sima- sa- a]
 man.ABS gun.ABS take- PERF- REL.TR- 3SG
 ‘the man who took the gun’

(56) **Mam** (Mayan) (syntactically ergative, Manning 1996)

a. Alkyee x- hi b’eeet?
 who REC- 3plABS walk
 ‘Who walked?’

b. Alkyee- qa x- hi tzaj t- tzyu- 7n Cheep?
 who- PL REC- 3pABS DIR 3sERG- grab- DIRS José
 ‘Who did José grab?’

c. *Alkyee saj t- tzyu 7n kab’ xiinaq?
 who REC.3sABS.DIR 3sERG- grab- DIRS two man
 ‘Who grabbed the men?’

d. Alkyee saj tzyuu- n ky- e kab’ xiinaq?
 who REC.3sABS.DIR grab- APASS 3PL- OBL two man
 ‘Who grabbed the men?’

\(^3\)In fact, as noted by Kroeger (1993) and mentioned above, in Tagalog the path has to consist only of the $\textsc{ piv}$ function. The functional uncertainty equation for Tagalog reads:

\[(\uparrow \text{DF}) = (\uparrow \text{PIV})^*\]
In more familiar tree-based terminology, outside-in corresponds to top-down while inside-out corresponds to bottom-up. The difference in terminology comes from the difference in orientation between constituent structures and functional structures, and is a useful reminder that the relationships involved are not defined on constituent structure. Since the tree-based terminology is more familiar, we will usually include it in parentheses.

Chukchee (syntactically ergative, Comrie 1979)

a. E- tip?eyge- kα- l?- in ṑewočqet ragtø- g?ø. NEG- sing- NEG- PART- ABS.SG woman.ABS.SG go.home- 3SG ‘The woman who was not singing went home.’

b. Isgær a- yoi?- kα- l?- ṑtø emn- ṑtø mαn- aqlqan- mak. NEG- reach- NEG- PART- to hill- to 1PL- go- 1PL ‘Now let us go to the hill which (someone) didn’t reach.’

c. En- agtat- kα- l?- a qaa- k ?aaček- a APASS- chase- NEG- PART- ERG reindeer- LOC youth- ERG winret- oρκαν- inet ṑewočqet- ti. help- PRES- 3sERG.3pABS woman- ABS.PL ‘The youth who does not chase the reindeer is helping the women.’

However, most languages do allow extraction of non-PIV elements as well.

To account for languages which allow non-PIVs to extract, we turn to another, independently motivated, formal tool in LFG. Since LFG functional equations are static constraints, there is no reason to limit paths through the f-structure to the inward (outside-in) ones we have seen up to this point. In principle, it should also be possible to specify paths that start on the inside and go outwards through the f-structure: inside-out paths. An inside-out path is expressed formally by placing the ‘↑’ specifying the starting position at the end of the expression. In the following examples, the starting point of the path is marked in the schematic f-structure as ‘↑’, and the ending point of the path as f.

a. outside-in path: (↑ COMP COMP OBJ) = f

\[
\begin{array}{c}
\uparrow: \begin{array}{c}
\text{COMP} \\
\text{COMP} \\
\text{OBJ} \\
\end{array} \\
\end{array}
\quad \begin{array}{c}
\text{COMP} \\
\text{COMP} \\
\text{OBJ} \\
\end{array} \quad f : []
\]

b. inside-out path: (COMP COMP OBJ ↑) = f

\[
\begin{array}{c}
\text{COMP} \\
\text{COMP} \\
\text{OBJ} \\
\end{array} \quad \begin{array}{c}
\uparrow: \begin{array}{c}
\text{COMP} \\
\text{COMP} \\
\text{OBJ} \\
\end{array} \\
\end{array}
\quad f : []
\]

Inside-out paths are a formal device needed in LFG for reasons independent of our concerns here. They have been used primarily to model anaphoric properties (Dalrymple 1993) and to formalize certain properties of bound morphemes, such as Case (Nordlinger 1998). However, they can also be used, as in Bresnan (2001) and Falk (2001), to license long-distance dependencies. To be used

4In more familiar tree-based terminology, outside-in corresponds to top-down while inside-out corresponds to bottom-up. The difference in terminology comes from the difference in orientation between constituent structures and functional structures, and is a useful reminder that the relationships involved are not defined on constituent structure. Since the tree-based terminology is more familiar, we will usually include it in parentheses.
for licensing long-distance dependencies, an inside-out expression needs to be combined with an outside-in expression designating the discourse function. Suppose that in (58b) the f-structure designated \(f \) contains a \textsc{focus}. This \textsc{focus} can be designated straightforwardly as (59a). If we wish to express this in terms of the f-structure designated \(\uparrow \), we merely substitute for \(f \) the inside-out expression from (58b), as in (59b).

\[(59)\]
\[
\begin{aligned}
\text{a. } (f \textsc{focus}) \\
\text{b. } ((\text{COMP COMP OBJ } \uparrow) \textsc{focus})
\end{aligned}
\]

The formal difference between outside-in and inside-out expressions is important because long-distance dependencies licensed by inside-out functional designation are not subject to the Pivot Condition. In outside-in (top-down) licensing of long-distance dependencies, the licensing constraint is associated with the outer (upper) clause, the clause in which the extracted item has a discourse function. Since the constraint specifies an element of an inner (lower) clause, the clause where the extracted item has a locally licensed function, the Pivot Condition restricts the lower element to \textsc{ piv}. However, with inside-out (bottom-up) licensing, the constraint is associated with the clause of the inner (locally licensed) function, so the lower grammatical function is local to the constraint. Nothing rules out the specification by such a constraint of any local grammatical function. In other words, the Pivot Condition rules out the constraint in (60), but is irrelevant to the constraint in (61). These constraints license the same f-structure, one in which the \textsc{focus} and the \textsc{obj} share a value.

\[(60)\]
\[
\begin{aligned}
\text{a. } (\textsc{focus}) = (\uparrow \text{COMP COMP OBJ}) \\
\text{b. } \left[\begin{array}{c}
\textsc{focus} \\
\uparrow \\
\text{COMP} \\
\text{COMP} \\
\text{OBJ} \\
\end{array} \right]
\end{aligned}
\]

\[(61)\]
\[
\begin{aligned}
\text{a. } (\textsc{obj}) = ((\text{COMP COMP } \uparrow) \textsc{focus}) \\
\text{b. } \left[\begin{array}{c}
\textsc{focus} \\
\uparrow \\
\text{COMP} \\
\text{COMP} \\
\text{OBJ} \\
\end{array} \right]
\end{aligned}
\]

This is because the Pivot Condition does not directly limit structures, only the constraints that license them. The independently motivated availability of inside-out functional paths thus provides a loophole to the Pivot Condition, and allows the extraction of non-\textsc{ piv}s.
We will need a sister condition, one which disallows the use of inside-out licensing to license PIV extraction.\(^5\)

(62) **Inside-Out LDD Condition**
A long-distance dependency in which the PIV function is involved may not be licensed by an inside-out constraint.

While this condition does not derive directly from the function of the PIV, it has the effect of more sharply distinguishing PIV extraction from non-PIV extraction. It is thus functional, in that it provides more distance between related but different constructions.

The availability of two systems for licensing long-distance dependencies needs additional comment. In the terminology of Chapter 3, long-distance dependency (or, multifunctionality involving a discourse function) is a notional construction, and the two directions of licensing are two distinct formal constructions. Crucially, the distinction between outside-in licensing and inside-out licensing should not be taken to be a trick of the formal notation; the claim is that language makes use of the two directions of licensing for long-distance dependency constructions, and the formalism simply provides a way to express this. Most languages make use of both formal constructions. We consider the outside-in (top-down) construction to be unmarked relative to the inside-out (bottom-up) construction. While we know of no place in the LFG literature in which this has been stated explicitly, it seems to be implicit in much of the literature. It is computationally plausible, in that inside-out designation means a later specification of information. This may also account for the higher computational load that has been found for non-subject (non-PIV) extraction.

More important to the present study is the typological consequence of the lower markedness of the outside-in licensing construction. If we take the two licensing directions to be two distinct formal constructions, then a particular language might have both, or it might have only one of them. The markedness difference suggests that languages with only one of the two formal constructions will normally have only the unmarked construction. The typological consequence is that PIV-only extraction should be a more prevalent situation than no-PIV extraction. This, of course, correlates with the findings of Keenan and Comrie (1977) and others, as already discussed. On the other hand, given the vagaries of markedness, the approach taken here leaves open the possibility that there may be languages that only make use of the more marked inside-out licensing. Such a language would disallow PIV extraction, and is predicted to be impossible under a strict reading of Keenan and Comrie. One such language is the uniform-subject language Imbabura Quechua (Cole 1982). In subordinate clauses\(^6\) in Imbabura Quechua, any element other than the subject may be extracted; the subject may not.\(^7\)

\(^5\)We will not state this condition formally because of the open question, to be discussed shortly, of the technicalities of inside-out licensing: specifically, whether or not it involves a trace. The inside-out constraint looks slightly different under the two approaches mentioned below.

\(^6\)Matrix clauses are different. We will return to this point shortly.

\(^7\)This constraint can be circumvented by pied-piping the entire subordinate clause. This is possible as an alternative for questioning non-subjects as well.
We propose that this is due to the availability of inside-out licensing and the (marked) unavailability of outside-in licensing. The existence of such a language confirms the treatment of outside-in licensing and inside-out licensing as two distinct formal constructions.

We need to discuss, albeit tangentially, the relation between inside-out designation and null constituent structure elements (empty categories or traces). To date, LFG implementations of inside-out licensing have had the inside-out constraint associated with an empty category in the constituent structure. The position of the empty category is taken to be responsible for the identification of the lower grammatical function, and its existence to be responsible for the constraint. To make this concrete, in a sentence like (64a) with the f-structure (64b), the lowest clause would have the c-structure (64c). The empty category in the c-structure, under such an analysis, is associated with the constraint (64d).
Such an analysis contrasts with one involving only outside-in licensing, in which there is no trace. While the evidence for the existence of the two different constructions is clear, and a theory which only recognizes outside-in licensing is therefore inferior, the question of the necessity of positing traces cannot be ignored. An analysis with trace has been motivated by Bresnan (1995) and Falk (2001), and argued against (within LFG) by Dalrymple, Kaplan, and King (2001). However, on closer inspection it transpires that the issue of traces is partially distinct from the question of inside-out licensing of long-distance dependencies, so the viability of the inside-out licensing analysis should not be judged on the basis of the trace question.

The fact of the matter is that inside-out licensing does not force us to use traces. An alternative method of licensing long-distance dependencies inside-out would be, as has been done in HPSG (e.g. Ginzburg & Sag 2000), to hypothesize the c-structure in (65a) and for the verb (saw in (64)) to carry the optional lexical specification (65b).

(65)

a.

b.

This would achieve the same effect, and do it without the trace. Such an account would also need to allow for the extraction of adjuncts, which in turn would require reference to adjuncts in the lexical entry of the verb, along the lines proposed in the HPSG study of Bouma, Malouf, and Sag (2001). An account of this kind is not unproblematic, however, as it is functionally inappropriate to specify adjuncts lexically. However these issues are to be resolved, the claim that non-PIV extraction is licensed inside-out is neutral on the question of traces.

To our mind, the most important consideration in the trace debate is that the trace analysis and the lexical analysis differ in their typological implications. The trace analysis predicts that,
subject to island constraints (i.e. constraints on PathGF), a language which allows inside-out licensing of long distance dependencies should allow extraction of any function. This is because if one allows phrasal positions to remain empty, the phrasal positions in question should not be constrained by grammatical function. On the other hand, the lexical analysis predicts that gaps, like null pronouns (discussed in Chapter 2), should be subject to the relational hierarchy. If it is the lexical head that determines gap status for its arguments, the relational hierarchy, in addition to island constraints, will determine the distribution of gaps. Although it has been claimed (e.g. by Keenan and Comrie 1977) that the distribution of gaps is constrained by the relational hierarchy, the evidence for this is much less convincing than the evidence for the special status of pivots. An examination of the typology of extractability is beyond the scope of the present study. Ultimately, though, such typological considerations will have to join with issues like wanna contraction (an argument for traces which has been largely debunked; Pullum 1997) and weak crossover effects (the core of Bresnan’s argument) in determining whether traces exist or not.

In any case, the question of traces in long-distance dependency constructions remains an open question, but one which is tangential to our concerns. In the remainder of this study, we will assume an implementation with empty c-structure nodes, partially for the sake of concreteness and partially because this expresses our current analytic inclination. However, readers who find empty c-structure nodes objectionable should feel free to mentally replace the analysis invoking them with a lexical account of inside-out licensing.

To conclude, PIV extraction and non-PIV extraction are licensed by different formal devices. PIV extraction is licensed by the unmarked outside-in functional uncertainty; the Inside-Out LDD Condition blocks inside-out licensing. Non-PIV extraction is licensed by the more marked inside-out functional uncertainty, with the Pivot Condition blocking outside-in licensing. Thus, as in early constraint-based theories (Gazdar 1981, Falk 1983) we draw a sharp distinction between “subject” and non-“subject” extraction, with traces only (possibly) relevant for the latter.

4.1.3. Matrix Subjects

One final point we need to address is the status of matrix subjects in extraction constructions: do matrix “extracted” subjects occupy the normal extracted position ([SPEC, CP] for wh elements) or are they in the normal subject position? The issue comes up clearly in English questions. In a subject question with an auxiliary, either c-structural analysis is plausible.

(66) a. Who will read the book?

8Here is an example of the pitfalls of typological work done on this question. The oblique functions (in LFG, the OBL family of grammatical functions) are ranked lower than the object function(s). The prediction is thus that there should be languages in which objects can extract but obliques cannot. Keenan and Comrie claim that this is the case; one of the languages they cite in this context is Hebrew. But the situation in Hebrew is more complex, and does not appear to support Keenan and Comrie’s claim. In Hebrew, as in English, oblique arguments are realized structurally as PPs, with an embedded NP as the object of the preposition. Presumably, the entire PP is the oblique argument; the embedded NP is, depending on one’s analysis, either the object of the head preposition or a co-head with the preposition. The problem is that what Keenan and Comrie mean when they say that obliques do not extract is the NP. That is to say, Hebrew disallows preposition stranding. The entire oblique PP, on the other hand, extracts as easily as an object. In fact, the same observation can be made concerning objects themselves. If they have the accusative preposition-like particle et, the et must front with the rest of the object. These facts are obscured somewhat by Keenan and Comrie’s focus on relative clauses, as opposed to other long-distance dependency constructions. Since the element extracted in a relative clause is almost always an NP, the extractability of PPs did not come up in their study. However, the object/oblique distinction appears to be the crux of the claim that extraction is governed by the relational hierarchy. Until the true status of oblique extraction is clarified, we will not know whether the relational hierarchy is or is not relevant.
For those readers who are more conversant with the constituent structures of transformational theory, I have included the transformational version of this structure (with traces of the movement of who and will) in addition to the structure assigned by the framework which underlies this study.

Either way, who will have to have a discourse function in addition to GF and PIV.

The crucial evidence comes from subject questions with no auxiliary. If the wh element is in [SPEC, CP], we would expect obligatory Do Support and Subject-Aux Inversion, placing do in the head C position. If the wh element is in subject position, on the other hand, supportive do should be possible only if the sentence is emphatic, as in ordinary declarative clauses. Since the behavior of these sentences is the same as declaratives, it suggests a non-[SPEC, CP] analysis for matrix subject extraction.

(67) [FOCUS [“who”]
 PIV
 GF
 TENSE FUT
 PRED ‘read (↑GF)(↑OBJ)’
 OBJ [“the book”]]

For those readers who are more conversant with the constituent structures of transformational theory, I have included the transformational version of this structure (with traces of the movement of who and will) in addition to the structure assigned by the framework which underlies this study.
Cole’s sentence includes two adjuncts which have been omitted here.

Two technical notes about the formulation here. First, the condition has been added to prevent a subject/discourse function element from also being assigned to a lower PIV. Second, since local DF/PIV identification is specified in situ, the path in this case has to have length of at least one; the Kleene star has been replaced by a Kleene plus.

We hypothesize that, since PIV is an overlay function, it has an affinity for other overlay functions, and can be assigned one locally.

Other languages may or may not license matrix PIV “extraction” in similar fashion. For example, we have seen (see (63) above and the accompanying discussion) that Imbabura Quechua disallows the extraction of an embedded PIV, and have conjectured that it lacks the normal outside-in licensing. However, matrix subjects can be involved in a dependency with a discourse function in the same clause (Cole 1982).¹⁰

This would follow if matrix wh PIVs can receive a discourse function in situ; the (marked) lack of outside-in licensing in Imbabura Quechua would then be irrelevant. On the other hand, Clements, McCloskey, Maling and Zaenen (1983) present evidence that matrix PIVs do extract in Icelandic, so Icelandic apparently lacks this option for matrix PIVs. This is apparently a parameter of cross-linguistic variation.

There are thus three different ways in English for a discourse function to be identified with a clause-internal function, or, alternatively, three different formal constructions corresponding to the notional construction of extraction/long-distance dependency.

¹⁰Cole’s sentence includes two adjuncts which have been omitted here.

¹¹Two technical notes about the formulation here. First, the condition has been added to prevent a subject/discourse function element from also being assigned to a lower PIV. Second, since local DF/PIV identification is specified in situ, the path in this case has to have length of at least one; the Kleene star has been replaced by a Kleene plus.
variants on these are evident in other languages, but the basic patterns are the same.

Each of these has its own formal nature, and therefore its own unique properties. There is no single set of properties for long-distance dependencies. The outside-in (top-down) construction is unbounded and restricted to PIV, the inside-out (bottom-up) construction is unbounded and limited to non-PIVs, and the matrix-subject construction is local and restricted to PIV. Languages may use one, two, or all three of these constructions.

4.2. Across-the-Board Extraction

One place where subject/nonsubject asymmetries have been observed is in across-the-board extractions in coordinate structures. In English, across-the-board extraction can involve subjects at the top level of the coordination in all clauses, or other elements in all clauses (nonsubjects and embedded subjects), but not a combination of top-level subjects and other elements.12

\[(71)\]
\[
\begin{align*}
\text{a.} & \quad \text{Who did you claim }[[\text{visited our house}] & \text{and }[\text{saw the baby}]]? \\
\text{b.} & \quad \text{What do you think }[[I \text{ brought back}] & \text{and }[\text{everyone thinks will entertain the baby}]]? \\
\text{c.} & \quad *\text{Who do you think }[[\text{the baby likes}] & \text{and }[\text{was smiled at}]]? \\
\end{align*}
\]

In order to understand how this works, and how it interacts with the theory of pivots, we need a brief overview of the analysis of coordination in LFG.

Coordination in LFG is analyzed as involving a set of f-structures (Kaplan and Maxwell 1988), licensed by the following phrase structure schema.

\[(72)\]
\[
\begin{align*}
\text{XP} & \rightarrow \text{XP}^{\ast} \ \text{CONJ} \ \text{XP} \\
\Downarrow & \uparrow \
\end{align*}
\]

It has been shown by Dalrymple and Kaplan (2000) and Dalrymple (2001) that coordinate structures have a hybrid character, being both f-structure entities in their own right and sets of f-structure entities. Conceptually, this means that, unlike sets of adjuncts, the whole coordinate structure is a functional unit just as much as the individual conjuncts. Features of coordinate structures are either distributive or non-distributive: non-distributive features are features of the coordination as a whole, while distributive features are features of the conjuncts. Grammatical functions are distributive; as we saw in Chapter 3, a grammatical function which is present once in the c-structure, above the level of the coordination, becomes part of each conjunct

\[12\text{An anonymous reader suggests that the following is not as bad as one might expect:}\
\]

(i) Who do you think the elderly will vote for and \{so/as a result\} will win the election.

I agree that the imposition of an expression like so or as a result makes the sentence much better. While I do not fully understand why this would improve the sentence, it seems likely to me that the anaphoric nature of these expressions may be involved.
functionally.

Across the board extraction of top-level subjects follows automatically. The outside-in constraint licensing PIV extraction will terminate at the coordinated complement. Essentially, the result is an f-structure like the following:

(73)

\[
\begin{align*}
\text{FOCUS} & \quad \text{["who"]} \\
\text{PIV} & \quad \text{["you"]} \\
\text{GF} & \\
\text{PRED} & \quad \text{claim } \langle (\uparrow GF)(\uparrow COMP) \rangle \\
\text{PIV} & \\
\text{GF} & \\
\text{TENSE} & \quad \text{PAST} \\
\text{PRED} & \quad \text{visit } \langle (\uparrow GF)(\uparrow OBJ) \rangle \\
\text{OBJ} & \quad \text{"our house"} \\
\text{GF} & \\
\text{TENSE} & \quad \text{PAST} \\
\text{PRED} & \quad \text{see } \langle (\uparrow GF)(\uparrow OBJ) \rangle \\
\text{OBJ} & \quad \text{"the baby"}
\end{align*}
\]

However, since PIV is a distributive attribute, this is equivalent to:

(74)

\[
\begin{align*}
\text{FOCUS} & \quad \text{["who"]} \\
\text{PIV} & \quad \text{["you"]} \\
\text{GF} & \\
\text{PRED} & \quad \text{claim } \langle (\uparrow GF)(\uparrow COMP) \rangle \\
\text{PIV} & \\
\text{GF} & \\
\text{TENSE} & \quad \text{PAST} \\
\text{PRED} & \quad \text{visit } \langle (\uparrow GF)(\uparrow OBJ) \rangle \\
\text{OBJ} & \quad \text{"our house"} \\
\text{GF} & \\
\text{TENSE} & \quad \text{PAST} \\
\text{PRED} & \quad \text{see } \langle (\uparrow GF)(\uparrow OBJ) \rangle \\
\text{OBJ} & \quad \text{"the baby"}
\end{align*}
\]

Across-the-board extraction of PIVs as in (71a) is thus straightforward.

Things get more complicated with non-PIVs. As we have seen non-PIV extraction is licensed from the lower end of the dependency by inside-out designation. In the case of coordination, this means that the path must cross from the f-structure element representing the
conjunct to the f-structure element corresponding to the coordinate structure. However, since there is no grammatical function on the path between these, no specification of PathGF will license “escaping” the conjoined structure. In the following, there is no way to specify a path from the f-structure element labeled f (the first conjunct) to the one labeled g (the whole coordinate structure). ‘↑’ marks the starting point of the inside-out designation.

(75) a. *What do you think [[I brought back e] and [everyone complained]]?
 b.
 \[
 \begin{array}{c}
 \text{FOCUS} \left[\text{“who”} \right] \\
 \text{PIV} \left[\text{“you”} \right] \\
 \text{GF} \\
 \text{PRED} \left(\text{think} \left(\left(\uparrow \text{GF} \right) \left(\uparrow \text{COMP} \right) \right) \right) \\
 \text{PIV} \left[\text{“I”} \right] \\
 \text{GF} \\
 \text{TENSE PAST} \\
 \text{PRED} \left(\text{bring} \left(\left(\uparrow \text{GF} \right) \left(\uparrow \text{OBJ} \right) \right) \right) \\
 \text{OBJ} \left[\right] \\
 \text{ADJ} \left(\left[\text{“back”} \right] \right) \\
 \\
 \text{COMP} \left[\right] \\
 \text{g:} \\
 \text{PIV} \left[\text{“everyone”} \right] \\
 \text{GF} \\
 \text{TENSE PAST} \\
 \text{PRED} \left(\text{complain} \left(\left(\uparrow \text{GF} \right) \right) \right) \\
 \end{array}
 \]

The Coordinate Structure Constraint thus follows from the LFG theory of coordination.

Now suppose that the following constraint is associated with the conjunction of the coordinate structure.

(76) \((\uparrow \text{DF}) = ((\text{PathGF*} \uparrow) \text{DF})\)

This licenses a discourse function in the coordinate structure which has the same value as a discourse function higher (or farther out) in the structure, a “cloned” discourse function.
This “cloned” DF will be distributed between the conjuncts.
This distribution of the cloned discourse function results in the across-the-board effect: each conjunct has its own internal long-distance dependency. There is nothing to block the gap from being a non-PIV or an embedded PIV. Thus, a sentence like (71b) is licensed.

However, the cloned discourse function cannot be the PIV of the same clausal level in which it is located. The outside-in functional uncertainty constraint that licenses PIV extraction requires a path of at least one member, since matrix PIVs are assigned a discourse function in situ. There is no way to license a sentence like (71c).

13This f-structure is rather busy. What here has six grammatical functions: FOCUS of the main clause, FOCUS and OBJ of the bring clause, FOCUS of the think clause, and PIV and GF of the entertain clause.
Since the FOCUS and the PIV in the second conjunct cannot be identified with each other, the second conjunct is ill-formed: the FOCUS is not properly integrated into the clause (technically, a violation of the Extended Coherence Condition) and the \hat{G}_F argument of the predicate is missing (a violation of the Completeness Condition).

Other languages have slightly different patterns. For example, according to Saiki (1985) in Japanese no subject-nonsubject combination is permitted in across-the-board extraction, regardless of degree of embedding.

(80) a. [Takashi o nagutte] [[Satoru o ketobashita] to Reiko ga
Takashi ACC hit Satoru ACC kicked COMP Reiko NOM
omotteiru] to Sachiko ga shinjiteiru] otoko
think COMP Sachiko NOM believe man
‘the man who hit Takashi and Sachiko believes Reiko thinks kicked Satoru’

b. [Takashi ga nagutte] [Reiko ga [Satoru ga ketobashita] to
Takashi NOM hit Reiko NOM Satoru NOM kicked COMP
utagatteiru] otoko
doubt man
‘the man who Takashi hit and Reiko doubts that Satoru kicked’

c. *[Takashi ga nagutte] [[[Satoru o ketobashita] to Reiko ga
Takashi NOM hit Satoru ACC kicked COMP Reiko NOM
omotteiru] to Sachiko ga shinjiteiru] otoko
think COMP Sachiko NOM believe man
‘the man who Takashi hit and Sachiko believes Reiko thinks kicked Satoru’
Earlier versions of this analysis have been outlined in Falk (2000; 2001).

Saiki proposes that the outside-in constraint (under our analysis, the one which licenses PIV extraction) is associated with the root of the relative clause.

\[
\begin{align*}
\text{(81)} & \quad \text{NP} \rightarrow S \quad \text{NP} \\
& \quad \downarrow \in (\uparrow \text{ADJ}) \quad \uparrow = \downarrow \\
& \quad (\downarrow \text{DF PRED}) = \text{‘PRO’} \\
& \quad (\downarrow \text{DF})=(\downarrow \text{GF}^*\text{PIV})
\end{align*}
\]

This analysis of Japanese differs from our analysis of English in that the licensing constraint for PIV extraction is associated with the root of the clause, not with the verb. Put slightly differently, Saiki’s analysis treats the licensing of PIV extraction as a constructional property of relative clauses, while our analysis of English treats it as a more general clausal property. This difference is plausible, since English deploys long-distance dependencies more generally than Japanese; Japanese leaves wh elements in situ, for example. We also assume, following Falk (1983), that it is possible to associate certain constraints with the conjuncts of a coordinate structure as long as it is annotated to all of them. We hypothesize that the PIV extraction constraint is one of these.

\[
\begin{align*}
\text{(82)} & \quad S \rightarrow S \quad \text{CONJ} \quad S \\
& \quad \downarrow \in \uparrow \quad (\uparrow \text{DF})=((\text{PathGF}^* \uparrow) \text{DF}) \quad \downarrow \in \uparrow \\
& \quad (\uparrow \text{DF})=\text{(PathGF}^*\text{PIV}) \\
& \quad (\uparrow \text{DF})=(\uparrow \text{PathGF}^*\text{PIV})
\end{align*}
\]

This difference results in the different judgments in English and Japanese. In Japanese, PIV extraction has to be across-the-board.

4.3. The \textit{That}-Trace Effect

One of the best known, and least understood, constraints on extraction is the “\textit{that}-trace effect.” The theory of pivots proposed here provides a new approach, one which is more principled and less arbitrary than other analyses that have been proposed. The facts are well known:

\[
\begin{align*}
\text{(83)} & \quad \text{a. I think Gabi hugged Pnina.} \\
& \quad \text{b. I think that Gabi hugged Pnina.} \\
\text{(84)} & \quad \text{a. Who do you think Gabi hugged __?}
\end{align*}
\]

\footnote{Earlier versions of this analysis have been outlined in Falk (2000; 2001).}
b. Who do you think that Gabi hugged ___?

(85) a. Who do you think ___ hugged Pnina?
b. *Who do you think that ___ hugged Pnina?

In the Government/Binding framework, this has been generally seen as a consequence of a locality condition on traces: the Empty Category Principle (ECP), which requires a trace to be “properly governed”.

(86) a.

[Diagram of a tree structure with labels for parts of speech and constituents, including CP, DP, IP, VP, think, do, who, C, C', t, e, PAST, V, hug, Pnina.]
In (86a), the subject trace is hypothesized to be properly governed, while in (86b) it is not. How to achieve this result formally has turned out to be something of a puzzle, since, under GB assumptions, there is no difference in structure between the sentence with the complementizer and the one without. Several versions of this have been proposed, such as Chomsky’s (1986) minimality-based approach to government, and Rizzi’s (1990) conjunctive statement of the ECP (antecedent government and head government) combined with relativized minimality. The essential problem with approaches of this kind is that the that-trace effect is not really a locality effect; the wh element is no more local in the absence of an overt complementizer than in its presence. The attempts to redefine locality to account for the that-trace effect are artificial.

There have been other approaches as well. For example, Ginzburg and Sag (2000) propose an analysis in HPSG, under which an extracted subject is present in the feature structure of the verb: the value of the SUBJ attribute is a gap-synsem object. (The Argument Realization Principle, which subtracts SLASH elements from the COMPS list, does not affect the SUBJ list.) The SUBJ list is passed to the VP and S which the verb heads. Unlike ordinary Ss, which have an empty SUBJ list, the S from which the subject has been extracted has this gap-synsem object in the value of its SUBJ attribute. So the subordinate S in (85) would have the following structure.
Shlonsky attributes this to *e* cliticizing to the element to its right. He claims that *e* is a “phonetic clitic” on the grounds that it is not related to another word (the way English *that* is), it cannot be contrastively stressed, and cannot occur in isolation. He then argues for the possibility of syntactic cliticization on the basis of a problematic (by his own admission) analysis of multiple *wh* constructions and on the basis of a particular analysis of free relatives in Hebrew. The argument for *e* even being a phonetic clitic is weak, as *that* is also resistant to contrastive stress and cannot occur (as a complementizer) in isolation.

Such an S cannot be complement to the complementizer *that*, which selects a finite S with an empty SUBJ list:

\[
(87) \quad S \\
\text{SUBJ} \quad \langle 1 \rangle \\
\text{COMPS} \quad \langle \rangle \\
\text{SLASH} \quad \langle 2 \rangle \\
\text{VP} \\
\text{SUBJ} \quad \langle 1 \rangle \\
\text{COMPS} \quad \langle \rangle \\
\text{SLASH} \quad \langle 2 \rangle \\
\text{V} \\
\text{SUBJ} \quad \langle 1 \rangle \\
\text{COMPS} \quad \langle 3 \rangle \\
\text{SLASH} \quad \langle 2 \rangle \\
\text{gap-ss} \\
\text{LOC} \\
\text{PNina}
\]

\[hugged\]

Like the analysis we will propose, this is a lexical analysis, not a structural one. However, it is arbitrary: it does not explain why SUBJ should be different, or why the complementizer *that* should be subcategorized for an S with an empty SUBJ list rather than just an S. Therefore, like the ECP analysis, it is inadequate.

We begin by observing that, contrary to what is generally supposed, the *that*-trace effect is a lexical property of the head complementizer. For example, as observed by Shlonsky (1988), in Hebrew the complementizer *še ‘that’* does not induce the *that*-trace effect, while *im ‘if’* does.\(^\text{15}\)

\(^\text{15}\)Shlonsky attributes this to *še* cliticizing to the element to its right. He claims that *še* is a “phonetic clitic” on the grounds that it is not related to another word (the way English *that* is), it cannot be contrastively stressed, and cannot occur in isolation. He then argues for the possibility of syntactic cliticization on the basis of a problematic (by his own admission) analysis of multiple *wh* constructions and on the basis of a particular analysis of free relatives in Hebrew. The argument for *še* even being a phonetic clitic is weak, as *that* is also resistant to contrastive stress and cannot occur (as a complementizer) in isolation.
(89) a. Mi ata xošev še xibek et Pnina?
 who you think.PRES that hug.PST ACC Pnina
 ‘Who do you think hugged Pnina?’

 b. *Mi šaalta im xibek et Pnina?
 who ask.PST.2msgSUBJ if hug.PST ACC Pnina
 ‘Who did you ask if hugged Pnina?’

A similar pattern has been claimed for some speakers of English by Sobin (1987), for whom the effect obtains with if but not with that. The existence of differences between complementizers in some languages indicates that the that-trace effect cannot be the result of some general structural principle involving complementizers, but must be an individual lexical property of specific complementizers. So the that-trace effect must be due to some marking in the complementizer’s lexical entry. This contrasts sharply with the attempt in transformational theory to make the that-trace effect be a result of structural constraints.

The second observation about the that-trace phenomenon comes from the functionalist literature: different types of complement clauses are more or less closely bound to the main clause. For example, Givón (1990: 517) divides complement-taking verbs into three classes:

Givón observes that the cognition-utterance verbs involve a weaker bond between the main clause and subordinate clause than the other two types. He also discusses different types of complements, and observes that finite complements involve a weaker bond than nonfinite. These two observations are related to each other, since verbs of cognition and utterance are more likely to take finite complements. Givón also presents a scale of syntactic complement types, from strongest bond to weakest bond:

(91) predicate-raised (e.g. let go) > bare infinitive > to infinitive > for-to infinitive > subjunctive > “indirect quote” (i.e. that) > direct quote

Our hypothesis is that the that-trace effect is a grammaticalization of these differences in clausal bond. The concept of grammaticalization is familiar from the functionalist literature: functionally motivated distinctions become fossilized in the grammar of the language. When this happens, they often lose their original functional motivation and become mere formal constraints.

From our mixed functional-formal perspective, we need to ask how Givón’s observation might be expressed formally in the grammars of languages, and thus become grammaticalized. It seems to us that there are two primary ingredients to such a grammaticalization of this functional notion of bond. The first ingredient is the concept of different types of clauses. Since the type of clause is lexicalized in the complementizer, it is plausible that properties which are a consequence of the type of clause will be encoded as lexical properties of the complementizer. Note that this means that, since (as noted above) grammaticalization tends to lose the original functional conditioning, omitting the complementizer provides a loophole to escape the properties in question. In the context of the that-trace effect, if the effect is a consequence of the higher independence of finite clauses, omitting the complementizer that should cancel the effect.
It does.

The second ingredient is the concept of the bond between main and subordinate clause. We have already identified the PIV as the element that links a subordinate clause to the clause in which it is embedded. It stands to reason, then, that the relative independence of certain types of clauses should be expressed as a limitation on the PIV; some constraint that requires the clause to have “its own” PIV, rather than a PIV which is also part of a higher clause.

We propose that the lexical entry of that includes a constraint which we can express informally as:

(92) The clause has its own PIV.

This is exactly the right thing to say about the that-trace effect: it is a property of the complementizer, and it affects the PIV. We formalize this in terms of the c-structure–f-structure mapping.16

(93) If the PIV is overtly represented in the c-structure, it must be represented in the c-structure of that’s clause.

The f-structure–c-structure mapping relation is called ϕ^{-1} in the LFG literature. We can thus restate the constraint in the lexical entry of that as:

(94) If $\phi^{-1}(\uparrow \text{PIV})$ exists, one of the nodes in $\phi^{-1}(\uparrow)$ must immediately dominate one of the nodes in $\phi^{-1}(\uparrow \text{PIV})$.

More formally, we can define an f-structure-aware notion of immediate dominance, similar to such concepts as f-precedence. We will call this the f-ID relation.

(95) For any f-structures f_1 and f_2, f_1 f-IDs f_2 ($f_1 \rightarrow_f f_2$) iff there exists a node n_1 in $\phi^{-1}(f_1)$ and a node n_2 in $\phi^{-1}(f_2)$ such that n_1 immediately dominates n_2.

We can now state the lexical constraint on that-trace complementizers formally:

(96) $\phi^{-1}(\uparrow \text{PIV}) \Rightarrow \uparrow \rightarrow_f (\uparrow \text{PIV})$

The lexical constraint (96) will be associated with different complementizers in different languages, although always taken from the bottom of Givón’s scale. Languages will differ in the extent to which the independence of subordinate clauses is grammaticalized. In standard English, that, if, and whether will all be marked with (96); in the dialects described by Sobin, only if and whether. Similarly, in Hebrew im ‘if’ will have (96) in its lexical entry, but še will not.

The c-structure and f-structure of the ungrammatical (85b) are:

16This differs from the formulation in Falk (2000). There, the formulation was purely in terms of f-structure properties, disallowing the PIV from being identical to an element in any higher clause. The reformulation here follows Falk (2002), and takes into account the common use of resumptive pronouns as a way of circumventing that-trace effects (Sells 1984).
It should be noted that this only works if there is no empty element (trace) in the lower CP corresponding to the PIV. This follows from our analysis, as PIV extraction is always licensed by an outside-in constraint; outside-in constraints do not involve traces under anybody’s conception.

As has been pointed out to me by Edit Doron (personal communication), data from mixed-subject languages would help argue that it is PIV that is relevant for the that-trace effect. Unfortunately, a search of the literature and query on the LINGUIST List (issue 13.2132, 20 August 2002) have not turned up any mixed-subject languages that have the effect.

We also note that this analysis is consistent with what is often a problem for analyses of the that-trace effect: the that relative.

In such a relative clause, the relative pronoun is not overtly expressed in the c-structure. If the relative pronoun is the PIV, as it is here, the premise of the conditional in (96) is not met. We therefore do not need any special exemptions for relative clauses in this analysis.

Most importantly, this analysis of the that-trace effect is explanatory. It combines the functionally-based observation of Givón’s with the formal/functional theory of pivothood developed here, to provide an account which does not just stipulate the effect.

4.4. Summary

In this chapter, we have seen that the special status of subjects in long-distance dependency constructions follows from the theory of pivothood. The PIV is the only subordinate
element that can be directly referred to by the unmarked outside-in functional uncertainty constraint licensing long-distance dependencies. Other elements can only be licensed as extractees through the more marked inside-out constraint. Asymmetries in across-the-board extraction follow from this distinction. Finally, the theory of pivothood provides the basis for an explanatory account of the *that*-trace effect.
CHAPTER 5
CONTROL CONSTRUCTIONS

5.1. Overview of the Issues

One of the most interesting constructions to be explained in a discussion of subject properties is the class of constructions that can be grouped under the rubric “control”. Under the most inclusive definition, control constructions are all those in which an argument of a subordinate clause is not expressed overtly, but understood either as identical with some other element (usually an element in the immediately superordinate clause) or as generic/arbitrary. The unexpressed element is the controllee, and the understood reference is the controller. Control in this sense encompasses cases where the controller is a thematic argument in its own clause (equi, or control in the narrower sense) and cases where the controller is not a thematic argument in its own clause (raising).

We take the core control constructions to be what can be referred to as complement equi, constructions in which there is a subordinate clause (generally nonfinite in languages that have a finite/nonfinite distinction) which is a complement to a verb, with one of the arguments of the subordinate clause unexpressed and understood as being coreferential with one of the arguments of the main verb. English examples include sentences such as the following:

(1) a. The student tried [to understand the material]. (understood subject of understand is the student)
b. The landlord agreed [to decrease the rent]. (understood subject of decrease is the landlord)
c. The child persuaded her father [to read another story]. (understood subject of read is her father)

When we use the term control in this chapter with no modification, we refer to constructions of this kind. Less central constructions include non-complement equi (where the subordinate clause is not a complement of the main clause) and raising.\(^1\) We will have less to say about these other constructions, especially non-complement equi.

Control, as understood here, crucially excludes constructions in which the subordinate clause has explicit marking that indicates that its subject is coreferential and/or non-coreferential with the subject of the higher clause. These constructions, usually called switch-reference, were discussed in Chapter 2 in the context of anaphoric constructions. The distinction between control and switch reference was motivated there.

The conventional wisdom is that the controllee in all control constructions must be a “subject.” In transformational theory, various explanations have been proposed for this, as consequences of the special structural position which subjects occupy combined with stipulated properties of the position and of the empty subjects. For example, the limitation of equi-type controllees to subject is attributed by Chomsky (1981) to the lack of government of the subject position, combined with the otherwise unmotivated stipulation that the empty subject PRO is a

\(^1\)We consider sentences like the following to be examples of the Raising construction, and not “Exceptional Case Marking”:

(i) Babies believe dirt [to be edible].
pronoun-reflexive hybrid (pronominal “anaphor”) and thus must be ungoverned in order to escape the conflicting demands made by Binding Theory on pronouns and reflexives. On the other hand, Chomsky and Lasnik (1993) claim that PRO carries a special abstract Case feature (called null Case) which only Equi \(r^o \) is capable of assigning. While theoretical proposals such as these may provide an analysis within the context of particular theoretical assumptions, they cannot be described as explanatory.

The interesting question in the context of the present study is whether being a controllee is a property of the \(G_F \) or a property of the PIV. Such a question cannot, of course, be answered with reference to uniform-subject languages, since it is impossible to distinguish between \(G_F \) and PIV. Examination of mixed-subject languages reveals a puzzling situation: in some the controllee in a (core) control construction is the \(G_F \) (e.g. Inuit, which we showed in Chapter 1 is a syntactically ergative language (Manning 1996) (2)) while in others it is the PIV (e.g. Balinese, which we showed in Chapter 1 is a Philippine-type language (Arka 1998) (3)).

(3) a. Ia edot [meriksa dokter]. 3 want ACT.examine doctor ‘He wants to examine a doctor.’
 b. Ia edot [periksa dokter]. 3 want DO.examine doctor ‘He wants a doctor to examine [him].’ / ‘He wants to be examined by a doctor.’
 c. *Tiang edot [dokter periksa]. 1 want doctor DO.examine ‘I want to examine a doctor.’

This difference is all the more surprising since it is the only subject property which appears not to be consistent cross-linguistically. All other properties are consistently typical of \(G_F \) or consistently typical of PIV.

In this chapter, we will show that a proper understanding of the control construction, combined with the theory developed in this study, provides an explanation for the properties of control constructions, including the apparently contradictory behavior of mixed-subject languages. The required ingredients are an interaction between semantics and syntax, and the LFG distinction between anaphoric control and functional control.

5.2. The Semantic Basis of Control

We begin by considering the semantic basis of the control construction. Although generative linguistics has a long tradition of treating control as a purely syntactic phenomenon, it is clear that semantics plays a role (as originally noted by Jackendoff 1972). The question of

\(r^o \) but crucially not the superficially identical to which heads Raising clauses, as discussed briefly in Chapter 1.
the semantic basis of control has been thoroughly examined by Sag and Pollard (1991).

Sag and Pollard observe that if control were purely a lexically-governed syntactic property, one would expect to find a fair degree of idiosyncrasy. Instead, we find a predictable system of control verbs. Sag and Pollard classify these verbs as follows in English:

(4) a. **influence verbs: the order/permit class (object controller)**
order, persuade, bid, charge, command, direct, enjoin, instruct, advise, authorize, mandate, convince, impel, induce, influence, inspire, motivate, move, pressure, prompt, sway, stir, talk (into), compel, press, propel, push, spur, encourage, exhort, goad, incite, prod, urge, bring, lead, signal, ask, empower, appeal (to), dare, defy, beg, prevent (from), forbid, allow, permit, enable, cause, force

b. **commitment verbs: the promise class (subject controller)**
promise, swear, agree, contract, pledge, vow, try, intend, refuse, choose, decline, decide, demand, endeavor, attempt, threaten, undertake, propose, offer, aim

c. **orientation verbs: the want/expect class (subject control)**
want, desire, fancy, wish, ache, hanker, itch, long, need, hope, thirst, yearn, hate, aspire, expect

They note that the following generalization holds:

(5) Given a nonfinite VP or predicate complement C, whose semantic content C' is the soa-arg of a soa whose relation is R, the unexpressed subject of C is linked to:
 A. the influenced participant of s, if R is of influence type,
 B. the committor participant of s, if R is of commitment type,
 C. the experiencer participant of s, if R is of orientation type.

That is to say, the choice of controller is based on the semantics of the control verb.

Sag and Pollard are less committal about the choice of controllee, which is the focus of our interests here. They note that there must be a syntactic component to the choice of controllee, as evidenced by sentences such as the following:

(6) a. Lee persuaded Tracy to examine Kim.
 b. Lee persuaded Tracy to be examined by Kim.

The fact that the controllee is the subject both in the active and the passive makes it clear that the only possible generalization is that the controllee is the subject of the subordinate clause. However, having said this, they proceed to observe that there are semantic constraints on the controllee, at least for some verbs. Specifically, in the case of influence (order/permit) verbs and commitment (promise) verbs, the complement must have an intentional Agent, and it is this intentional Agent which is the controllee. Where this does not happen, as in (6b), the reading

\footnote{Some of these (allow, permit, cause, force) are ambiguous; they also have a meaning where the influenced entity is not present, generally a raising verb.}

\footnote{As is standard in the HPSG literature, soa here is an abbreviation for state of affairs.}
undergoes causative coercion, as imperatives do when the Gf addressee is not an intentional Agent; (6b) means something like ‘Lee persuaded Tracy to cause herself to be examined by Kim’. Languages that do not allow causative coercion do not accept sentences like (6b), as discussed by Kroeger (1993). So the choice of controllee is determined by both syntactic and semantic factors. The situation is very similar to the addressee of imperatives, discussed in Chapter 2.

We can approach this from a slightly different perspective. Consider the lexical-conceptual representation proposed for the verb try by Jackendoff (1990).

(7) \[
\text{AFF}_{\text{vol}} ([\text{Event}])^\alpha, \text{CS}^\alpha ([\alpha], [\text{Event} \text{AFF} ([\alpha],)])
\]

The top line of this representation expresses the existence of a volitional Actor: specifically, it states that there is situation of volitional affecting (AFF\text{vol}), in which the affecting entity (Actor) is an argument (designated \(\alpha\)). The bottom line says that this \(\alpha\) instigates (or causes: CS) a further (embedded) event, with uncertain success (the \(\alpha\) superscript on CS). In this embedded event the same argument \(\alpha\) is the Actor. To paraphrase, this representation says that “a volitional actor does something, and exerts an effort towards the goal of self doing something.” The important part of this is the embedded event (i.e. the “self doing something” part, or [Event AFF ([\alpha],)]) in Jackendoff’s formal notation). This embedded event is not expressed in try’s clause; rather, it is expressed by the complement clause. The lexical conceptual representation specifies semantic identity between the Actor/Agent of try and the Actor of the subordinate clause. This relation, the semantic side of control, is inherent in the meaning of the verb try. As a result of its meaning, the verb try must appear in a syntactic context which allows semantic identity between these two elements.

Despite the differences in approach between Sag and Pollard and Jackendoff, the conclusion is the same. Control is, at its source, a consequence of the semantics of control verbs, not just a syntactic construction. By virtue of its meaning, such a verb must appear in a syntactic structure which allows coreference between the appropriate argument of the control verb and an intentional Agent in the subordinate clause.

5.3. Syntactic Types of Control

While control is based in semantics, it must be executed in the syntax. For this reason, control has both a semantic/conceptual aspect, which we discussed in the previous section, and a formal syntactic aspect. This corresponds to the distinction we made in Chapter 3 between notional constructions and formal constructions. The semantic side constitutes a notional construction, but what interests us is the nature of the formal construction(s). It is the imperfect match between notional constructions and formal constructions that results in the apparent typological complexity of the control construction.

In fact, the formal tools available for expressing the identity of argument between main verb and subordinate verb are two of the three tools available for argument sharing across
coordination discussed in Chapter 3. To review, we saw that if one wants to express a shared argument of coordinate clauses only once, there are three ways to achieve this syntactically: coordination of a subclausal constituent, such as VP, with the concomitant distribution of any higher clausal element; the use of a null (or incorporated) pronoun, or multifunctionality involving multiple clauses. In control, subclausal coordination is not available, since it is a subordination construction and therefore does not involve coordination. However, null anaphora and multifunctionality are both possible.

The use of null anaphora is illustrated by (8): the element in the subordinate clause is an unexpressed pronoun which is coindexed with the element of the main clause. This is analogous to the standard transformational analysis of control in terms of the null pronominal element PRO. Like any null pronoun, an unexpressed pronoun with control properties is licensed lexically by the verb of which it is an argument.

(8) a. The landlord agreed [to decrease the rent].
 b. [PIV INDEX i]
 [GF ‘agree (\{↑ GF\}(\{↑ COMP\})’]
 [PRED ‘decrease (\{↑ GF\}(\{↑ OBJ\})’]
 [COMP ‘the landlord’]
 [OBJ ‘the rent’]

The other possibility is cross-clausal multifunctionality. In such a case, the complement can be thought of as a kind of predicate which is predicated of the relevant element of the main clause, rather than a true propositional complement. This predicative (or open) complement has a grammatical function which is called XCOMP in the LFG literature, and the governing verb (try in this case) specifies that one of its arguments (the GF here) has an additional function in the XCOMP.

(9) a. The landlord tried to increase the rent.
 b. [PIV INDEX i]
 [GF ‘try (\{↑ GF\}(\{↑ XCOMP\})’]
 [PRED ‘increase (\{↑ GF\}(\{↑ OBJ\})’]
 [XCOMP ‘the landlord’]
 [OBJ ‘the rent’]

As already noted, we reject the idea that PRO is also a kind of reflexive anaphor. As discussed in Chapter 2, it is simply an unexpressed pronoun; there is no formal distinction between PRO and pro.
It should be noted that the availability of both of these options for control constructions is a consequence of the general LFG theory of syntax. Excluding one of them would require additional machinery in the theory. Thus, the use that we will be making of the existence of the two constructions is additional confirmation of an existing theory, not an ad hoc extension that we have made.

Work on control in LFG has recognized the existence of both of these options since the seminal study of Bresnan (1982). The anaphoric construction (8) is usually called ANAPHORIC CONTROL, and the one involving multifunctionality (9) is called FUNCTIONAL CONTROL. In a parallel-architecture theory, it is to be expected, as we have already noted, that a single notional construction type may correspond to more than one formal construction. Such a theory receives independent confirmation if it turns out that the availability of more than one formal construction results in an explanation of differing patterns of properties. We have already seen this with coordination chaining (Chapter 3) and long-distance dependencies (Chapter 4). In the case of control, too, the existence of more than one formal construction receives empirical support. We will see in the next section how it accounts for the initially puzzling behavior of control constructions in mixed-subject languages. For now, we note, following Falk (2001), that the effects are present even in English. Under the semantic analysis of Sag and Pollard (1991), as noted above, agree and try both belong to the class of commitment verbs. As a result, both require control by the committer argument; the subject of the active forms of these verbs. The semantics predicts that these verbs will have the same control properties. However, it turns out that they have different properties at the level of syntax. For example, if we passivize the verbs, the committer argument (the controller) is no longer expressed as an argument: it is either omitted or expressed as a by-phrase adjunct. In anaphoric control, this should not matter: the antecedent of a pronominal element need not be linguistically present, and if it is linguistically present, the grammatical function it bears is irrelevant. However, in functional control the controllee is identified with a linguistically expressed controller whose properties the governing verb can specify (i.e. a core argument function); if the controller is not present syntactically, the construction should be ungrammatical. The verbs agree and try differ in exactly this way. (Bresnan 1982 refers to the inability of a passive agent to be a functional controller as Visser’s Generalization.)

(10) a. It was agreed (by the landlord) to decrease the rent.
 b. *It was tried (by the landlord) to increase the rent.

As we noted in Chapter 3, null anaphora constructions can be expected to allow greater flexibility in the identity of the antecedent: anaphoric control in English allows split controllers, while functional control, naturally, does not.

(11) a. Yoni said that Michal agreed to go to the movies together. (subject of go is Yoni+Michal)
 b. *Yoni said that Michal tried to go to the movies together.

Such facts confirm the existence of both anaphoric and functional control in a single language,

7In the passive, the committer argument can be expressed as a by phrase, which we take to be an adjunct, but has also been analyzed as an oblique argument. Due to the nature of the licensing of functional control, neither an adjunct nor an oblique can be a controller; only core functions can (Bresnan 1982). As a result, the control facts are the same with or without a by phrase.
Our analysis differs from that of Arka (1998). He claims that Balinese has both functional and anaphoric control, the difference being marked (in part) by the conjunction/complementizer *apang*. However, the evidence he brings does not support this analysis. The basic difference between clauses with *apang* and clauses without is semantic: non-*apang* clauses involve a greater degree of control over the subordinate clause. In a sentence like ‘He wants to be rich’, where there is a lesser degree of control, *apang* can appear in the subordinate clause, while in a sentence like ‘He wants to eat a mango’, where there is a greater degree of control, it cannot. However, the facts of control are the same in all independently of issues of subjecthood.

5.4. Subjecthood and Control

5.4.1. General

We turn now to the question of subjecthood in control constructions. It is conventionally believed that the controllee must be a subject, but in the context of the theory proposed here the question is whether it is the *Gr* or the *PIV*. As we have seen, the evidence from mixed subject languages on this is ambiguous. We will argue here that the controllee in anaphoric control constructions is *Gr*, but it is *PIV* in functional control constructions.

In (2) and (3) above we have seen examples of control in two mixed-subject languages: Inuit and Balinese. Closer inspection shows that these two languages have different control constructions. It is observed by Manning (1996: 124 fn 41) that control in Inuit need not involve strict identity between controller and controllee, but instead can involve overlapping reference. As we have discussed, departures from strict identity are the hallmarks of anaphoric constructions, and impossible in multifunctionality constructions. In addition, it appears that passive agents (even when unexpressed) can control. While Manning’s example involves an adjunct, his surrounding discussion suggests that this is true for all cases of control.

 animal kick.about- prevent- INF- 3SG tie.up- PASS- IND- INTR- 3SG
 ‘The animal was tied up (by somebody) (PRO) preventing (it) from kicking about.’

Functional control by an unexpressed element is impossible. Control in Inuit must therefore be anaphoric control, the formal construction in which the controllee is an unexpressed anaphoric element which is coreferential with the controller. In Balinese, on the other hand, in accordance with Visser’s Generalization, passive agents cannot be controllers (Arka & Simpson 1998; Arka personal communication).

(13) a. Ci nyanjiang ia [meli montor].
 you ACT.promise he ACT.buy motor.bike
 ‘You promised him to buy a motor bike.’

b. Ia janjiang ci [meli montor].
 he DO.promise you ACT.buy motor.bike
 ‘You promised him to buy a motor bike.’

c. *Ia janjiang- a teken ci [meli montor].
 he promise- PASS by you ACT.buy motor.bike
 ‘He was promised by you to buy a motor bike.’

In addition, any unexpressed subject must be identical with an element in the governing clause (Arka 1998). Balinese control thus has the properties of the multifunctionality construction—functional control. Despite superficial appearances, then, Inuit control and Balinese control are

8Our analysis differs from that of Arka (1998). He claims that Balinese has both functional and anaphoric control, the difference being marked (in part) by the conjunction/complementizer *apang*. However, the evidence he brings does not support this analysis. The basic difference between clauses with *apang* and clauses without is semantic: non-*apang* clauses involve a greater degree of control over the subordinate clause. In a sentence like ‘He wants to be rich’, where there is a lesser degree of control, *apang* can appear in the subordinate clause, while in a sentence like ‘He wants to eat a mango’, where there is a greater degree of control, it cannot. However, the facts of control are the same in all
distinct formal constructions: anaphoric control in the case of Inuit and functional control in the case of Balinese.

We have already discussed the essentials of anaphoric control, the control construction used in Inuit, in Chapter 2. Anaphoric control involves a null pronoun, just like pro-drop. As we saw in Chapter 2, a null pronoun is licensed by the verb of which it is an argument, with a lexical specification of the following type.

\[(14) \quad (\uparrow GF) = \text{“pronominal properties”}, \text{ where } GF \text{ is chosen from a language-specific set } \Gamma \text{ of argument functions.}\]

One set of “pronominal properties” that can be specified in such a constraint is whatever properties characterize the pronominal controllee (such as capacity for arbitrary reference and dispreference for discourse antecedence). The choice of grammatical functions that can be members of the set \(\Gamma \) is governed by the relational hierarchy. As a consequence, the most likely anaphoric controllee will be \(GF \). With control, unlike ordinary pro-drop, there is little possibility that a language will allow \(\Gamma \) to go any farther down the relational hierarchy. This is because of the semantic constraints on control. As we have seen, at least two of Sag and Pollard’s three classes of control verbs require the controllee to be an intentional Agent. Since the normal mapping of Agent is to \(GF \), it makes functional sense for languages to stop at \(GF \) in specifying anaphoric controllees. In this sense, anaphoric control is similar to the imperative construction, where similar considerations apply with respect to the addressee. We thus predict that anaphoric controllees are most likely to be limited to \(GF \), and in any case will include \(GF \). As we have seen, the Inuit controllee conforms to this prediction: it must be \(GF \). To account for the Inuit example (2b) above, repeated below as (15a), the grammar of Inuit will include the lexical entry (15b); the \(f \)-structure of the sentence is (15c).

\[(15) \quad \begin{align*}
a. \quad & \text{Miiqqat [Juuna ikiu- ssa- llu- gu] niriusui- pp- u- t.} \\
& \text{children Juuna help- FUT- INF- 3SG promise- IND- INTR- 3PL} \\
& \text{‘The children promised to help Juuna.’}

b. \quad & \text{ikiussallugu} \quad (\uparrow \text{PRED}) = \text{‘help } (\uparrow GF) (\uparrow \text{OBJ}) \text{’} \\
& (\uparrow GF) = \text{“control pronominal properties”} \\
& (\uparrow \text{PIV}) = (\uparrow \text{OBJ}) \\
& \ldots
\end{align*}\]
The prediction of our theory, that anaphoric control involves a $G\widehat{F}$ controllee, is thus confirmed by Inuit: the control is anaphoric control, and the controllee is $G\widehat{F}$.

On the other hand, functional control, the control construction used in Balinese, is a lexical property of the governing verb, which specifies that one of its arguments bears an additional function as an element in the XCOMP (Bresnan 1982). Schematically:

(16) \((\uparrow \text{Controller}) = (\uparrow \text{XCOMP Controllee}) \)

The specification of the controllee here differs from anaphoric control. It is specified by the higher verb, and thus involves reference to an element of a lower clause. By the Pivot Condition, such specification can only target the PIV. The controllee in functional control must therefore be the PIV of its clause.

(17) \((\uparrow \text{Controller}) = (\uparrow \text{XCOMP PIV}) \)

This prediction is confirmed by Balinese, as we have seen with the example (3b), repeated here as (18a). The Balinese lexicon will include the entry in (18b), and the f-structure of the sentence is (18c).

(18) a. Ia edot [periksa dokter].
 3 want DO.examine doctor
 ‘He wants a doctor to examine [him].’ / ‘He wants to be examined by a doctor.’

 b. edot \((\uparrow \text{PRED}) = ‘\text{want} (\langle (\uparrow G\widehat{F})(\uparrow \text{XCOMP})\rangle)’ \)
 \((\uparrow \text{PIV}) = (\uparrow G\widehat{F}) \)
 \((\uparrow \text{OBJ}) = (\uparrow \text{XCOMP PIV}) \)
In uniform-subject languages, anaphoric and functional control cannot be distinguished by the identity of the controllee: since the same element functions as both GF and PIV, the controllee is the A argument in either case. However, in mixed-subject languages, the difference is clear.

In syntactically ergative languages which do not allow causative coercion, the use of functional control poses a potential problem. In intransitive clauses control will work as expected, at least those intransitives with agentive GF’s. With a transitive clause, however, it will be impossible to create a control construction in which both syntactic and semantic constraints can be met. The syntax will designate the PIV (OBJ) as the controllee, but since the OBJ is not agentive it is not semantically compatible with the status of controllee. This can be overcome in a language which allows causative coercion, but a language that does not allow it will have no way to produce a grammatical control construction with a transitive subordinate clause. As a result, one might expect such languages to allow control into intransitive clauses only. As we saw in Chapter 3, this is what Van Valin and LaPolla (1997) claim is the pattern in the Mayan language Jakaltek. This apparently bizarre restriction of control to intransitive clauses is less bizarre under the current theory: it is simply a consequence of an irresolvable clash between the semantic and syntactic requirements in transitive complements.

The LFG distinction between anaphoric and functional control thus allows us to explain the apparent breakdown in the otherwise predictable division of labor between GF and PIV in mixed-subject languages. It turns out that the distinction between two types of control, rather than being an embarrassment for the theory, receives confirmation from these languages, which were not considered when the theory was initially designed.

5.4.2. Case Study: Tagalog

One interesting mixed-subject language whose control constructions have been discussed in the literature is Tagalog. Tagalog is a Philippine-type language, in which the choice of PIV is marked morphologically on the verb. Although Schachter’s (1976) original description stated that the GF is always the controllee, subsequent work has made it clear that control of both GF and PIV exist in the language. The discussion here is based heavily on the very insightful analysis of various aspects of Tagalog syntax by Kroeger (1993). Kroeger’s analysis is far-reaching and covers some of the same questions we are addressing. It is expressed within the same formal framework as the present study (LFG), making comparisons easier. While we will disagree with some of Kroeger’s conclusions (Kroeger assumes a version of the inverse-mapping approach), we are heavily indebted to Kroeger. To increase readability of the Tagalog examples, subordinate clauses are bracketed; the main-clause PIV is in **boldface**; the subordinate-clause PIV is in *italics*; and the subordinate-clause GF is underlined. If any of these items is unexpressed, it is represented as “θ”.
In the usual control construction, the one described by Schachter, the controllee is the GF regardless of whether it is also the PIV. PIV-ood also has nothing to do with determining the controller.

(19) (Kroeger (2.35))

a. Um-iwas ako [-ng tumingin kay Lorna Θ].
 PERF.ACT- avoid me.NOM COMP ACT.look.at DAT Lorna
b. Um-iwas ako [-ng tingnan an si Lorna].
 PERF.ACT- avoid me.NOM COMP look.at- IO NOM Lorna
c. In-iwas an ko [-ng tumingin kay Lorna Θ].
 PERF- avoid- IO me.ERG COMP ACT.look.at DAT Lorna
d. In-iwas an ko [-ng tingnan an si Lorna].
 PERF- avoid- IO me.ERG COMP look.at- IO NOM Lorna

'I avoided looking at Lorna.'

Kroeger identifies this construction as anaphoric control. This is in accord with the theory of control proposed here, under which we expect the controllee in an anaphoric control construction to be GF, regardless of PIV choice. Taking (19b) as an example, the verb in the subordinate clause has the lexical entry (20a) and the full f-structure is (20b).

(20) a. tingnan: (↑ PRED) = ‘look.at (↑ GF)(↑OBJGoal)’
 (↑ PIV) = (↑ OBJGoal)
 ((↑ GF) = “control pronominal”)

b.

However, Kroeger denies that the controllee is selected syntactically. He claims “that the identity of the controller is determined by the lexical semantics of the matrix verb (following Sag and Pollard, 1991), and that the identity of the controllee is primarily determined by universal semantic constraints on this class of Equi constructions” (p. 39). Specifically, he argues that the
Tagalog does not have a passive construction. Since Agent always maps to \(\overrightarrow{A} \) there is no need for a syntactic constraint that requires the controllee to be \(\overrightarrow{A} \). This differs from our analysis, which claims that there are both semantic and syntactic constraints on the controllee. One possible piece of evidence in favor of a mixed syntactic-semantic approach is that the restriction to \(\overrightarrow{A} \) holds for Sag and Pollard’s class of orientation verbs as well, verbs which they claim do not impose a semantic restriction on the controllee.

Better evidence against Kroeger’s position comes from the behavior of verbs in non-volitive mood. Ordinary ("volitive") mood involves intentional action; non-volitive mood is unspecified for intentionality. Involuntary actions must be expressed with the non-volitive mood. This is illustrated in the following examples from Kroeger: in which the accidental reading of the non-volitive mood is a pragmatic inference which is unavailable for the volitive mood sentence.

\[(21)\]
\[
a. \text{Naka-}\text{um}\text{ siya ng lasun.} \\
\text{ACT.NONVOL.PERF- drink 3SG.NOM ACC poison} \\
\text{‘He [accidentally] drank poison.’}
\]
\[
b. \text{Um-}\text{um}\text{ siya ng lasun.} \\
\text{ACT.PERF- drink 3SG.NOM ACC poison} \\
\text{‘He [intentionally drank / tried to drink] poison.’}
\]

The non-volitive mood entails that the event actually took place. Notions like trying can only be expressed with the volitive mood. Crucially, control complements, since they involve intention, are normally expressed with volitive mood. However, if the governing verb does not require control, it is possible to have a non-volitive complement: the \(\overrightarrow{A} \) is then null, and receives arbitrary interpretation.

\[(22)\]
\[
a. \text{Nag-}\text{atubili si Maria[-ng ma-}bigy-\text{an }\emptyset} \\
\text{PERF.ACT- hesitate NOM Maria COMP NONVOL- give- IO} \\
\text{ng pera si Ben}. \\
\text{ACC money NOM Ben} \\
\text{‘Maria hesitated for (someone) to give the money to Ben.’}
\]

\(^9\)Tagalog does not have a passive construction.
The question is how this sentence is licensed. According to Kroeger, arbitrary interpretation (represented here as the feature [INDEX arb]) is a property of anaphoric control; pro-drop in Tagalog does not allow it.\(^\text{10}\) This unexpressed \(\overline{\text{GF}}\) must therefore be licensed by the same mechanism that licenses anaphoric control, not the constraint that licenses pro-drop. In this case, it cannot be the semantics of the control construction, because those semantics rule out control with a nonvolitive complement. It must be a syntactic specification allowing an unexpressed pronoun with control properties as \(\overline{\text{GF}}\). We hypothesize that Tagalog verbs have both of the following optional specifications:

\[(23)\]

a. \(\overline{\text{GF}}\) = “referential pronoun properties” where \(\text{GF} \in \{\overline{\text{GF}}, \text{OBJ}, \text{OBJ}_0\}\) in decreasing order of naturalness

b. \(\overline{\text{GF}}\) = “control pronoun properties” where \(\text{GF} \in \{\overline{\text{GF}}\}\)

This analysis is only possible if anaphoric control constructions are licensed syntactically (as well as semantically).

Tagalog also has a second type of control. As Kroeger (1993: 71) puts it,

certain Equi predicates allow the controllee to be either the Actor \(= \overline{\text{GF}}\) or the subject \(= \text{PIV}\) of the complement clause. But we shall see that the syntactic constraints vary depending on which of these two options is selected. Tagalog thus provides evidence for two different kinds of control relations, one involving a semantic identification of controller with controllee, the other involving a syntactic unification. This contrast is quite parallel to the distinction drawn by Bresnan (1982) between anaphoric and functional control.

In this construction, controller and controllee are both \(\text{PIV}\). The following examples show the same verb used in both constructions.

\(^{10}\)See the discussion of null pronominals in Tagalog in Chapter 2.
In the above quotation, Kroeger identifies the normal control construction with the Gf controller as anaphoric control, and the lexically-governed one with PIV controller and controller as functional control. This is in accordance with our predictions. In anaphoric control, the controller is based (at least on the syntactic side) on the relational hierarchy. In functional control (which is a lexical property of the governing predicate) the controller must be PIV. The f-structures of the sentences in (24) are:

We tentatively suggest that there is another case of functional control in Tagalog. Recall that anaphoric control complements must be in the volitive mood, since the intentionality of the Agent is required by the semantics of the governing verb. We saw that verbs that do not require control can also take non-volitive complements. Interestingly, non-volitive complements are also possible for verbs whose semantics require control. Due to the non-volitive mood, the Gf of the subordinate clause cannot be the controller. In fact, there must be an overt Gf. But some
argument other than the G_F will be controlled (with a coerced intentional-agent reading). The anaphoric control of a non-G_F argument is not licensed by the syntax of Tagalog. This suggests that the formal construction involved in these cases is functional control: a non-G_F can be functionally controlled, though, as long as it is also the PIV. As the examples below (from Kroeger) show, the controlled non-G_F argument has to also function as the PIV.\(^{11}\)

(26) a. *In-utus-an ko si Maria[-ng ma-halik-an Θ
PERF-order-IO me.ERG NOM Maria COMP NONVOL- kiss- IO
sf Pedro].
NOM Pedro
‘I ordered Maria to kiss Pedro.’
b. In-utus-an ko si Maria [-ng ma-halik-an
PERF-order-IO me.ERG NOM Maria COMP NONVOL- kiss- IO
ni Pedro Θ].
ERG Pedro
‘I ordered Maria (to allow herself) to be kissed by Pedro.’

Kroeger does not have an explanation of the restriction of the controller to PIV in this construction, which he seems to consider to be anaphoric control. If it is functional control, the restriction to PIV is automatically accounted for. We propose the following f-structure.

(27)

This differs from the previous case of functional control in that the controller here need not be the PIV, but nothing in our theory requires this.

\(^{11}\)This is also possible, optionally, for verbs that do not require control.
5.4.3. A Non-Problem in Balinese

In this section, we will discuss a potential problem for theories of control that has been raised on the basis of facts from Balinese, and show that the theory proposed here can account for these facts without any change. The material in this section is based on Arka and Simpson (1998).

Balinese, which we discussed briefly above, is a mixed-subject language of the Philippine type; that is to say, it has morphological marking on the verb overtly indicating which argument is the PIV. Unlike Tagalog, the “voice” system consists of only two forms: agentive and objective. Agentive voice, as in Tagalog, assigns the PIV function to the OBJ; objective voice assigns it to (at least) the OBJ or OBJ₂ (secondary object). Thus, in an applicative verb, the objective form of the verb allows either object to be the PIV. (In Balinese sentences, the PIV precedes the verb.)

(28) a. Ia nanem- in teban- ne kasela-kutuh.
 3 ACT.plant- APPL backyard- 3POSS cassava
 ‘(S)he planted cassava in his/her backyard.’
 b. Kasela-kutuh tanem- in=a teban- ne.
 cassava DO.plant- APPL backyard- 3POSS
 ‘(S)he planted CASSAVA (i.e. nothing else) in his/her backyard.’
 c. Teban- ne tanem- in=a kasela-kutuh.
 backyard- 3POSS DO.plant- APPL cassava
 ‘In his/her backyard, (s)he planted cassava.’

As we have seen, Balinese uses the functional control construction, and the controllee is the PIV of its clause. Here is a further example.

(29) a. Tiang tawang= a [ng- alih Luh Sari].
 me DO.know= 3 ACT- look.for Luh Sari
 ‘Of me she knew I was looking for Luh Sari.’
 b. *Tiang tawanga= a [Luh Sari alih].
 me DO.know= 3 Luh Sari DO.look.for
 ‘Of me (s)he knew that Luh Sari was being looked for by me.’

The problem Arka and Simpson raise has to do with the controlled clause itself. Theories of control identify the controlled clause as a complement; in LFG, specifically an XCOMP. Arka and Simpson claim that sentences such as (30b) are problematic for any such theory of control.

(30) a. Tiang negarang [naar ubad ento].
 me ACT.try ACT.eat medicine that
 b. [Naar ubad ento] tegarang tiang.
 ACT.eat medicine that DO.try me
 ‘I tried to take the medicine.’

In (30a), the controlled clause is some sort of complement. The alleged problem is (30b). Under Arka and Simpson’s analysis, the clause bears the SUBJ function. Theories of control do not recognize subject as a grammatical function for a core control clause; control of subject clauses is always optional control, often involving an arbitrary reading. Under the analysis proposed here, this problem does not exist. The controlled clause is the PIV of the main clause, but this has no
There is a complication which is not relevant for the issues here, but does suggest a need to enrich the LFG theory of open functions. According to Arka (1998), not all control led clauses can be PIVs,¹² a functional assignment associated with objective voice. Unlike the analysis assumed by Arka and Simpson, being PIV does not exclude the possibility of bearing the XCOMP function. The f-structure of (30b) is the following; note that the controlled clause bears the XCOMP function.

Under the approach to control and to pivothood taken here, Balinese does not pose a theoretical challenge. This is specifically a consequence of taking pivothood to be independent of argument mapping. We take such results to be confirmation of the correctness of our view of pivothood, as well as the analysis of functional control.

5.5. Other Control Constructions

5.5.1. Non-Complement Equi

We do not have much to say about non-complement control constructions. These come in two varieties: non-(X)COMP arguments (usually subjects) and adjuncts. The former should be restricted to anaphoric control, since it involves a closed-function argument. It should therefore be limited to \(\text{GF} \) controlees. For example, the following Tagalog construction, with arbitrary control, appears to be of this kind.

The controlled clause can still be analyzed as an XCOMP; in fact, it could not bear the argument function \(\text{GF} \), since the voice marking on the verb ‘try’ is objective. All we need to say is that Balinese has the (apparently unusual) property of allowing XCOM Ps to be PIVs,¹² a functional assignment associated with objective voice. Unlike the analysis assumed by Arka and Simpson, being PIV does not exclude the possibility of bearing the XCOMP function. The f-structure of (30b) is the following; note that the controlled clause bears the XCOMP function.

Under the approach to control and to pivothood taken here, Balinese does not pose a theoretical challenge. This is specifically a consequence of taking pivothood to be independent of argument mapping. We take such results to be confirmation of the correctness of our view of pivoighthood, as well as the analysis of functional control.

5.5. Other Control Constructions

5.5.1. Non-Complement Equi

We do not have much to say about non-complement control constructions. These come in two varieties: non-(X)COMP arguments (usually subjects) and adjuncts. The former should be restricted to anaphoric control, since it involves a closed-function argument. It should therefore be limited to \(\text{GF} \) controlees. For example, the following Tagalog construction, with arbitrary control, appears to be of this kind.

(32) a. Magastos [i- bili \(\theta \) ng bigas sa groseri \(\text{ang pamilya} \)].

‘It is expensive to buy rice for a family at a supermarket.’

¹²There is a complication which is not relevant for the issues here, but does suggest a need to enrich the LFG theory of open functions. According to Arka (1998), not all controlled clauses can be PIV. He distinguishes between term (core) complements and non-term (non-core) complements, with only the former having the ability to be PIV. This may mean that there is more than one open complement function, perhaps a core XOBJ and a non-core XCOMP; see Falk (2005). This does not materially change the point being made here, however.
Technically, in LFG, a violation of the Coherence Condition.

b. \[\text{[PRED `expensive $(\uparrow GF)$’]}
\[\text{[MOOD VOL]}
\[\text{[PRED ‘give $(\uparrow GF)(\uparrow OBJ)(\uparrow OBL_{Ben})$’]}\]
\[\text{[GF PRED ‘PRO’ INDEX} \text{arb]}
\[\text{[OBJ “[“rice”]”]}
\[\text{[ADJ {“at a supermarket”}]}\]
\[\text{[PIV “[“family”]”]}
\[\text{[OBL_{Ben}]}\]
\[\text{[PIV]}\]

(33) a. \text{Pinang- aakalaan si Fidel [na makakagawa}
\text{IMPERF- think.IO NOM Fidel COMP ACT.NONVOL.FUT.do}
\text{ng mabute \emptyset].}
\text{ACC good}
\text{‘Fidel is thought to be able to do something good.’}

Functional control of non-(X)COMP arguments should be ungrammatical. We therefore predict that controllee choice in these constructions should never be pivot-dependent.

Adjuncts, on the other hand, can be either closed (ADJ) or open (XADJ) (Bresnan 1982). Closed adjuncts should have GF controllees, while open adjuncts should have PIV controllees. We therefore make no prediction about adjuncts in general.

The main problem with coming to a typological conclusion about non-complement control phenomena is that much less has been said about them in the literature. Studies of non-complement control constructions in individual languages are needed to get a clearer picture of what the empirical facts are.

5.5.2. Raising

Raising is a control construction in which the controller is not a thematic argument of its verb. An anaphoric analysis is not possible, because that would leave the controller without a thematic role.\(^{13}\) Under a functional control analysis, on the other hand, since the controller and controllee are the same entity, as long as the controllee gets a thematic role there is no meaningful element in the sentence which does not receive a thematic role. Raising must therefore be analyzed as a functional control construction (Bresnan 1982, Falk 2001). The raising verb lexically requires its non-thematic argument to be identical to the subordinate clause’s PIV.

In terms of the present study, then, we would expect that the controllee in raising constructions must be PIV. So far as it can be tested (raising appears to be rare in mixed-subject languages), this is true outside of the Polynesian languages. Note the following Tagalog examples from Kroeger (1993). ((34c) is a non-Raising use of the same verb.)

(34) c. \text{Mabuti- ng [bigyan \emptyset ng pera ang mga mahihirap].}
\text{good- LNK give.IO ACC money NOM PL poor}
\text{‘It is good to give money to the poor.’}

\(^{13}\)Technically, in LFG, a violation of the Coherence Condition.
A couple of notes: one about analysis and one about notation. I am assuming, on the basis of the voice marking on the verb, that the controller is a secondary (indirect) object. As for notation, placing the function name outside of the angle brackets in the f-structure representation of argument structure indicates that it is a nonthematic argument.

The f-structures of (34a,b) are as follows:

(35) a.

Note also that the controller in the raising construction in Tagalog also must have the function of PIV. It is thus exactly the same as Tagalog functional-control Equi.

However, consideration of the discussion in the previous chapter leads us to conclude that the situation may not be quite so simple. We saw there, in discussing long-distance dependency constructions, that LFG hypothesizes a loophole to the Pivot Condition, the source of our prediction that functional controllees will be PIVs. This loophole is inside-out (bottom-up) licensing of cross-clausal identity. Since in inside-out licensing the starting point is the
controller’s clause, the Pivot Condition is inapplicable; a constraint associated with the same clause as the controller could designate anything as a functional controller. We suggested that such an option is marked, but available in principle. This leads us to expect that, while raising of PIV is the norm, there may be languages that allow raising of non-PIVs, a possibility that appears not to have been raised previously in the LFG literature. While this option appears to be relatively rare (much rarer than inside-out licensing of long-distance dependencies), inside-out functional control appears to exist in languages of the Austronesian family, primarily Polynesian languages.

In the Polynesian language Niuean (Seiter 1983; Chung and Seiter 1980), for example, GF and OBJ can both raise, although oblique arguments cannot.

(36) a. Kua kamata [ke hala he tama tāне e akau].
PERF begin SBJCT cut ERG child male ABS tree
‘The boy has begun to cut down the tree.’ (lit. ‘It has begun that the boy cut down the tree.’)

b. Kua kamata [e tama tāне] [ke hala e akau].
PERF begin ABS child male SBJCT cut ABS tree
‘The boy has begun to cut down the tree.’

c. Kua kamata [e akau] [ke hala he tama tāне].
PERF begin ABS tree SBJCT cut ERG child male
‘The tree has begun to be cut down by the boy.’

(37) a. To kamata [ke fakahū e Pita e tau tohi ki a Sione].
FUT begin SBJCT send ERG Peter ABS PL letter to PERS John
‘Peter’s going to begin sending letters to John.’ (lit. ‘It is going to begin that Peter sends letters to John.’)

b. *To kamata [a Sione] [ke fakahū e Pita e tau tohi kи ai].
FUT begin ABS John SBJCT send ERG Peter ABS PL letter to PRON
‘John is going to begin being sent letters by Peter.’

While it is not clear from the literature what the PIV is in Niuean, it cannot be the case that it is simply indeterminate, and that GF and OBJ can both serve as PIV. Languages which allow both GF and OBJ to function as PIV are Philippine-type languages, and mark the identity of the PIV morphologically on the verb. We hypothesize that in Niuean the raising verb selects the open XCOMP function, but functional control is licensed by the subordinate verb, which carries the optional lexical specification:

(38) \((\uparrow GF) = ((XCOMP \uparrow) GF') \), where GF \(\in \{ GF, OBJ \} \)

15 Some such analysis may also be appropriate for some of the cases of equi and raising in Dagesthanian languages discussed by Kibrik (1987).

16 Note that the options for controller in Niuean are taken from the top of the relational hierarchy. This is what is expected under our analysis. Since the control equation is associated with the subordinate verb, which picks one of its arguments as controller, the construction involves a verb specifying information about an argument—this should be subject to the relational hierarchy as discussed in Chapter 2.
Rotuman, related to the Polynesian languages but not itself Polynesian, allows raising of a wider variety of grammatical functions (Besnier 1988); the following examples show raising of \(\text{iF} \), OBI, and two cases of \(\text{OBL}_{\text{Goal}} \).

(39) a. Dou pæes [\(? \)e Jone] [i\(? \)ala?].
 me want OBJ Jone go
 ‘I want Jone to go.’

b. Dou pæes [\(? \)e Jone] [la \(? \)ee laket].
 me want OBJ Jone COMP you see
 ‘I want Jone to be seen by you.’

c. Dou pæes [\(? \)e Jone] [la \(? \)ee laf\(e \)ea\(se \)].
 me want OBJ Jone COMP you speak to
 ‘I want Jone to be spoken to by you.’

d. Dou pæes [\(? \)e Jone] [la \(? \)ee lala? se].
 me want OBJ Jone COMP you go to
 ‘I want Jone to go to you.’

Here again, we hypothesize that the argument sharing is licensed inside-out, and the constraint is thus associated with the clause containing the controllee.

The hypothesis that these cases of non-PIV raising involve inside-out licensing makes one expect this construction to be similar to long-distance dependency constructions, where inside-out licensing, though marked, is prevalent cross-linguistically. One interesting similarity with long-distance dependencies is the use of resumptive pronouns. For example, along with the ordinary Raising that we discussed earlier, Tagalog allows raising of a non-PIV \(\text{iF} \) if the controllee position has a resumptive pronoun. Kroeger (1993) calls this construction Copy-Raising.

(40) a. Gusto ko si Charlie [na lutu-in niya/*\(\emptyset \) ang suman].
 want me.ERG NOM Charlie COMP cook- DO 3SG.ERG NOM rice.cake
 ‘I want Charlie to cook the suman.’

b. Inasahan ko si Charlie [na bibigyan niya/*\(\emptyset \) ng pera si Linda].
 PERF.expect.IO me.ERG NOM Charlie COMP FUT.give.DO 3SG.ERG ng ACC money NOM Linda
 ‘I expected Charlie to give Linda some money.’

The verbs involved here are clearly raising verbs, and their semantics shows this: the controller is not a thematic argument of its verb. (This is also true of the examples below.) These are not ordinary anaphoric constructions. The use of a resumptive pronoun in a raising construction makes sense if the construction is licensed from the controllee position. It thus provides evidence for the inside-out licensing analysis of non-PIV raising.

Another language in which resumptive pronouns are possible in raising is the Polynesian language Tuvaluan (Besnier 1988). The sentences exemplify raising of \(\text{iF} \), OBI, \(\text{OBL}_{\text{Dir}} \), and \(\text{OBL}_{\text{Ben}} \), respectively.
In Tongan, the sole raising verb, *lava* ‘be possible, be able, manage’ is like this (Chung 1978), apparently without the resumptive pronoun option.

(41) a. Koo ttau [Niu] [o ssala (nee ia) tena manuia].
INCH must Niu COMP look for ERG he his luck
‘Niu must go and seek his fortune.’

b. Koo ttau [Niu] [o polopolooki nee ana maatua (a ia)].
INCH must Niu COMP scold ERG his parents ABS he
‘Niu ought to be scolded by his parents.’

c. Koo ttau [iaa Niu] [o faipati au ki ei].
INCH must at Niu COMP speak me to PRON
‘I must have a word with Niu.’ (lit. ‘Niu must [I speak to him].’)

d. Koo ttau [iaa Niu] [o maua mai se sulu foou moo ia].
INCH must at Niu COMP get DEICT a loincloth new BEN he
‘Niu must be given a new loincloth.’

Resumptive pronouns are optional in Tuvaluan for the raising of \mathcal{G}\textsubscript{F} and OBJ, and obligatory for OBL_{Dir} and OBL_{Ben}.

Similarly, in Samoan (a mixed-subject “syntactically ergative” language), modal verbs govern raising of the subordinate \mathcal{G}\textsubscript{F} (not the PIV)17; a resumptive pronoun is possible although dispreferred (Chung 1978). Other verbs that govern raising allow both \mathcal{G}\textsubscript{F} and OBJ to be controllee (Chung 1978; Mosel and Hovdhaugen 1992). Nothing forces a language with inside-out licensing to allow resumptive pronouns, of course, just as not all languages with inside-out licensing of long-distance dependency constructions have resumptive pronouns. However, the fact that at least some of the languages with non-PIV raising allow resumptive pronouns is significant.

The possibility of inside-out licensing of functional control, inherent in the formalism of LFG, thus seems to be realized in some languages. Nevertheless, such languages appear to be relatively rare, much rarer than languages that use inside-out licensing for long-distance dependencies. The rareness of such languages may be due to the fact that functional control is fundamentally a lexical property of the governing verb, so there is stronger functional pressure for the governing verb to provide the licensing.

5.6. Conclusion

What we have seen in this chapter is that the properties of control constructions are the result of a complex interplay between semantics and syntax. The core instance of control, complement equi, is a construction which results from the semantics of the control verb but is licensed syntactically. The availability of two different syntactic constructions, anaphoric control and functional control, results in both the \mathcal{G}\textsubscript{F} and the PIV being potential controllees. (The possibility of inside-out licensing of functional control, which allows additional possibilities, seems to be taken primarily by Austronesian languages in raising constructions.) Some languages, like Tagalog, use both constructions, while others pick one: anaphoric control in the case of Inuit, functional control in the case of Balinese. For many languages that have been discussed in the literature, there is no independent evidence available for the identity of the control construction, but it is plausible to hypothesize at this stage that other languages in which the controllee is \mathcal{G}\textsubscript{F}—such as Chukchee (Comrie 1979)—are like Inuit in using anaphoric control

17In Tongan, the sole raising verb, *lava* ‘be possible, be able, manage’ is like this (Chung 1978), apparently without the resumptive pronoun option.
exclusively, while languages in which the controllee is PIV—such as Toba Batak (Manning 1996), Indonesian (Arka & Manning 1998), Dyirbal (Dixon 1972, 1994), and Yidin’ (Dixon 1977)—are functional control languages. We are aware of no counterexamples, languages in which other evidence for the nature of the control construction clashes with our prediction as to the nature of the controller. Such languages would pose a serious challenge to the theory proposed here, but if, as seems to be the case, languages of that kind do not exist, our theory provides an explanation for the cross-linguistic distribution of controllees.

Explaining the identity of the controllee cross-linguistically is a particularly difficult challenge for theories of syntax, especially in light of the superficially puzzling behavior of mixed-subject languages. Past attempts at explaining the strong affinity of control to subjects have foundered in one way or another. Accounts in the transformational tradition posit unwarranted constituent structure and arbitrary stipulated properties, and provide no way to explain the inconsistent behavior of mixed-subject languages. Functionalist and typological accounts have typically fallen back on stipulating different pivots for different constructions, and not explaining the existence of the options which exist. Many accounts, including previous LFG analyses, simply stipulate that the subject is the controllee. The theory of subjecthood proposed here, combined with the standard LFG theory of control, allows us to explain the cross-linguistic behavior of control constructions elegantly, and with no arbitrary stipulations.
6.1. Non-Subject Languages

The question has often been raised whether the concept of subject is relevant for the grammars of all languages. As noted in Chapter 1, such a claim has been made for a class of languages which we have referred to as non-subject languages. In this chapter, we will explore the question of the universality of the subjecthood functions.

In a sense, we have already answered the question about universality of the SUBJ function in the negative. In the theory proposed here, subject is not a universal grammatical function: it is merely the intersection of the grammatical functions \(\text{SUBJ} \) and \(\text{PIV} \) in those languages (the uniform-subject languages) in which they always coincide. In mixed-subject languages there is no equivalent to the notion subject. However, this just pushes the question back a step: the same question can be asked about the functions \(\text{SUBJ} \) and \(\text{PIV} \): Are they a necessary part of the grammar of every language? In this chapter, we explore this question.

The question of the applicability of the theory we have developed here to non-subject languages has important implications for linguistic theory, and the concept of Universal Grammar. It is part of a broader question: the universality of grammatical functions in general. The conception of grammar that we have adopted here assigns grammatical functions an important role in determining the properties of syntactic constructions. If it were to turn out that there are languages in which grammatical functions can be argued not to exist, it would pose a major challenge for such a theory. An illuminating analog comes from constituent-structure-centric theories: if it can be argued (as it has been by many researchers in LFG; see Nordlinger 1998 for a recent survey) that not all languages have a constituent structure in which the subject asymmetrically \(c \)-commands the object, the potential universality of theories that require such a structural asymmetry to account for the differing properties of subjects and objects is seriously compromised. Similarly, if we argue that the properties of subjects are a result of the grammatical functions that they bear, the discovery of languages in which grammatical functions do not play a role is potentially very damaging.

On the other hand, we must be careful in evaluating claims that particular languages may lack grammatical functions (just as we must be careful in evaluating claims about lack of particular types of constituents in a particular language). Certainly, nothing in the theory presented here prevents semantic or pragmatic factors from entering into determining the properties of a particular construction; in fact, a parallel-architecture theory like LFG leads one to expect multiple dimensions of language to interact. We have already seen interactions of this kind in anaphoric binding (Chapter 2), the that-trace effect (Chapter 4), and control constructions (Chapter 5). The parallel-architecture approach to language, while clearly superior, makes the job of the typologist much more difficult.

We also must be careful not to draw conclusions which go beyond the evidence available. Consider two examples from phonological distinctive features. Not all features play a role in every language; for example, the feature \([\pm \text{distributed}] \) (or whatever feature one’s phonology uses to distinguish dentals from alveolars) is not necessary in describing the phonology of English, as there are no pairs of phonemes which are distinguished by this feature, so it does not define a natural class of English sounds. However, demonstrating that \([\pm \text{distributed}] \) plays no role in the phonology of English does not result in any questioning of the role of distinctive features per se;
it simply means that different languages deploy the features differently. The other example from phonology concerns a feature that may exist in a language but the class it defines happens not to play a direct role in the phonology of the language. Thus, if a language has labial phonemes it makes active use of the feature [labial] in defining its sounds, but there may be no phonological rule that refers to this feature. We are not then free to try to analyze the phonology of the language in such a way as to eliminate the feature [labial]. We must therefore be careful both to insure that if we discover that a particular language lacks a particular grammatical function we do not conclude that the language has no grammatical functions, and to keep the purpose of the grammatical functions in mind, and not to conclude that if a particular class of rules does not refer to a particular grammatical function that the grammatical function does not exist. The view of Universal Grammar that we take here is what Jackendoff (2002) calls the “toolbox” view.

Returning to syntax, we can draw a parallel to the earlier observation of constituent structure. If we conclude, following the literature cited, that there exist languages in which subjects and objects exist but are not distinguished by occupying distinct positions in constituent structure, we are not automatically free to conclude that constituent structure has no role to play in the grammar of the language. In fact, research in LFG has (correctly, we believe) consistently assumed that constituent structure exists in all languages, and what differs is the nature of the mapping between constituent structure positions and grammatical functions.

Part of the problem with claims about the irrelevance of grammatical functions for a particular language is that they often derive from a prejudice against syntax. Consider Van Valin and LaPolla (1997), for example. Section 6.2.1 of the book is entitled “Do all languages have grammatical relations?” The first sentence of the section reads: “The question here is quite straightforward: is it the case that in every language, one or more grammatical relations can be identified which cannot be reduced to any other type of relation, in particular to semantic or pragmatic relations?” The clear implication is that if one can do without reference to syntax-internal relations, one should. This is no better than the opposite extreme of syntactic imperialism in which many formalist syntacticians indulge. Since, under our conception of grammar, the different dimensions of language are in relations of correspondence with each other, we can expect syntactic, semantic, and pragmatic relations to roughly coincide. Our guiding assumption here is that all of these aspects of language exist, and that none has primacy over another. The question is how to disentangle the roles of the various dimensions.

One final problem with most attempts to determine whether grammatical functions are universal is a faulty conception (or no conception) of the nature of grammatical functions. In Chapter 1, we outlined several approaches to the nature of notions like subjecthood, and argued for an approach that takes the function part of grammatical function seriously. We have subsequently specified the nature of the functionality of subjects, identifying and distinguishing the functions G_F and PIV, and shown how properties of various constructions follow from the nature of these types of functionality. Our exploration of the question of universality will be based on the understanding reached in earlier parts of this study of the nature of the grammatical functions G_F and PIV.

We will conclude in this chapter that the G_F function appears to be used in all languages, while there may be languages that do not make use of the PIV function. In the course of reaching these conclusions, we will also show that some languages which have been claimed to be pivotless do, in fact, have pivots. We will discuss the typological distinction between subject-oriented and topic-oriented languages, and its relationship to pivothood. We will also provide some conjectural comments on morphologically ergative languages.
6.2. The Realization of Arguments

We begin with exploring the universality of the \mathcal{F} function. What does it mean to ask if \mathcal{F} is universal? \mathcal{F} is an argument function: the grammatical expression of an argument; specifically, the most prominent argument. Taken literally, claiming that \mathcal{F} is not universal would mean that there are languages that have no grammatical way of expressing the most prominent argument. Naturally, this is not what is meant.

Instead, the claim that has been made is that in certain languages arguments express thematic roles directly, with no need for an intermediate level of syntax (grammatical functions). These kinds of claims are made primarily for what are often called “active languages”, where the expression of the sole argument of an intransitive verb is based on whether or not it is agentive. We presented examples of active languages in Chapter 1; we repeat them here.

(1) **Manipuri**
 a. əy- ə nə cəlli
 I-ERG ran
 ‘I ran.’
 b. əy sawwi
 I got angry
 ‘I got angry.’
 c. Nuŋsit- ə nə cəlli.
 wind-ERG paper carried
 ‘The wind carried away the paper.’

(2) **Lakhota**
 a. Wa- 1sgAGT- arrive
 ‘I arrived.’
 b. Ma- 1sgPAT- bad
 ‘I am bad.’
 c. Ma- ya- 2sgAGT- kill
 ‘You kill me.’

(3) **Acehnese**
 a. Gopnyan ka= geu= jak u= keude.
 he already 3.AGT go to market
 ‘He went to market.’
 b. Gopnyan sakèt= geuh.
 he sick 3.PAT
 ‘He is sick.’
 c. Ji= kap= keuh.
 3.AGT bite 2.PAT
 ‘It’ll bite you.’
More fine-grained typological distinctions are sometimes made. For example, Dixon (1994) distinguishes between languages with semantically based marking, split-S languages, and fluid-S languages. These distinctions are largely based on Case marking/agreement. In semantically based marking, the Case marking on the nouns reflects their semantic properties in the particular event described, rather than being a grammaticalized property of the verb. In split-S languages, the arguments of transitive verbs are uniformly marked, but the marking of arguments of intransitive verbs depends on whether the verb prototypically takes agentive or non-agentive argument. In fluid-S languages the arguments of intransitive verbs are marked based on the particular event described, not grammaticalized by the verb. However, Dixon does not deny the relevance of the argument grammatical functions to the description of these languages; he merely claims that they are less important. This is an important distinction: nothing in our theory prevents morphological marking from mirroring thematic roles, informational status, or other non-syntactic properties. This does not render grammatical functions non-existent, simply irrelevant (in those languages) for specifying the morphological markings under consideration. However, we believe that Dixon has overstated the case for the irrelevance of grammatical functions.

Consider pronominal clitics in Acehnese. We presented some data from Acehnese above; we give further examples here. These examples are taken from a discussion of these clitics in Van Valin and LaPolla (1997) based on Durie (1985). The basic observation is that some arguments are registered on the verb by proclitics and some by enclitics.

(4) a. (Lôn) lôn= mat =geuh.
 1POL 1POL= hold =3
 ‘I hold him/her.’
 b. Geu= jak (gopnyan).
 3POL= go 3POL
 ‘S/He goes.’
 c. Lôn rhêt (=lôn).
 1POL fall =1POL
 ‘I fall.’
 d. *Lôn lôn= rhêt.
 1POL 1POL= fall
 ‘I fall.’

The descriptive question is how to characterize which arguments trigger proclisis and which enclisis. The description preferred by Durie and by Van Valin and LaPolla is to say that the syntax makes direct reference to the thematic roles: proclitics are Agents and enclitics are Patients. Such a description allows one to avoid reference to grammatical functions. However, this is not the only possible way to describe the situation. Suppose, as we suggested in Chapter 2, that active languages differ from the more familiar variety in that, instead of mapping their arguments as in (5a), they map them as in (5b).

1Again, as in Chapter 2, we are using an informal description of argument mapping. Within a framework like LFG’s Lexical Mapping Theory, this could be formalized by requiring [−r] arguments to follow the default mapping to grammatical functions ([+o]) instead of allowing them to map to [−o] as an alternative.
In multistratal theories like GB and RG, something like this is assumed for the initial mapping of arguments to the syntax even in languages like English, with a subsequent advancement or movement of the object to subject. This is what is often referred to as the Unaccusative Hypothesis, essentially the claim that underlyingly all languages are active.

(5) a. The highest available argument maps to the highest available grammatical function, the next argument to the next grammatical function, and so on.

b. The highest argument role maps to the highest grammatical function, the next argument to the next grammatical function, and so on. Grammatical functions whose corresponding argument role is missing are skipped.

Under this sort of active argument mapping, an Agent (as in non-active languages) is predictably \(\mathrm{GF} \), since Agent is the highest thematic role, but, unlike in non-active languages, a Patient (the second role on the thematic hierarchy) maps to the second grammatical function on the relational hierarchy: \(\mathrm{OBJ} \). If this is the correct description of Acehnese, the lexical entries of the verbs will include the following arguments.

(6) a. ‘hold († \(\mathrm{GF} \)) († \(\mathrm{OBJ} \))’

b. ‘go († \(\mathrm{GF} \))’

c. ‘fall († \(\mathrm{OBJ} \))’

The agreement clitics can now be described in terms of grammatical functions: \(\mathrm{GF} \) triggers proclisis and \(\mathrm{OBJ} \) triggers enclisis.

(7) \[
V' \rightarrow \quad \mathrm{CL} \quad V \quad \mathrm{CL} \\
(\uparrow \mathrm{GF}) \; =\downarrow \; =\uparrow =\downarrow \; (\uparrow \mathrm{OBJ}) \; =\downarrow
\]

The difference between these two descriptions is primarily a theoretical question. And the center of the theoretical issue goes back to the question of what kind of entity “subject” is, an issue we addressed in Chapter 1.

In Chapter 1, we drew a distinction between the concepts of grammatical relation and grammatical function, and argued that the latter is preferable. It is significant that the approaches that deny the need for notions like “subject” and “object” for languages like Acehnese are based on a notion of grammatical relations rather than grammatical functions. The question they ask is what kind of relations the agreement clitics mark, and the conclusion they come to is that they mark thematic relationships.

From our “grammatical functions” perspective, the question is different. We start by observing that there is some syntactic element which functions to express the Agent argument of a verb. There is also some syntactic element which functions to express the Patient argument of a verb. This differs from the situation in English, where the relation between thematic role and syntactic expression is less direct. The question, then, concerns the functional nature of these elements. They are either core functions or obliques. As we saw in Chapter 2, the core/non-core distinction expresses a difference in the syntactic nature of the expression of arguments. Obliques
are little more than grammaticalizations of thematic roles; we can thus come close to replicating the Durie/Van Valin-LaPolla answer by hypothesizing that in Acehnese, Agents and Patients, like other arguments, map to the syntax as obliques: OBL-Agent and OBL-Patient in standard LFG terminology. Such analysis would retain the flavor of their conclusion, but without completely denying the existence of syntax-specific functions.

We are thus faced with two possible analyses of argument mapping in Acehnese: one in which Agents map to \(G\) and Patients to OBJ, and one in which both map to obliques. The distinction between these analyses is empirical; if Agents and Patients have special properties as core functions, the \(G\)/OBJ analysis is to be preferred, while if they do not the oblique analysis is preferable. Note that if Agents and Patients have core-function properties, one could choose to call these functions AGT and PAT, but as far as the syntax is concerned, these are the same functions that we have been calling \(G\) and OBJ. They just map to the semantics differently. We prefer to retain the more consistent terminology for the grammatical functions in question.

Durie (1985) refers to Agents and Patients (and some “Datives”, which we assume are secondary objects, or OBJ\(_{Goal}\)) as core arguments. Core arguments in Acehnese are distinguished by certain syntactic characteristics. They need not be marked by a preposition, and they can occur in preverbal position. The unmarked core arguments (Agent and Patient) trigger agreement clitics on the verb, while other arguments (including core Datives) do not. The unmarked core arguments can incorporate into the verb, and they can also be null pronouns. The empirical evidence shows, then, that the syntax of Acehnese must distinguish between core argument functions and oblique argument functions.

We conclude, therefore, that Acehnese cannot be described as realizing thematic roles directly in the syntax. The syntactic distinction between core and non-core arguments is no less a part of the syntax of Acehnese than of other languages, and argument expression in Acehnese makes use of the grammatical functions \(G\), OBJ, and OBJ\(_0\). We leave open the question of whether all non-subject languages are like Acehnese. There may be languages in which all arguments are mapped to the syntax as obliques, but we suspect that a closer look at other languages which have been claimed not to have subjects will reveal facts parallel to those in Acehnese. If this suspicion is correct, then all languages have the \(G\) function.

There is another sense in which subjects are sometimes thought to be universal. Most theories of syntax include a principle that requires every clause to have a subject, such as the Extended Projection Principle of transformational theory, the Final 1 Law of Relational Grammar, and the Subject Condition of LFG. At least in some formulations (including in LFG), this is specifically a requirement for subject as an argument, i.e. \(G\). Such a principle is appropriate for some languages, like English, but clearly not for others, like Acehnese. In this sense, \(G\)-hood is not universal.

It is interesting that Van Valin and LaPolla assume that if there is a subject argument function, the sole argument of an intransitive must be subject. They consistently argue that a syntactic account of various phenomena would mean that Patient arguments of intransitives would have to pattern with Agents. That is to say, they assume, in our terms, that universality -

3This is the intuition behind the idea in Jackendoff (2002) that f-structure should only include the core grammatical functions. On the other hand, we reject Jackendoff’s actual proposal, since obliques are syntactically active at the functional level.

4To put it slightly differently, if one chose to call these core grammatical functions AGT and PAT in Acehnese, one would have to do so for English as well, and say that the sole argument of an intransitive bears the grammatical function AGT regardless of its thematic role. The distinction between AGT/PAT and \(G\)/OBJ is purely notational.
requires that every verb have a C function. But there is no basis for such an assumption. Hypothesizing that a language has the C function does not entail that every verb has a C argument, any more than hypothesizing that a language has the OBJ function entails that every verb has an OBJ argument.

6.3. Universality of the Pivot Function

6.3.1. Case Study: Acehnese

Universality of PIV is a more complicated question than universality of C. Argument functions are necessary because every language needs a syntactic tool to express arguments. Unlike argument functions, however, there is no reason in principle that every language has to have a PIV. Conceptually, then, the possibility of pivotlessness is less problematic than Clessness. However, as in the case of argument functions, a closer look is necessary to determine whether a particular language has a PIV or not.

We begin by taking another look at Acehnese, a language which has frequently been cited as not having a PIV (for example, by Dixon 1994 and Van Valin and LaPolla 1997). Durie (1987) puts it as follows.

[I]t turns out that in Acehnese there is a dearth of evidence for what one might call a subject. The sense of subject I have in mind here is a syntactic relation which can be identified, from language-internal structures, as that borne by the single argument of an intransitive predicate, and by one of the two arguments of a transitive predicate, in short, a relation which is present in all or most clauses…. I will term a relation of this kind a SUBJECT. (Durie 1987: 365)

In a theory-driven formal analysis of the Acehnese facts, the conclusion developed here might seem untenable. It might turn out that for a theory which requires an analogue of the SUBJECT relation, as defined here, the properties of Core Status would have to be described by means of such a relation. However that, I suggest, would be a projection from the theory, not from the facts of Acehnese. (Durie 1987: 396 fn 24)

We disagree with the view expressed here by Durie, and suggest that what he refers to as Core Status can be shown to be intimately tied up with the PIV function on the basis of “the facts of Acehnese”. However, as we will see, there is an interesting typological difference between pivothood in Acehnese (and probably in many other non-subject languages) and pivothood in uniform- and mixed-subject languages. It is lack of appreciation of this difference that has led some researchers, including Durie, to miss the evidence of pivots in Acehnese.

We begin with a consideration of word order in Acehnese. The language is essentially verb-initial, but optionally one argument of the verb can precede it. We mentioned this fact in passing in the previous section as one of the properties that distinguish core from non-core arguments in Acehnese: only core arguments (Durie’s Agent, Patient, and Dative; our C, OBJ, and OBJgoal) can be initial (examples from Durie 1987; 1988).

(8) a. Gopnyan ka geu= cóm lòn.
 3POL INCH 3POL= kiss 1POL
 ‘She kissed me.’

5If an “Agent” is postverbal, it is marked with the particle lê, which, following Durie (1988), is here glossed as ergative Case.
This preverbal element has some sort of discourse-level prominence, generally marking topic. Since it must be a core argument and is generally a topic, Durie calls it Core Topic. Our claim is that the Acehnese Core Topic is actually the PIV. We thus propose the following f-structures for (8a,b).

Under this analysis, Acehnese bears some resemblances to the Philippine-type languages; different elements can bear the PIV function. Unlike the Philippine-type languages, however, the identity of the PIV is not morphologically encoded on the verb. We will discuss the nature of pivot choice in Acehnese in the following section.

Our analysis of Core Topic as PIV is supported by the properties of Core Topics, as described by Durie. Crucially, Core Topics display the same properties that PIVs have in other languages. Core Topichood does not matter for anaphora, which is subject to the thematic and relational hierarchies (which in Acehnese are the same) but for which PIVhood is irrelevant. It
is also irrelevant for pro-drop, which is relatively free, and for equi controllee, which is limited to the Agent/GF argument, which, as we have seen, is one of the options made available by our theory. (By hypothesis, control in Acehnese is thus anaphoric control.)

However, Core Topichood is relevant for raising and extraction constructions. In Raising, the raised element is the “Core Topic” of the upstairs clause, and there is no (overt) “Core Topic” in the downstairs clause. This is exemplified in the following, from Durie (1987).

(10) a. Gopnyan teuntée [geu= woe].
 3POL certain 3POL= return
 ‘(S)he is certain to return’

b. Gopnyan teuntée [meungang =geuh].
 3POL certain win =3POL
 ‘(S)he is certain to win.’

c. Gopnyan teuntée [geu= beuet hikayat prang sabi].
 3POL certain 3POL= recite epic Prang Sabi
 ‘He is certain to recite the Prang Sabi epic.’

d. Hikayat prang sabi teuntée [geu= beuet].
 epic Prang Sabi certain 3POL= recite
 ‘The epic Prang Sabi is certain to be recited (by him).’

The apparent obligatory lack of an overt Core Topic cannot be attributed to the agreement being an incorporated pronoun, since overt free subject pronouns are permitted as an option in Acehnese. It can be explained if we hypothesize that the Core Topic is the raising controllee. Under our theory, this would make it the PIV. As for the controller, while the theory does not require it to be PIV, we have seen that Tagalog has this property too. The lexical entry of ‘certain’ is (11a), and the f-structures of (10c,d) are (11b,c).

(11) a. teuntée:
 (↑ PRED) = ‘certain ((↑ XCOMP) (↑ GF))’
 (↑ PIV) = (↑ CF)
 (↑ PIV) = (↑ XCOMP PIV)

b. [PIV]
 [PRED ‘PRO’]
 [PERS 3]
 [HON POL]
 [TOPIC]
 [GF]
 [XCOMP]
 [PRED ‘recite ((↑ GF)(↑ OBJ))’]
 [GF]
 [OBJ [“epic P.S.”]]
Relative clauses display a similar pattern: no overt Core Topic.

(12) a. Gopnyan geu= bloe moto nyan.
 3POL= buy car that
 ‘(S)he bought that car.’

b. Lôn= ngieng ureung [nyang= bloe moto nyan].
 1POL= see person REL= buy car that
 ‘I saw the person who bought that car.’

c. *Lôn= ngieng ureung [nyang= moto nyan (geu=) bloe].
 1POL= see person REL= car that 3POL= buy
 ‘I saw the person who bought that car.’

d. Lôn= ngieng moto [nyang= geu= bloe lê ureueng nyan].
 1POL= see car REL= 3POL= buy ERG person that
 ‘I saw the car that was bought by that person.’

e. *Lôn= ngieng moto [nyang= ureueng nyan geu= bloe].
 1POL= see car REL= person that 3POL= buy
 ‘I saw the car that was bought by that person.’

If we analyze the Core Topic as PIV, the lack of overt Core Topic is once again explained, and Acehnese turns out to be like other Austronesian languages in only allowing extraction of PIV.

The Acehnese Core Topic has other PIV-like properties. One is suggested by its linear position. Acehnese clauses are basically verb-initial, but the Core Topic precedes the verb. Plausibly, the basic verb-initial clause is a constituent, to which the Core Topic is a sister:

(13)

The Core Topic thus appears to have an external structural position, which we have seen is a property of PIV in many languages. In addition, it is not Case-marked (most striking with the GF, which is Case-marked lê if it is not the Core Topic), like PIVs in many languages. So, contrary
to claims that have been made to the contrary, Acehnese turns out to have a pivot, but it can be any core argument, it is not obligatory, and it is also a discourse topic.

6.3.2. Topic Prominence

While non-subject languages like Acehnese do seem to have pivots, there is a major difference between the nature of pivots in these languages and in more “conventional” languages, both uniform-subject and mixed-subject.

In uniform- and mixed-subject languages, pivot is identified with some argument function. It is the nature of this argument function that distinguishes these two types of languages. In Acehnese, as we have seen, this is not the case: Acehnese thus cannot be identified as either a uniform-subject language or a mixed-subject language. Instead, the pivot in Acehnese has two properties: it has one of the core argument functions, and it bears a discourse function, usually topic. We will focus on the second of these here, and propose that the grammar of Acehnese specifies the following constraint as part of the lexical entry of every verb.

\[
(14) \quad (\uparrow \text{PIV}) = (\uparrow \text{DF})
\]

We would like to suggest that this specification is part of the grammar of what Li and Thompson (1976) refer to as ‘topic prominent’ (as opposed to “subject prominent”) languages.

As described by Li and Thompson, languages can be organized on either a subject-predicate or topic-comment basis. Some of the differences that they identify between subjects and topics are the following:

\[
(15) \quad \text{Topics must be definite, subjects need not be.}
\]
\[
\text{Topics need not be arguments, subjects must be}
\]
\[
\text{Verb determines subject, not topic}
\]
\[
\text{Topic has a consistent discourse role, subject doesn’t}
\]
\[
\text{Verb agrees with subject, not topic}
\]
\[
\text{Topic always sentence-initial, subject not in all languages}
\]
\[
\text{Subject plays a role in grammatical processes (reflexives, passive, equi, serial verbs, imperatives)}
\]

Topic prominent languages, according to Li and Thompson, have consistent coding for topic, but not necessarily subject (Japanese and Korean have both: Japanese wa marks topics and ga marks subjects). They may have what appears to be a double subject construction, where both the topic and the subject are in specifier positions preceding the rest of the clause. Most interestingly, in topic prominent languages, the topic need not be locally licensed (i.e. either an argument or an adjunct).

Our proposal is that Li and Thompson’s topic prominence is a combination of two distinct properties. One of them is the possibility of a topic that is not locally licensed, as in the following examples from Li and Thompson.

\[
(16) \quad \begin{align*}
\text{a. Lahu} \\
\text{[He ὄ tē pē?] 5 dā? já.} \\
\text{field this one CLASS rice very good}
\end{align*}
\]

‘This field, the rice is very good.’
b. **Mandarin**

[Nei-chang huó] xíngkuí xiǎofang- dui lai de kwái.
that- CLASS fire fortunate fire- brigade come PART quick
‘That fire, fortunately the fire-brigade came quickly.’

c. **Korean**

now- TOP school- NOM many
‘The present time, there are many schools.’

d. **Japanese**

school- TOP I- NOM busy- PST
‘School, I was busy.’

We propose that in topic prominent languages in this sense discourse functions do not need to be identified with a locally licensed function; formally, the part of the Extended Coherence Condition that deals with discourse functions is inactive in these languages. Thus, for example, the Japanese sentence in (16d) has the following f-structure.

```
(17)  

[TOPIC [“school”]]  

PIV [“I”]  
PRED ‘busy (↑ GF)’  
[PREMSE PAST]
```

This f-structure would be ungrammatical in a non-topic-prominent language like English. In a topic-prominent language, it is possible for the **TOPIC** to be identified with an argument, but not necessary.⁶

There is a second aspect to Li and Thompson’s topic prominence, which is the one which is relevant to our present concerns. This is the fact that in many of these languages (roughly, the ones Li and Thompson identify as exclusively topic prominent), the topic has properties that we have identified in this study as pivot properties. These two topic-prominent properties do not always coincide: in languages like Japanese the non-locally-licensed topic does not have pivot properties, and in Acehnese the topic must be locally licensed. It is in this second sense that Acehnese is a topic prominent language. (The restriction to core functions in Acehnese is either a second restriction on **PIV**, or an independent restriction on **TOPIC**.) A language which appears to be topic-prominent in both senses is Mandarin. Note the following examples of chaining in coordination in Mandarin.

```
(18)  

a. Nèike shù yèzí dà, suǒyi wǒ bu xǐhuān.  
that tree leaves big so I not like  
‘That tree, the leaves are big so I don’t like it/#them.’
```

⁶Alternatively, topic-prominent languages have a non-overlay topic function (distinct from the overlay function **TOPIC**), which is not used in languages like English.
b. 内外田地大，丰收后满。
内quad 谷田地 interchangeable 大 quad，丰收后满。
‘That piece of land, rice grows very big so it (the land/*the rice) is very valuable.’

In general, an Acehnese-like analysis for Mandarin pivots looks very attractive. Due to the quirks of Mandarin word order (Li and Thompson 1981) the arguments are a little harder to make. In particular, both “topic” (PIV) and “agent” (ঊং) precede the verb, and other elements may also precede it optionally. This makes it harder to uniquely identify the Mandarin topic/PIV. However, it appears that in long-distance dependency constructions and raising constructions the subordinate clause does not have an overt topic; if this is in fact the case, an analysis identifying the Mandarin topic with PIV is almost certainly correct.

Typologically, then, we can distinguish between two types of PIV choice: pivot choice on the basis of argument status (argument-pivot languages), and pivot choice on the basis of discourse status, particularly topichood (topic-pivot languages). Argument-pivot languages include both uniform-subject and mixed-subject languages; topic pivot languages are those non-subject languages that have PIVs, are not part of the uniform-subject/mixed-subject distinction, and include many languages (such as Acehnese and Mandarin) that have been claimed in other studies to be pivotless.

Our approach differs fundamentally from that taken by studies like Van Valin and LaPolla (1997). In studies of that variety, the fact that pivot properties are not limited to a single argument of the verb is taken to be evidence that there is no pivot. Instead, the rules for constructions like relativization will refer to whatever relations at whatever level of structure are deemed appropriate. Under the approach we are taking, on the other hand, the function of cross-clausal continuity is PIV; any element that has this function is of necessity the PIV of its clause. The formal structure of syntax does not allow a language with no pivots to simply ignore the Pivot Condition: something with pivot properties must be a pivot. The prohibition against arguments from being referenced by superordinate predicates is an expression of the nature of their functionality as arguments; there is no reason to expect it to be suspended just because a language makes no use of the PIV function.

Nothing in our conception of pivothood rules out pivot choice on the basis of syntactically relevant discourse properties. Unlike Van Valin and LaPolla, we do not impose arbitrary a priori requirements that the PIV be uniquely identifiable in terms of predicate-argument relations. As a result, we have discovered that a class of languages chooses its pivots not on the basis of predicate-argument relations, but rather on the basis of grammaticized discourse relations. We believe that this is an important typological discovery; and it is one which is made possible by the framework within which we are working and the theory of pivothood which we have proposed here.

6.3.3. Pivotless Languages
6.3.3.1. General Considerations

We concluded in the previous section that a subset of languages which have been identified as pivotless do have pivots, but choose their pivots on the basis of syntactically relevant topicality rather than argument structure. We consider this to be an important conclusion, but it still leaves open the question of whether pivotless languages exist. In this section, we will answer this question with a tentative yes.

We need to begin by asking what a language with no PIV would look like. As we have seen, it is not a language in which the element with pivot properties is not uniquely determined
by the argument structure; since in sentences of such languages there is an element with PIV properties, there must be a PIV which is chosen on some basis other than argument structure. We have argued that in such a language, the PIV is chosen on the basis of syntacticized discourse functions. Instead, a truly pivotless language would be a language in which no element of any clause has pivot properties. For example, in a pivotless language there would be no reason to analyze one element of the clause as being singled out with special status, such as occupying a special position. Languages like Acehnese and (probably) Mandarin do have such an element, and therefore have a PIV. Furthermore, a pivotless language would tend to eschew pivot-sensitive constructions, such as long-distance dependencies or functional control constructions. Instead, it would generally achieve the requisite effects through other syntactic means. For example, instead of multifunctionality constructions (such as functional control and coordination chaining), it would use some variety of anaphoric construction: overt anaphoric element, null anaphoric element, or a switch-reference system; alternatively, instead of functional control it might use a complex-predicate construction in which the higher and lower verbs merge functionally into a single argument-taking element. Instead of relative clauses of the familiar kind, it would have internally-headed relative clauses or eschew relative constructions completely, using (anaphoric) control constructions instead of relative clauses. Instead of placing the *wh* element of a question in a special matrix position, it would keep it in its own clause, either in the appropriate place for its local function (often referred to as “in-situ” questions) or in a special position in its clause.

It is important to note, however, that, as always, there is no simple test. There could be a special position picked out for an element with discourse prominence, without it also being a PIV. A pivotless language could have long-distance dependency constructions, but license them inside-out (bottom-up); as we have seen, this is a frequently used loophole to the Pivot Condition in long-distance dependencies. This is marked, and generally does not exist in the absence of Pivot Condition-sensitive outside-in (top-down) licensing, but it is possible. We have even seen an example of a language that seems to have only inside-out licensing of long-distance dependency constructions, Imbabura Quechua. Inside-out licensing may also be possible for functional control, although it seems to be much more rarely used. Conversely, the use of some of the alternative non-pivot-dependent constructions does not automatically make a language pivotless. We take it, however, that when a language uses many of these and appears to be avoiding pivot-sensitive constructions, it is plausible to hypothesize that it lacks a PIV completely.

There are two important points to make about these observations. In the first place, our theory of pivothood gives us a clear picture of what a pivotless language would look like. This is the advantage of an articulated theory such as we have proposed here. Secondly, there is nothing impossible in principle about a pivotless language. It would appear exotic in its grammatical structure, but it would have a full array of construction types. Since there is nothing in the theory that requires every language to have pivots, and a pivotless language would be able to realize all the major notional constructions, we should expect that pivotless languages exist.

We suggest that Choctaw/Chickasaw and Warlpiri are pivotless languages. We will examine their properties and show how they behave like pivotless languages. In the case of Choctaw/Chickasaw this may not be too surprising a conclusion, but we believe that it is a novel proposal for Warlpiri, which appears to be generally assumed to be a uniform-subject language. We will also speculate on the relationship between pivotlessness and morphological ergativity.

6.3.3.2. Choctaw/Chickasaw

We begin with Choctaw/Chickasaw. We will outline in this section the salient aspects of
Choctaw/Chickasaw grammar, with an emphasis on the issue of pivothood. Our sources of information are Munro and Gordon (1982), Davies (1984), and Broadwell (in press). The examples are Chickasaw and taken from Munro and Gordon, unless otherwise noted.\footnote{We follow Munro and Gordon and Davies in presenting the examples in an approximation of Choctaw/Chickasaw orthography, but marking nasality with a tilde instead of the orthographic underline. Broadwell uses the underline of the standard orthography.}

Perhaps the most discussed issue in Choctaw/Chickasaw grammar is the nature of the Case and agreement systems. The agreement system consists of three sets of affixes which, following Munro and Gordon, we will call Types I, II, and III. In a canonical transitive clause, agreement with the A is Type I and with the P is Type II.\footnote{There is no affix (or a \emptyset affix) for third person Types I and II.}

(19) a. Kisili- li
 bite- 1sgI
 ‘I bite him.’

b. Sa- kisili
 1sgII- bite
 ‘He bites me.’

However, there are transitive verbs in which the A argument triggers II or III agreement, and ones in which the P triggers III agreement.

(20) a. Ofi’ sa- banna.
 dog 1sgII- want
 ‘I want a dog.’

b. Talowa’ am- alhkaniya- tok.
 song 1sgIII- forget- PST
 ‘I forgot the song.’

 2sgIII- beat- 1sgI
 ‘I beat you (in a contest).’

b. Chi- hollo- li.
 2sgIII- love- 1sgI
 ‘I love you.’

In an intransitive clause, any of the three types of agreement affix can be used, depending on the verb.

(22) a. Malili- li
 ran- 1sgI
 ‘I ran.’

b. Hotolhko- li
 coughed- 1sgI
 ‘I coughed (on purpose).’
(23) a. Sa- chokma
 1sgII- good
 ‘I am good.’

b. Sa- hotolhko
 1sgII- coughed
 ‘I coughed.’

(24) An- takho’bi
 1sgIII- lazy
 ‘I am lazy.’

Clausal complements trigger II agreement (which is null, since clauses are third person).

Exactly how the type of agreement is determined is a matter of dispute in the literature. For example, Dixon (1994) cites this as an example of semantic marking, marking determined by thematic roles, while Davies (1984) considers this to be based on (sometimes nonsurface) grammatical relations. Munro and Gordon show that, while there are some thematic correlations, there are also lexical idiosyncracies, and state that the argument type must be marked lexically. In our framework, the relevant locus for describing idiosyncracies of argument expression is the mapping of arguments to the syntax, so we propose that the agreement is triggered by grammatical functions—\(\text{Gf} \) for Type I, OBJ and COMP for Type II, and OBJ\(_0\) for Type III. This has as a consequence that Choctaw/Chickasaw must be analyzed as having an active system of argument mapping. In terms of subjecthood, an argument that triggers Type I agreement is thus subject in the sense of \(\text{Gf} \).

The Case marking system works differently from agreement. One argument, the one that would correspond to the English subject, is marked with the suffix -Vt regardless of which type of agreement it triggers, while other arguments optionally take a suffix -V or (less commonly) -Vk. (In the examples, we gloss the t suffix as nominative and the nasal suffix as oblique.)

 man- NOM run
 ‘The man runs.’ (NOM triggers I agreement)

b. Hattak- at ihoo pisa.
 man- NOM woman see
 ‘The man sees the woman.’ (NOM triggers I agreement)

c. Hattak- at an- k- ā abi- tok.
 man- NOM my- father- OBL kill- PST
 ‘The man killed my father.’ (NOM triggers I agreement)

d. Hattak- at chokma.
 man- NOM good
 ‘The man is good.’ (NOM triggers II agreement)

e. Hattak- at in- takho’bi.
 man- NOM 3III- lazy
 ‘The man is lazy.’ (NOM triggers III agreement)

f. Hattak- at ohoyo (ā) ī- nokšotpa- h. (Choctaw)
 man- NOM woman OBL 3III- afraid- PRES
 ‘The man is afraid of the woman.’ (NOM triggers II agreement)

The t-marked argument is clearly not the \(\text{Gf} \), thought it is called the “subject” by Munro and
Gordon and by Broadwell. Davies (1984) considers both Type I agreement and t-marking to be a consequence of bearing the 1 (subject) relation, and cites the mismatch between agreement-relevant grammatical relations and Case-relevant grammatical relations as evidence for multiple strata of grammatical relations. Dixon (1994) considers Choctaw/Chickasaw to be a language with a blend of semantically based marking (agreement) and syntactically based marking (Case).

The t-marked nominal is usually the highest argument on the relational hierarchy, but not always; Munro and Gordon mention the verb *alkhaniya* ‘forget’, where the t-marked argument triggers III agreement and the other argument triggers II agreement.

(26) a. Talowa’ am- alhkaniya- tok.
 song 1sgIII- forget- PST
 ‘I forgot the song.’

 b. Hakkat- at talowa’ im- alhkaniya- tok.
 man- NOM song 3III- forget- PST
 ‘The man forgot the song.’

Under our analysis, the agreement markers show that the forgetter argument (the nominative one) is a restricted object (OBJ_{Exp}) while the non-nominative argument is a primary object (OBJ). In the case of this verb, the nominative argument is not the highest on the relational hierarchy, since OBJ outranks OBJ_{Exp}. On the other hand, at the thematic level the forgetter is Experiencer (a kind of undergoer) and the forgotten material is a Theme, so the t-marked argument is the highest on the thematic hierarchy: the \emptyset.

It is even possible to get two or three t-marked nominals in a clause, primarily in the Possessor Raising construction.

(27) a. Larry ishkin- at lakna.
 Larry eye- NOM brown
 ‘Larry’s eyes are brown.’

 b. Larry- at ishkin- at lakna.
 Larry- NOM eye- NOM brown
 ‘Larry has brown eyes.’

(28) a. Jan ipâshi’- at tapa.
 Jan hair- NOM be.cut
 ‘Jan’s hair was cut.’

 b. Jan- at ipâshi’- at tapa.
 Jan- NOM hair- NOM be.cut
 ‘Jan got a haircut.’

(29) Bonnie- at in- chokk- at aboh- at talhlha’pi.
 Bonnie- NOM 3III- house- NOM room- NOM five
 ‘Bonnie has a five-room house.’

Under our proposal concerning nominative marking, these would be analyzed as complex-
According to Munro and Gordon, the nominative marking on all but the highest predicate constructions.\(^9\)

Formally, our proposal can be expressed by associating the nominative suffix with the following lexical information (where \(\alpha\) is the mapping from a-structure to f-structure).

\[(\alpha(\hat{\theta}) \uparrow)\]

Since the thematic and relational hierarchy usually match, it follows that most of the time the \(t\)-marked nominal will also be the highest on the relational hierarchy. The mapping of ‘forget’ is exceptional in that the hierarchies are reversed.\(^{10}\) The f-structures of (25b,f) and (26b) are as follows (where the \(\hat{\theta}\) is the left-most argument in the verb’s PRED).

\[(31)\]

\[\]
\[\]
\[\]

We have now shown that the grammar of Choctaw/Chickasaw refers to \(\hat{G}\) and \(\hat{\theta}\). The question is whether there is any evidence for a PIV. We claim there is not. There does not seem to be any particular element that occupies a special structural position, as we would expect from a PIV. In fact, there seems to be no element that we could identify as the PIV in Choctaw/Chickasaw. The \(t\)-marked nominal comes first, but this could be thematically based order. Since a clause can have more than one \(t\)-marked nominal, it could not be the PIV anyway. Furthermore, it does not have any cross-clausal continuity properties, and thus is not plausibly analyzed as functioning as the element of cross-clausal continuity.

Subordination and coordination in Choctaw/Chickasaw involve switch-reference markers rather than control or chaining.

\[(32)\]

\[\]

\(\)

\(^9\)According to Munro and Gordon, the nominative marking on all but the highest \(\hat{\theta}\) is optional.

\(^{10}\)According to Munro and Gordon, this is related to the fact that the verb is derived form, based on a verb meaning ‘go away’ or ‘lose’.
2sgI- go- FUT- COMP.DS know- 1sgI
‘I know you are going.’

(33) Choctaw (Davies 1984)

beans eat- 1sgI- SS/*DS water drink- 1sgI- PST
‘I ate beans and drank water.’

b. Tobi apa- li- na/*cha tâchi ish- pa- tok.
beans eat- 1sgI- DS/*SS corn 2sgI- eat- PST
‘I ate beans and you ate corn.’

The relevant notion of subject for switch-reference marking is the t-marked nominal, the $\tilde{\theta}$ under our analysis.\(^{11}\) As we have seen, this is one of the options that we expect to be available for switch-reference. The other one is $\tilde{\iota}$. Davies (1984) reports that for some speakers of Choctaw either same-subject or different-subject marking can be used in coordination if, in our terms, the two $\tilde{\iota}$s are not both $\tilde{\iota}$s.

1sgII- hungry- SS/DS beans cook- 1sgI- PST
‘I was hungry and cooked some beans.’

horse 1sgII- want- SS/DS buy- 1sgI- PST
‘I wanted a horse and bought it.’

Essentially following Davies’ insight, we can characterize the coordination switch-reference marking in this idiolect of Choctaw as specifying that same-subject marking means the two clauses have coreferential \check{X}s and different-subject marking means they have noncoreferential \check{X}s. Since they have coreferential $\check{\theta}$s but not $\tilde{\iota}$s, both markings are possible. These multiclausal structures thus do not involve pivot-sensitive constructions.

Relative clauses in Choctaw/Chickasaw are internally headed.

Steve- NOM Dan- NOM table make- PST.COMP.OBL want
‘Steve wants the table Dan made.’

b. Choctaw (Broadwell in press)
Mary- NOM bread sweet make- PST.COMP.DS eat- 1sgI- PST
‘I ate the cake that Mary made.’

The language shows no evidence of externally headed relative clauses. Relative clauses are thus not long-distance dependency constructions. Similarly, elements with discourse prominence are not placed in a special position in the sentence. They remain in situ, with a special suffix

\(^{11}\)Actually, the highest $\tilde{\iota}$ in the clause, which is the only one obligatorily marked nominative.
indicating their discourse-prominent status. Choctaw/Chickasaw thus appears to have the kinds of properties we expect of a pivotless language. It is a language which, given the constructions we have examined thus far, appears to lack pivot-sensitive constructions like functional control, chaining, long-distance dependencies, and the assignment of a special structural position to one element of the clause. It is instructive to compare these properties with those of languages like Acehnese; it is clear that while both have been claimed to be pivotless, they are typologically very different. Our analysis captures this, by analyzing Acehnese as having a topic pivot and Choctaw/Chickasaw as being truly pivotless.

There is one potential problem for our analysis of Choctaw/Chickasaw as pivotless. This problem is the question construction. Alongside the expected in-situ questions, Choctaw/Chickasaw also has questions with extraction.

(36) Choctaw (Broadwell in press)
 a. John- at kata- h- ō pīsa- tok?
 John- NOM who- TNS- PART.OBL see- PST
 b. Kata- h- ō John- at pīsa- tok?
 who- TNS- PART.OBL John- NOM see- PST

 ‘Who did John see?’

This optional extraction of a question word can even cross clause boundaries.

(37) Choctaw (Broadwell in press)
 Nata- h- ō Pam- at [Charles- at honni- tok- ō]
 what- TNS- PART.OBL Pam- NOM Charles- NOM cook- PST- FOC.OBL
 hōkopa- tok?
 steal- PST

 ‘What did Pam steal that Charles cooked?’

If this is really a long-distance dependency construction, it is the only one in the language. This construction has certain unusual properties for a long-distance dependency construction. As can be seen in the examples, the interrogative pronoun has verbal morphology, both in situ and fronted. The construction also lacks weak crossover effects. However, even if this is the long-distance dependency construction it appears to be, it is not really a problem for our analysis. We simply must hypothesize that it is licensed inside-out. We have seen that, although the inside-out licensing construction is marked, it is possible for a language to have inside-out licensing without the less marked outside-in construction. Since, under our analysis, Choctaw/Chickasaw has no PIV, inside-out functional uncertainty can license the extraction of all elements. It is significant that, unlike questions in other languages, there is no element which has a special status in terms of question-word extraction. There are no asymmetries in the ability to extract different elements. In this way, it differs from all cases of extraction we have seen up to this point. “Subjects” are neither easier nor more difficult to extract than non-“subjects”. The extracted element need have no special discourse prominence (other than being the focus of a question) which is expressed syntactically. This is what we expect of inside-out licensing of long-distance dependencies in a language with no PIV.

Overall, Choctaw/Chickasaw gives the impression of a language which avoids pivot-sensitive constructions: it uses switch-reference instead of control, internally-headed relative
clauses, and has no structurally distinguished element. The only construction on which it fails, the interrogative, is the one we might least expect to find a language successfully avoiding such a construction. Furthermore, even the interrogative construction shows no evidence of a distinguished element that we could identify as PIV. The properties of Choctaw/Chickasaw are in marked contrast to languages such as Acehnese, which display the full range of pivot-sensitive constructions. We propose, therefore, that Choctaw/Chickasaw is a pivotless language.

6.3.3.3. Warlpiri

Warlpiri, one of the best known of the morphologically ergative languages, is a language whose syntax has many exotic features. It is best known for its wildly non-configurational structure. The basic phrase structure configuration of the clause in Warlpiri has one element, with discourse prominence, in the initial position, followed by an auxiliary (infl) element, followed by the rest of the elements of the clause in free order. The pre-aux element has no subject properties, so there is no reason to consider it a PIV.

As for subordinate clauses, Simpson (1983) concludes that Warlpiri has no (or few, see fn. 12) functional control constructions. Warlpiri has no raising construction (Hale 1983). Resultatives are often analyzed as optional functionally-controlled arguments in languages like English. They are lexically restricted, and the choice of controller is governed by the argument structure of the verb: OBJ or unaccusative/passive SUBJ. However, in Warlpiri the class of verbs that can appear with resultatives is not lexically restricted, and the controller can be anything, including transitive SUBJ.

(38) a. Janyungu ka nguna- mi linji- karda.
 tobacco.ABS PRES lie- NPST dry- TRANSL
 ‘The tobacco lies in the sun dry’. [=The tobacco lies in the sun, and as a result it is dry. ≈ ‘The tobacco lies in the sun to dry.’]

b. Puluku- rlu kapu- lu mama nga- rni kuntukuntu- karda.
 bullocks- ERG FUT- 3plSUBJ grass.ABS eat- NPST fat- TRANSL
 ‘The bullocks will eat the grass fat.’ [=The bullocks will eat grass, and as a result will be fat. ≈ ‘The bullocks will eat themselves fat on the grass.’]

In fact, the controller of the resultative need not be part of the sentence.

(39) Yarlaparna- rlu ka parrka munyurr- nga- rni lirriki-lirriki- karda.
 caterpillar- ERG PRES leaf.ABS bare- NPST defoliated- TRANSL
 ‘The caterpillar eats up all the leaves defoliated (i.e. until the tree is defoliated).’

These facts point to an analysis under which Warlpiri resultatives are anaphorically-controlled adjuncts. Depictives are similar. Copular constructions are also typically functional control constructions. In Warlpiri, however, they differ from those in English, and other familiar languages, in that the copular verb and its complement form a single argument-taking domain; that is to say, Warlpiri copular constructions are complex predicates. For example, consider the following example.

(40) Pakirdi ka- rla karnta nyina wati- ki.
 in.love.ABS PRES- DAT.OBJ woman.ABS sit.NPST man- DAT
 ‘The woman is yearning for [lit. sits in love with] the man.’
The dative OBJ ‘man’, even though it is an argument of the nominal ‘in.love’, is registered on the aux as a clausal argument. This is evidence for a complex-predicate analysis. Simpson also presents evidence that infinitival complements to jussive verbs are anaphorically-controlled OBLs, and that the infinitives accompanying other classes of verbs (such as verbs of perception) are anaphorically-controlled adjuncts. Walpíri thus is a language with no functional control constructions.

Walpíri also has a complex system of complementizer suffixes with obviative (or switch-reference) features, discussed by Simpson (1983) and Simpson and Bresnan (1983). For example, the simultaneous-action suffix -karra, for most Walpíri speakers, is a same-subject (or subject-control) marker. (Some speakers use it as a general complementizer, without its obviation function; for such speakers, (41c) is grammatical.)

We argued in Chapter 2 that switch-reference marking is anaphoric in nature; Simpson and Simpson-Bresnan make the same claim for the Walpíri obviation system. Unlike other switch-reference systems, the Walpíri obviation system also has object-control (-kurra) and oblique-control (-rlarni) suffixes, instead of just picking out \textit{Gf} for reference. However, it is possible to analyze these other suffixes as “different subject” suffixes, with the further proviso on the object-control suffix that the complement \textit{Gf} be coreferential with a matrix core argument. In other words, the lexical content of the suffixes will be (informally) as follows:

\begin{itemize}
 \item \textit{karra}: \textit{Gf} is coreferential with upstairs clause’s \textit{Gf}
 \item \textit{kurra}: \textit{Gf} is non-coreferential with upstairs clause’s \textit{Gf}
 \item \textit{rlarni}: \textit{Gf} is non-coreferential with any core argument in upstairs clause
\end{itemize}

As predicted by this account (and by Simpson-Bresnan’s similar analysis as well), the oblique-control complementizer \textit{rlarni} can be used when there is an overt \textit{Gf} in the lower clause, and thus no control.

12Simpson formalizes this as a type of functional control, but only because LFG at the time had no analysis of complex predicates. However, it is clear even from her formalization that what is involved is not functional control of the ordinary kind; it involves “control” of all the arguments, not just the \textit{Subj}. It is thus not a pivot-sensitive construction. The other construction that Simpson identifies as involving functional control, the naming construction, could also be analyzed as a complex predicate construction; in the absence of any other functional control construction, a complex-predicate analysis seems preferable. (Simpson also suggests that directional complements, as in \textit{I ran to the zoo}, are functionally controlled XCOMPs, but these are OBLs in English and, presumably, in Walpíri as well.)

13It is not clear why Simpson analyzes these as adjuncts rather than arguments. It would be consistent with the evidence she presents to identify these clauses with the closed complement function COMP.
Some man is speaking to the woman while her husband is out hunting.

I saw the man shooting the kangaroo while I was drinking liquor.

That is to say, the relative clause is an anaphorically controlled sentential adjunct. The f-structure is as follows:

In other words, Warlpiri has adopted an unusual strategy to avoid using a long-distance dependency here.

The analysis of questions in Warlpiri, on the other hand, is controversial. The discussion here is based on Legate (2001), which is where all the examples will be drawn from. In a monoclausal structure, a \textit{wh} element generally occupies the discourse-prominent pre-aux position. Unlike the comparable cases in a language like English, no weak crossover effects obtain, suggesting that it is not a conventional long-distance dependency construction.
Furthermore, a wh element cannot be extracted from a subordinate finite clause. Instead, it is placed in the pre-aux position in its own clause, and a scope marker appears in the main clause.

‘Where did Jakamarra tell you Jampijinpa went?’

Up to this point, it appears that, while Warlpiri has some mechanism for locally licensing grammaticized discourse functions, it has no long-distance dependencies. However, a wh element apparently can be extracted from a non-finite clause.

(49) Nyiya-kurra ka-npa wawirri nya-nyi [nga-rinja-kurra] ? what OCONT PRES 2sgSUBJ kangaroo.ABS see-NPST eat-INF OCONTR

‘What do you see a kangaroo eating?’

Legate cites Simpson as proposing that, since non-finite clauses are nominal, this is not a true long-distance dependency structure, but rather a case of Warlpiri’s rather free scrambling; an element of the subordinate nominal clause is generated non-adjacent to the clause. Legate argues, however, that this must be a true LDD construction, both because movement out of an adjunct is disallowed (50a), and because weak crossover effects appear in these long-distance cases (50b).

‘What is the child chasing the woman’s dog around while she is cooking?’

‘Who, did you see his, own dog chasing?’ (OK without coreference: ‘Who, did you see his, dog chasing?’)

It is beyond the scope of the present study to determine whether questions involving non-finite complement clauses are scrambling structures or conventional long-distance dependency constructions licensed by functional uncertainty. Like the Choctaw/Chickasaw case, the
construction has properties that suggest that a long-distance dependency analysis is wrong. For example, the presence of the Case and complementizer suffixes of the lower clause on the fronted wh element gives the construction an uncanny resemblance to Warlpiri scrambling. However, the comments made earlier concerning Choctaw/Chickasaw apply here as well. The construction does not pick out a single nominal as PIV, and it is possible to analyze Warlpiri, like Imbabura Quechua, as a language which only has (non-pivot-sensitive) inside-out (bottom-up) licensing of long-distance dependencies.

Whatever the correct analysis of Warlpiri questions, the overall picture is clear. Warlpiri is a language which avoids pivot-sensitive constructions. It conforms to the pattern that we expect from pivotless languages. Warlpiri thus appears to be another example of a language that does not make use of the PIV function.

6.3.3.4. Speculation on Morphological Ergativity

Our analysis of Warlpiri as a pivotless language raises the possibility of coming to a new understanding of the phenomenon of morphological ergativity. Specifically, we would like to suggest that it may be fruitful to examine other morphologically ergative languages for evidence of pivotlessness, as a possible explanation of the existence of this Case-marking pattern.

In our discussion of Case marking and pivothood in Chapter 3, we observed that there appear to be two primary factors in determining the distribution of unmarked Case (nominative/absolutive): pivothood and position on the animacy/definiteness hierarchy. The role of pivothood is clear in nominative/accusative languages: the S/A PIV invariably bears the unmarked Case. In syntactically ergative languages as well, despite the frequent split marking properties, the S/P PIV is at least usually unmarked. This is illustrated in the following charts, where the parenthesized material is the effect of the animacy/definiteness dimension.

(51) a. Nominative-accusative pattern

| PIV | S unmarked | A unmarked | P accusative (unmarked) |

b. Syntactically ergative pattern

| PIV | S unmarked | A ergative (unmarked) |

| P | unmarked (accusative) |

Even topic-pivot languages like Acehnese seem to prefer not to Case-mark PIVs.

However, morphologically ergative languages are a puzzle under the usual assumption that they are uniform-subject languages. Ignoring possible animacy/definiteness-based splits, the conventional view of morphologically ergative languages can be charted as:

14Weak crossover effects do not provide evidence of pivot status under the standard LFG account (Bresnan 1995). Weak crossover is based on such properties as linear order and relative prominence of arguments on the relational and thematic hierarchies.
Pivothood appears to be completely irrelevant to the use of unmarked Case in morphologically ergative languages. This contradicts the usual trend for PIVs to bear unmarked Case, and calls out for explanation. It also raises the question of why there are no “morphologically nominative-accusative” languages: mixed-subject (syntactically ergative) languages with a basic nominative-accusative Case-marking system.

We speculate that pivothood is irrelevant for morphologically ergative languages because they are pivotless. Under this approach, neither (52) nor (53) is a possible Case-marking pattern: morphologically ergative languages (which usually have some sort of split marking) are languages whose Case-marking patterns are based purely on animacy/definiteness.

At this stage, this is mere speculation. More research is needed to determine whether pivotlessness is widespread among morphologically ergative languages. We note in passing that the morphologically ergative language Hindi has been claimed to be pivotless by Bickel and Yädava (2000), but they mention a raising (functional control) construction, which is possible as long as the raised element would have been nominative (or ergative) in the subordinate clause.

Under our theory of pivothood, then, Hindi presumably is not a pivotless language, but rather a uniform-subject (S/A pivot) language. The fact that there is a Case-based restriction on functional control is beside the point. However, Hindi is not a typical morphologically ergative language, so the fact that Hindi has a PIV does not necessarily invalidate our speculative analysis.

6.4. Conclusion

Our conclusions are thus very different from those of studies like Dixon (1994) and Van Valin and LaPolla (1997). They conclude that grammatical relations are not universal, and that even in a specific language, notions like pivot are relativized to individual constructions (which we have talked about earlier). Our approach, based on a concept of grammatical functions rather than grammatical relations, and on the concept of parallel representations of different dimensions of language, has led us in a different direction. Our essential conclusions are the following:
• Argument functions are used in every language.

• The core argument functionsagenta and OBI appear to be used in every language, but the mapping from thematic roles is not uniform cross-linguistically. In non-subject languages, the mapping creates a closer link between thematic roles and grammatical functions. As a result, the Patient argument of an intransitive (unaccusative) verb maps as OBI rather thanagenta in such languages. We therefore reject a potential universal requirement that all verbs have aagenta argument.

• A subset of the topic-prompt languages, which we call topic pivot languages, assign the PIV function on the basis of discourse function rather than argument function. This creates the illusion that they lack a PIV, since, from the more familiar argument-based perspective, PIV properties are not uniquely the properties of one element of the clause. However, PIV properties exist in these languages, and are associated with an element which has syntactically encoded discourse prominence.

• Pivotless languages exist. In true pivotless languages, no element ever has PIV properties. While PIV is universal in the sense that Universal Grammar makes it available, it is not used in every language.15

The approach we take here to non-subject languages is more explanatory. A wide range of properties that a language has follows from the parametric choices that it makes on how to map arguments to the syntax, whether to use the PIV function, and whether to choose a PIV on the basis of syntactic expression of argumenthood or syntactically expressed discourse prominence. Our approach also opens interesting questions for further typological investigation concerning morphological ergativity.

15In terms of the phonology analogy raised at the beginning of this chapter,agenta is like the feature [labial] and PIV is like the feature [±distributed]. The feature [labial] is needed to formally characterize the labial sounds that every language has, irrespective of whether it is needed to state any phonological rules. Similarly, argument functions likeagenta are needed to characterize the syntactic expression of arguments. On the other hand, the feature [±distributed] is made available by UG but not necessarily used in the grammar of every language, just like PIV.
CHAPTER 7
COMPETING THEORIES

7.1. Other Approaches

The issues we have examined in this study have been discussed in a wide range of theoretical frameworks, with varying conclusions. In some respects, most of these analyses share a certain family resemblance to each other and to the proposals made here. This is not surprising; all typologically-aware analyses of subjecthood work with the same phenomena. Given the properties of mixed-subject languages, the conclusion that subject needs to be factored into two distinct grammatical functions as we have done here seems inescapable.

Nevertheless, our analysis differs from the others, if not in its basic outline, in the implementation and the conceptualization of grammatical functions. We believe that, while other approaches may (or may not) describe subjecthood as well as the theory proposed here, none of them can explain subjecthood as well.

The advantages that our approach has begin with the underlying assumptions we have made. The theory proposed here is based on a formal theory embodying a multidimensional architecture in which constituent structure, grammatical functions, and argument structure are distinct parallel levels of representation. This kind of theoretical architecture has allowed us to seriously consider questions of function within a formal syntactic system, rather than dealing only with formal structure or only with function. We have taken the functionality of elements within the formal syntactic system to be the crucial element in understanding the behavior of \(\mathcal{GF} \) and \(\mathsf{PIV} \).

We have also made a crucial distinction between notional constructions, what one wants to do with syntax, and formal constructions, how one does it. This distinction, which is made possible by the multidimensional approach, has turned out to be crucial. Originally drawn in Chapter 3 in the discussion of coordination chaining, it has turned out to be crucial in understanding the properties of long-distance dependencies and, especially, control constructions. This distinction has not been fully understood in previous work, and has led to what we believe are misunderstandings about the nature of syntactic constructions.

This chapter will explore some of the differences between the analysis proposed here and the other major analyses in the literature. Given the mass of work on subjecthood, we cannot review each alternative analysis individually. Instead, we will discuss the major families of analyses. We will discuss, in turn, typological, functionalist, and inverse and multistratal approaches. The bulk of the chapter will be a detailed look at the leading formal approach to syntax, the constituent-structure-based approach, showing how our function-based approach is superior both at describing and explaining the facts. We will focus on the question of how our \(\mathcal{GF} \) and \(\mathsf{PIV} \) functions are analyzed in these alternatives. Throughout, we will use the terms \(\mathcal{GF} \) and \(\mathsf{PIV} \) in discussing other theories as a way to refer to the elements we have referred to by those names in the present study.

7.2. Typological Approach

Much of the research into subjecthood on which the present study is based has been undertaken from a perspective that can best be described as typologically oriented. The typological literature has been invaluable in bringing to light important facts from less-known languages. However, despite the deep debt that the current study owes to typological studies, particularly Dixon (1994), there are crucial differences.
One difference between the typological approach and ours is in the treatment of the
typology itself. Typical typological approaches begin by classifying languages along various
dimensions. Within the context of subjecthood, the relevant dimension is Case-marking:
nominative-accusative vs. ergative. Since Case-marking is only one indication of grammatical
function, and a relatively poor one, the result is a poor foundation on which to base a theory of
subjecthood. The Case-marking dimension is often described as a scale of ergativity, and
languages are conceived of as adopting varying amounts of ergativity. As Comrie (1989: 114)
puts it, “it is misleading to classify a language as being either ergative or not, rather one must ask:
to what extent, and in what particular constructions is the language ergative, i.e. where does its
syntax operate on an ergative-absolutive basis.” Nominative-accusative languages are classified
as being at the lowest end of the scale, morphologically ergative languages are somewhere in the
lower half, and syntactically ergative languages are in the upper half. The pervasiveness of this
approach is illustrated by the fact that in Plank (1979), a volume entitled Ergativity, most of the
articles address the question of “how ergative” a language is.

In the present approach, there is no intrinsic significance to the notion ergative language.
Our typological organization of languages is the following:

(1) Languages with PIV
 Argument-pivot languages
 Uniform-subject languages
 Mixed-subject (including “syntactically ergative” and “Philippine-type”)
 languages
 Topic-pivot languages

Languages without PIV

This organization is based directly on the nature of pivot assignment in the language, instead of
indirect measures, such as the type of Case marking. This has allowed us to explore the nature
of pivothood more directly, including the discovery that the morphologically ergative language
Warlpiri is pivotless.

In contrast to the usual typological approach, we do not recognize a notion of degrees of
ergativity. This notion is the result of two confusions. First of all, it is the result of confusing
pivot choice with Case marking. Case marking patterns, while related in part to pivot choice, are
not a direct indication of it. It is instructive that Dixon (1994: 16f), in defining ergativity,
distinguishes morphological and syntactic ergativity as if they were two distinct phenomena
which happen to have been given the same name. That is precisely the position we are taking
here. Morphologically ergative languages like Warlpiri and Hindi are not less ergative than
Dyirbal—if anything, since Warlpiri uniformly uses ergative Case marking, one might want to
say that it is more ergative—they differ from Dyirbal (and from each other) in pivot choice. The
other confusion behind the notion of degrees of ergativity is the failure to recognize the
distinction between notional constructions and formal constructions. Yidin’ is not less ergative
than Dyirbal because coreference in coordination is consistently along S/P lines in the latter but
not the former; Yidin’ simply differs from Dyirbal in not making use of the PIV-based chaining
construction for coordination. The concept of degrees of ergativity tends to obscure the true
issues.

More generally, while the work done by typologists in sorting out types of languages is
 extremely valuable, the “types” tend to be assigned a theoretical significance they do not deserve.
Labels like “ergative” are useful shorthand for some property or combination of properties, and
should be used to the extent that they are found to be useful. However, languages are not exhaustively divided into a series of such types; if the nominative-accusative/ergative distinction is irrelevant for languages like Tagalog, like Acehnese, or like Choctaw-Chickasaw, there is no reason that one should feel obligated to make them relevant. Arguments over whether, e.g., Tagalog, is nominative-accusative or ergative are pointless. What is important is to understand how a particular language deploys the grammatical tools made available to it by Universal Grammar. Typological study is invaluable for reaching an understanding of what these tools are, but the focus on typology is misplaced.

The view that we take of conventional typological views of ergativity is essentially that of Manning (1996). As he points out, the usual view leads to a situation where “Dyirbal has tended to stand alone as the one true syntactically ergative language” (Manning 1996: 10). Under Manning’s approach, and ours, many languages which have been claimed to be ergative only in their morphology turn out to be mixed-subject (“syntactically ergative”) languages.

Within the context of a discussion of typologically-based approaches, we should mention that an interesting but highly problematic approach to argument grammatical functions is taken by Dixon (1994). He recognizes the existence of core argument functions as primitive syntactic elements, but instead of our OBJ and OBJ, he has three: S, A, and P. Dixon’s P corresponds roughly to our OBJ, but our OBJ is factored into S (the OBJ of an intransitive verb) and A (the OBJ of a transitive verb). As a descriptive device, this distinction is useful, and we have employed it in this study. However, Dixon ascribes to them a theoretical content which most researchers do not, and defines subject (in)transitivity: an intransitive verb maps one core argument and a transitive verb maps more than one. Transitivity is thus a description of the type of argument mapping. The grammatical argument functions are the result of argument mapping. (This appears to be the case in Dixon’s system as well.) Transitivity is thus a more basic concept than Dixon’s distinction between S and A. It is therefore unclear in what sense S could be a primitive, as Dixon claims. One also wonders why Dixon didn’t make a similar distinction in the case of ditransitive verbs; why use P for both the non-A argument of (mono)transitives and one of the non-A arguments of ditransitives? There are differences in properties there, too.

1Dixon uses O instead of P. I prefer the P used in much of the typological literature because it is parallel to A: A evoking Agent and P evoking Patient.
7.3. Functionalism

The typological approach discussed in the previous section is often grounded in a functionalist\(^2\) view of syntax. Functionalist linguistics is grounded in the idea that the properties of language are grounded in the communicative function of language, and is broadly in contrast with formalist linguistics, the leading idea of which is that the properties of language are a consequence of the formal properties of the linguistic system.

Semantics and pragmatics have an obvious role in a communicative perspective on language, and therefore play a major role in functionalist description. Syntax, on the other hand, as it does not have any direct relationship to communication and information, is appealed to much less, often being seen as something of a last resort when semantics and pragmatics fail to provide a solution.

The functionalist approach contrasts sharply with the approach we have taken here, which takes both the function and the formal expression to be part of linguistic description. The distinction we have drawn between notional constructions and formal constructions is, in a sense, a functionalist-formalist distinction: notional constructions are constructions in the functionalist sense, and formal constructions are constructions in the formalist sense. In our view, the subjecthood functions are part of the formal syntactic expression, so subject properties are primarily a consequence of the formal aspect.

A functionalist study that addresses much of the same material we have dealt with in the present study is Van Valin and LaPolla (1997), and our survey here will be based on Van Valin and LaPolla. In Chapter 6, we discussed claims made by functionalists that grammatical functions/relations are not universal. We will not repeat the discussion here, but the central point bears reiterating in the present context. The view expressed by Van Valin and LaPolla that grammatical relations represent restricted neutralizations of semantic or pragmatic relations, and that in the absence of such a restricted neutralization there are no grammatical relations, is diametrically opposed to the view of grammatical functions that we are adopting in this study.

Consider the status of λF in functionalist studies. Van Valin and LaPolla discuss the classification of arguments primarily from a semantic/thematic perspective. After discussing thematic roles, they introduce the “macroroles” Actor and Undergoer, which group together different thematic roles. While they claim that these macroroles are based on semantics, they are in fact defined by syntactic properties: the macrorole Actor includes those arguments which are mapped to the syntax as λF, while the macrorole Undergoer includes those which can map as either λF or λB.\(^3\) This is made clear when they refer to the fact that languages can differ in which thematic roles are subsumed under the macroroles; the evidence for this is in the nature of the argument mapping. Even more crucially, in Van Valin and LaPolla’s analysis of the Raising-to-Object construction (p. 574), the raised object, which is not a thematic argument of the matrix verb, is said to have a macrorole in the main clause. In our terms, Van Valin and LaPolla’s macroroles are core arguments—but core argumenthood is syntactic, not semantic.

Van Valin and LaPolla do not have a direct analog to λF in their system, as argument linking is directly to λPIV. However, Dixon (1994) does; our λF corresponds to what he calls the

\(^2\)We use the term functionalist here rather than functional to avoid confusion with the (formal) notion of grammatical function.

\(^3\)From the perspective of LFG, the macroroles Actor and Undergoer correspond to the a-structure classifications $\lbrack \text{\small\text{-}o}\rbrack$ (when it is also $\lbrack \text{\small\text{\-}}\rbrack$) and $\lbrack \text{\small\text{-}r}\rbrack$ respectively. Thus, while Van Valin and LaPolla are correct in stating that they are not grammatical functions, it does not follow that they must be semantic rather than syntactic in nature.
subject. However, following the general tendency in functionalist work, Dixon treats G_F primarily in semantic (thematic) terms, and he explains G_F properties on semantic grounds. We have attempted to show here that, while semantic considerations have a role to play in understanding such properties as being the addressee of imperatives and being the controller in control constructions, they cannot be the full explanation.

Perhaps the most glaring difference between our approach to subjecthood and that of the functionalist literature is in the treatment of pivots: specifically the recurrent claim in the functionalist literature that a language may have different pivots for different constructions. We have discussed examples of this in previous chapters, and concluded that the appearance of different pivots for different constructions is the result of the use of different syntactic constructions, some of which are pivot-sensitive and others of which are not. For example, as we have seen, a (notional) control construction can be realized syntactically by argument sharing (functional control) licensed outside-in, by argument sharing licensed inside-out, and by the use of null anaphora (anaphoric control): the first of these is PIV-sensitive and the last is generally limited to G_F. We simply note here that the claim that different constructions can have different pivots empties the concept PIVOT of all significance: it is not clear how it is revealing to say that different constructions refer to different grammatical functions. The question is to explain how this happens, and what the possible choices are. An explanatory theory has to account for the fact, for example, that constructions like reflexivization and imperatives can be sensitive to PIV status but not PIV status (and thus will not target S/P in any language). Van Valin and LaPolla’s theory cannot do this; ours can.

7.4. Inverse Mapping and Multistratal Subjects

In Chapter 2, we contrasted the theory of subjecthood developed here with the inverse mapping theory (Marantz 1984, Kroeger 1993, Manning 1996, Wechsler and Arka 1998). We will expand on this contrast in this section.

To review from our discussion in Chapter 2, the basic idea of inverse mapping is that there is a parametric difference in argument mapping between different types of languages. In nominative-accusative languages the argumenthood hierarchy is preserved in the mapping to syntactically realized grammatical functions, while in ergative languages the hierarchy is reversed, at least for the two most prominent arguments. Thus, while in a canonical transitive in a nominative-accusative language the Agent is realized as SUBJ and the Patient as OBJ, in an ergative language the Patient is SUBJ and the Agent OBJ. Adapting the notation slightly from Manning (1996), the argument structure and functional structure of a sentence like (2a) in a syntactically ergative language would look like (2b) and (2c) respectively.

(2) a. The baby saw the toy.

\footnote{In Marantz’s version of the Inverse Mapping approach, this is pushed back one level. He has argument structure (which he calls logico-semantic structure) mapped inversely from thematic roles, so the argumenthood hierarchy and the hierarchy of grammatical functions match, with P outranking A at both levels. As pointed out by Manning and others, this makes it difficult to account for phenomena, such as binding theory properties, in which syntactically ergative languages have the same properties as nominative-accusative languages. In this section, we will consider only those versions of the Inverse Mapping approach which place the inversion at the argument structure-grammatical function mapping.}
Manning’s notations for grammatical functions in f-structure are a little different; we will return to this below.

b.

\[
\begin{array}{c}
\text{see} \\
\text{SUBJ/ARG} \\
\text{SUBJ/ARG}
\end{array}
\]

a-structure

\[
\begin{array}{c}
\text{“the baby”’} \\
\text{“the toy”}
\end{array}
\]

c.

\[
\begin{array}{c}
\text{PRED} \\
\text{SUBJ/OBJ}
\end{array}
\]

f-structure

\[
\begin{array}{c}
\text{“see”} \\
\text{“the toy”} \\
\text{“the baby”}
\end{array}
\]

At a-structure, as in nominative-accusative languages, the A argument is SUBJ (Manning’s actual notation is A-SB, for a-structure subject) and the P is a lesser argument (Manning is non-committal as to the existence of the function OBJ at a-structure). At f-structure, on the other hand, it is the P which is SUBJ, and the A is OBJ. Philippine-type languages have both types of mapping: the Agentive voice is a nominative-accusative construction and the Direct Object voice is an ergative construction. This is made most explicit in the HPSG analysis of Wechsler and Arka (1998), discussed in Chapter 2.

In a system like this, those subject properties which are shared by uniform-subject languages and mixed-subject languages are identified as a-structure properties, and those which differ are f-structure properties. To put it slightly differently, our \text{SUBJ} is identified as a-structure \text{SUBJ}, and our PIV as f-structure \text{SUBJ}. In fact, Manning uses the grammatical function name PIVOT for the f-structure \text{SUBJ}:

While I mean by pivot neither more nor less than is understood by the term (grammatical) subject, I will henceforth use the term pivot, since, as Dixon has observed, it can be very confusing to refer to a grouping of [P] and S as the subject. I will then label other core roles simply as \text{CORE}—this grammatical relation is fully equivalent to \text{OBJ} in standard systems of grammatical relations.

[Manning (1996: 48)]

However, other studies that adopt Inverse Mapping use \text{SUBJ} for f-structure subject, and we will do the same here to distinguish Manning’s concept of pivot from ours.

To put it slightly differently, the Inverse Mapping theory claims that there are subjects at two different syntactic levels: a-structure \text{SUBJ} and f-structure \text{SUBJ}, the former corresponding to our \text{G} and the latter to our PIV. This approach overlaps with what we can call the Multistratal Subject approach, an approach most clearly exemplified by Bell’s (1983) analysis of the Philippine-type language Cebuano. Bell’s analysis is framed within the framework of Relational Grammar, a multistratal theory, and characterizes \text{G} as an initial 1 (RG terminology for subject) and PIV as a final 1, where 1 is characterized as an argument relation.

Characterizing \text{G} and PIV as kinds, or strata, of subject, is thus a central part of the Inverse Mapping and Multistratal Subject approaches. Calling them different types of \text{SUBJ} implies that they are essentially the same type of entity, with similar properties. Since subject is taken by these approaches to be an argument function/relatiion, this view of PIV contrasts sharply with our theory. In the theory developed here, PIV is an overlay function, an extra grammatical function held by an element which is locally licensed. It is not an argument function. We claim that the identification of the pivot function as an argument function represents an important drawback of Inverse Mapping/Multistratal Subject. We have argued here (particularly in Chapter 3) that the properties of PIV are not argumenthood properties, and are disjoint from the

\footnote{Manning’s notations for grammatical functions in f-structure are a little different; we will return to this below.}
Chris Manning (personal communication) has objected to this objection on the grounds that identifying PIV with OBJ, as I claim syntactically ergative languages do, also involves a mismatch of prominence across different linguistic dimensions. While Manning’s point does have some validity, and this may explain the rarity of languages in which PIV is not automatically associated with TOPIC, there is a fundamental conceptual difference between inverse mapping and our theory of pivots. Mapping involves representing essentially the same relations (specifically, predicate–argument relations) at different dimensions of linguistic structure. An argument is the most prominent argument ultimately because of its position in conceptual structure. The most sensible system of mapping, and what I claim is the only available one, will maintain this prominence through to the syntax. Being a PIV, like being a TOPIC or being picked out by contrastive stress, represents a different type of prominence, one unrelated to argument status and ultimately unrelated to lexical conceptual structure. It also does not involve mapping from one level to another—it simply assigns a second function to an element which is already part of the f-structure. Manning also observes, quite correctly, that despite the apparent negative reading that his theory gets here, there are some fundamental issues on which we are in complete agreement.

In Manning’s implementation, the situation is a little better, but not much. In laying out his approach, Manning states that Gf properties are “semantic” in nature, where by semantic he means that they have some basis in thematic roles. As we saw in Chapter 2, the characterization of these constructions as semantic is incomplete; however, we can reinterpret Manning’s view as being that the constructions are related to notions of argumenthood. That this is a valid reading of Manning is shown by the fact that he uses the level of argument structure as the locus of these properties. So the properties of Gf are predicted by Manning to be argument-related. But the f-structure SUBJ (PIV) is also an argument function in Manning’s approach. Pivot properties should also be argumenthood-related. Aside from a semantic/thematic aspect to Gf, there should be no basic difference between the properties of Gf and PIV. The fact that they are totally disjoint sets of properties is a problem. At the outset, we argued that a theory of grammatical functions should explain the properties of syntactic elements; as we have shown, the properties of PIV are not argumenthood properties. The Inverse Mapping/Multistratal Subject theory can stipulate that, for example, in certain languages only “surface/grammatical” subjects can extract, but it cannot explain this. Our theory explains this and other properties.

The analysis of pivot selection as part of argument mapping is also typologically untenable. It is, of course, unproblematic in uniform-subject languages. As we discussed in Chapter 2, it is problematic but feasible in mixed-subject languages (for an explicit account of argument mapping under an Inverse Mapping theory, see Arka 1998 on the Philippine-type language Balinese). However, as we saw in Chapter 6, these two language types, although the most commonly discussed, do not exhaust the possibilities. In a topic-pivot language like Acehnese or Mandarin, pivothood is transparently unrelated to argument mapping. Pivotless languages like Choctaw/Chickasaw and Warlpiri are even more problematic. The illusion that pivothood is a type of argumenthood is a result of considering only argument-pivot languages.

To this line of criticism we can add points we have made earlier in this study. In Chapter 2, we criticized this approach on the grounds that it is inadequate as a theory of argument mapping. In the first place, it is implausible, as the universal trend appears to be to maintain hierarchies across dimensions of language. There are clear reasons why language would work this way, and the alignment of hierarchies is a recognized concept in Optimality Theory. As a design feature, it appears unlikely that Universal Grammar would allow Inverse Mapping as the basic mapping principle in a language. Secondly, this approach conflates our Gf and θ; to the extent

6Chris Manning (personal communication) has objected to this objection on the grounds that identifying PIV with OBJ, as I claim syntactically ergative languages do, also involves a mismatch of prominence across different linguistic dimensions. While Manning’s point does have some validity, and this may explain the rarity of languages in which PIV is not automatically associated with Gf, there is a fundamental conceptual difference between inverse mapping and our theory of pivots. Mapping involves representing essentially the same relations (specifically, predicate–argument relations) at different dimensions of linguistic structure. An argument is the most prominent argument ultimately because of its position in conceptual structure. The most sensible system of mapping, and what I claim is the only available one, will maintain this prominence through to the syntax. Being a PIV, like being a TOPIC or being picked out by contrastive stress, represents a different type of prominence, one unrelated to argument status and ultimately unrelated to lexical conceptual structure. It also does not involve mapping from one level to another—it simply assigns a second function to an element which is already part of the f-structure. Manning also observes, quite correctly, that despite the apparent negative reading that his theory gets here, there are some fundamental issues on which we are in complete agreement. Foremost among
that they can be shown to differ (as in our discussion of anaphora in Chapter 2), a theory which conflates them is empirically inadequate.

There are grammatical phenomena that are more straightforward to describe using the pivot theory proposed here than under the inverse mapping theory. One example is the nature of the controlled clause in Balinese, discussed in Chapter 5. As we saw there, the inverse mapping theory requires one to allow functional control of clauses with the grammatical function SUBJ in languages like Balinese. This is a problem for many theories of control, motivated on the basis of the properties of control constructions in many languages. (LFG-internally, functionally controlled clauses bear the function XCOMP.) Under the theory of pivots proposed here, however, there is no need for any theory to recognize a special kind of subject control which behaves like complement control. Another example comes from a consideration of certain phenomena in Indonesian which have been discussed using the inverse mapping theory by Arka and Manning (1998). Much of their analysis can be translated in a straightforward manner into the theory proposed here. However, certain aspects of their analysis are problematic under their assumptions and simple under ours. In particular, consider the structural realization of arguments. Arka and Manning identify the following as Philippine-type Agent voice and Direct-object voice:

(3) a. Amir mem- baca buku itu.
 Amir AGT- read book that
 ‘Amir read the book.’

 b. Buku itu dia baca.
 book that he/she read.DO
 ‘S/he read that book.’

Under the analysis we have proposed, the f-structures of these two sentences are as follows:

(4) a.
 [PIV
 [“Amir”]
 [GF
 PRED ‘read (↑GF)(↑OBJ)’
 OBJ [“that book”]]

 b.
 [PIV
 [“that book”]
 [GF
 PRED ‘read (↑GF)(↑OBJ)’
 OBJ [“s/he”]]

We can state the word-order facts simply: the PIV in Indonesian appears clause initially, in [SPEC, IP]. Within the VP, the verb is followed by non-PIV arguments other than the (non-PIV) GF (Agent). The GF appears initially in the VP, either as a pronoun or a clitic on the verb. Under the inverse mapping theory, non-PIV Agents and non-PIV Patients both bear the function OBJ, even though they have completely disjoint distributional properties. The f-structures under the
inverse mapping theory are the following:

(5) a. \[
\begin{array}{c}
\text{SUBJ} \quad \{\text{“Amir”}\} \\
\text{PRED} \quad \text{‘read} \quad \langle (\uparrow \text{SUBJ})(\uparrow \text{OBJ}) \rangle' \\
\text{OBJ} \quad \{\text{“that book”}\}
\end{array}
\]

b. \[
\begin{array}{c}
\text{SUBJ} \quad \{\text{“that book”}\} \\
\text{PRED} \quad \text{‘read} \quad \langle (\uparrow \text{OBJ})(\uparrow \text{SUBJ}) \rangle' \\
\text{OBJ} \quad \{\text{“s/he”}\}
\end{array}
\]

The phrase structure rules therefore need to refer to thematic roles. As Arka and Manning (1998: 14) state:

All the verbal clitic positions, including the preceding full pronouns, must be immediately adjacent to the verb and are reserved for words with pronominal meaning that express the \text{OBJECT}/Term-complement of the clause. These are used when the verb remains transitive. \ldots [T]he preverbal positions are positions for agent term complements only. When these positions are occupied, the clause is in the objective voice. [italics added]

Under the account proposed here, only Patients are \text{OBJ}; Agents are \text{G}F. Our account of Indonesian word order is more straightforward.

Our theory of pivots is thus preferable to the Inverse Mapping/Multistratal Subject theory. It has stronger conceptual grounding, is more explanatory, provides more adequate descriptions of linguistic facts, is typologically superior, and is more consistent with theoretical assumptions in LFG.

7.5. Constituent-Structure Approaches

The leading approach to grammatical functions (and syntax in general) in generative theory has been a constituent-structure–based (henceforth structural) approach. We will discuss what appear to be the primary trends in this kind of theory, and show that the grammatical-function–based approach that we have developed here is preferable and more explanatory. This is important particularly because proponents of the structural approach often claim a higher degree of explanatoriness. We have already addressed this in a preliminary way in Chapter 1; here we will look at specific analyses.

In an insightful survey of the history of approaches to subjecthood in the structural tradition, McCloskey (1997) describes it as a progressive “deconstruction” of the notion of subject. In this, it does not differ from what we have done here, nor from what has been done in other approaches. The theory developed here “deconstructs” \text{SUBJ} into the two distinct, inherently unrelated functions \text{G}F and \text{PIV} (and, if we want to extend this, the traditional notion “logical subject” corresponds to our \text{G}F). Of course, unlike our grammatical-function–based approach, the structural tradition identifies the functions with structural positions which are derivationally related to each other.

At the very least, subjects are associated in structural analysis with two positions: one internal to the VP (either [SPEC, VP] or adjoined to VP) and one in the specifier position of a higher functional projection (which we will refer to as [SPEC, IP]). As McCloskey points out, in a version of the structural approach which factors IP into multiple functional phrases, there
may be more such positions (McCloskey appears to favor two: a higher [SPEC, AGR₃P] and a lower [SPEC, TP]), but for our purposes we will limit our attention to one [SPEC, IP] position. Our \tilde{g} corresponds to the VP-internal position in such a theory, and our $\tilde{p}IV$ to [SPEC, IP]. Baker (1997: 82–3) gives a very clear overview of how such a system is supposed to work:

For reasons that are quite independent of ergativity, it has become standard to assume that the agent argument of a transitive verb in English is a subject in (at least) two ways: it is base-generated as the specifier of a VP projection where it is directly theta-marked; it then raises to the specifier of an Inflectional head to receive (or check) its nominative Case. Thus, the agent is both the subject of VP and the subject of IP. However, these two distinct senses of subject may diverge, resulting in a "deep ergative" language. Thus, suppose that the basic projection of arguments is the same [as English] in languages like Dyirbal or Inuit, but the verbs in these languages cannot license accusative Case on the underlying object. Then, it is the patient argument of the verb, not the agent, that must move to the specifier position of IP to receive/check nominative Case and trigger agreement on I…. The agent NP, on the other hand, remains in the specifier of VP and receives ergative Case by some other means (researchers vary on the exact mechanisms here). Simple versions of the two basic clause structures are compared [below], where I leave open the possibility that there are additional functional categories and/or a more complex VP-internal structure.

Baker’s sample structures, adapted slightly, are the following.

(6) a. **English**

```
   IP
     \   /  \\
    NP \  /  i
       the baby (A) Infl
          \  /  \\
           NOM NP  V'          \\
              \  /               \\
               t_i NP  V          \\
                  \  /               \\
                   t_i V NP  \\
                          \  /               \\
                           \  /          \\
                            t_i V NP
                              \  /               \\
                               \  /  \\
                                \  /  \\
                                 t_i
```

b. **Dyirbal/Inuit**

```
   IP
     \   /  \\
    NP \  /  i
       the toy (P) Infl
          \  /  \\
           NOM NP  VP          \\
              \  /               \\
               t_i NP  V          \\
                  \  /               \\
               \  /               \\
               \  /               \\
               \  /               \\
               \  /               \\
```

As Baker makes clear, the key technical mechanism for licensing movement to [SPEC, IP] is Case theory. In uniform-subject languages, the A argument in [SPEC, VP] (or adjoined to VP) undergoes this movement, whereas in mixed-subject languages it is some other element. The -
notion of Case here is what is known in the structural tradition as abstract Case, not necessarily related to morphological Case.

We will examine this approach by taking a closer look at GB (single IP, government-based Case marking) and MP (exploded IP, SPEC-head Case checking) implementations. We will first outline the technical aspects of each of these versions, and then take an overview at the explanatoriness of this type of account.

Based on data from Malagasy, Tagalog, Cebuano, and Malay/Indonesian, Guilfoyle, Hung, and Travis (1992) (henceforth GHT) argue for a version of the [SPEC, IP]/ [SPEC, VP] analysis. As noted above, in such an analysis, [SPEC, IP] is the structural equivalent of the function PIV, while [SPEC, VP] is D/H. Inexplicably, GHT refer to both positions as subject positions and explicitly refer to the [SPEC, IP] (i.e. PIV) as an argument position.

GHT assume a basic GB-style theory of clause structure (with a single functional category Infl) and a government-based approach to Case marking. Within the framework that they assume, a nominal becomes PIV (moves to [SPEC, IP]) by virtue of not being assigned Case. They work out the analysis in detail for Malagasy, where the prefix an- appears on A-pivot (AGT) verbs, the suffix -na on P-pivot (DO) verbs, and both appear on the verb if the pivot is something else specified in the lexical entry of the verb.

(7) (Guilfoyle et al. (4,6))

a. M- an- sasa (manasa) ny lamba amin’ ny savony ny zazavavy.
 TNS- AGT- wash the clothes with the soap the girl

b. Sasa- na (sasan’) ny zazavavy amin’ ny savony ny lamba.
 wash- DO the girl with the soap the clothes

c. An- sasa- na (anasan’) ny zazavavy ny lamba ny savony.
 ACT- wash- DO the girl the clothes the soap

‘The girl washes the clothes with soap.’

The analysis is that the prefix is part of the verb and assigns Case to the P, while the suffix is part of INFL and assigns Case to the A in [SPEC, VP]. Unlike in standard versions of GB, the verb itself does not assign Case. The argument that is not assigned Case moves to [SPEC, IP], where it can be marked nominative through SPEC-head agreement. The attractiveness of this proposal comes from the combination of prefix and suffix: in such a case, both Agent and Patient are assigned Case and something else must move instead. An alternative analysis must treat the circumfix an-…-na as a third morphological element, unrelated to the Agentive-voice prefix and DO-voice suffix. Furthermore, constituent order facts in Malagasy support this analysis: the trace of the verb (which moves to INFL) intervenes between the Agent and the Patient, so the Patient is in a position adjacent to the verb if it is Case marked. Schematic structures, adapted from GHT, are as follows. (These structures do not show V-to-I movement.)
Attractive as it is at first glance, this account faces some problems. Some of these problems are apparent in the analysis of Malagasy. In the first place, it requires an approach under which transitive verbs do not have the inherent ability to assign Case. This contradicts most approaches to Case in the GB tradition. Second, the fact that both Agent and Patient are
assigned Case if the circumfix appears on the verb is not enough to explain the movement of another argument to [SPEC, IP]. As GHT observe (fn 7), the preposition must be assumed to incorporate into the verb as well. If it did not, it would surface and assign Case to the nominal. This incorporation must be stipulated, and though GHT claim that it is similar to an applicative construction, in the Malagasy case there is no morphological indication of the alleged incorporation.

Further problems emerge when the analysis is extended to other Austronesian languages. Unlike Malagasy, languages like Tagalog do not combine the AGT voice affix and the DO voice affix if an oblique argument becomes the pivot. This may indicate that, messy though it may be for Malagasy, the correct treatment of oblique-pivot affixes is simply as separate affixes. The word order facts are also less cooperative in other languages, as GHT point out and discussed in detail for Tagalog by Kroeger (1993). Finally, it is unclear how the GHT analysis would extend to syntactically ergative languages.

Bittner and Hale (1996a,b) propose a theory of Case that shares some of the features of GHT’s analysis: there is a VP-internal subject position (adjoined to VP in their implementation) corresponding to our \(\overline{\text{S}} \) and [SPEC, IP] corresponding to piv. Their theory of Case is rather involved, and we will not discuss it here. As in GHT’s account, inability to be assigned Case causes a DP to move to [SPEC, IP]. Under normal circumstances (and contrary to the standard GB Case theory), the A can be assigned Case\(^7\) but the P cannot, so it moves to [SPEC, IP] resulting in a syntactically ergative structure, or is allowed to remain in situ through some mechanism rendering the VP and IP transparent to government,\(^8\) resulting in a morphologically ergative structure. (For Bittner and Hale, morphologically ergative languages never raise an argument to [SPEC, IP], and are thus pivotless.) To allow Case to be assigned to P, a D (sometimes realized overtly as object agreement) must be adjoined to the verb to create a Case competitor. It is then the A that is left without Case. The A either raises to [SPEC, IP] or gets governed in situ by C through government transparency. In an intransitive clause, since there is no competition for Case,\(^9\) the S cannot be assigned Case, so it behaves like the Caseless A of nominative-accusative languages and P of ergative languages. As for Philippine-type languages, Bittner and Hale adapt GHT’s analysis. For Bittner and Hale, the AGT voice affix (an-in Malagasy) is a D adjoined to V, resulting in a nominative-accusative construction where the P can be assigned Case but the A cannot and must move to [SPEC, IP]. This is similar to GHT’s analysis. The DO voice affix (Malagasy -na) is not discussed; Bittner and Hale gloss it as INFL but do not explain why it is absent in AGT voice sentences.

The GB-style Case-theoretic analyses have a strange quality to them. We will focus on the more straightforward GHT account. Removing the technicalities of both our theoretical assumptions and GHT’s, the two approaches to Philippine-type languages can be compared in the following way. In both ours and theirs, the essence of Philippine-type languages is in the

\(^7\)This is a simplification of Bittner and Hale’s theory, since the movement or government transparency about to be mentioned are necessary to allow I to assign Case to the A. For details, see Bittner and Hale.

\(^8\)Either verb movement or coindexation of C, I, and V.

\(^9\)Bittner and Hale’s notion of Case assignment being the result of competition between two nominals is interesting, and it is a shame that it has not been taken up in subsequent structural theories of Case assignment. It is a formal expression of the functionalist concept that Case exists to distinguish arguments: one argument is unmarked, and the others bear some sort of marking of their grammatical function (or thematic role). The problem with Bittner and Hale’s approach is its complexity: in an era when structural-transformational theory aspires to minimalism in its formal devices, Bittner and Hale’s theory has something of a “maximalist” feel to it.
voice affix. This works as follows.

(9) a. **Analysis proposed in this book**
AGT affix: “pivot is A”
DO affix: “pivot is P”
INSTR affix: “pivot is instrumental”

b. **GHT analysis**
AGT affix: “pivot is not P”
DO affix: “pivot is not A”
INSTR affix: “pivot is neither A nor P”

The GB Case-theoretic analysis is based not on identifying what the pivot is, but rather what it is not. Pivothood is something of an accident under such an account, a booby prize for the loser of the musical chairs of Case assignment. The basic theoretical machinery of Case-marking itself needs to rewritten to create a system which will achieve the correct results. Aside from the technical problems cited above and explanatory problems to be discussed below, this is a conceptual weakness of this type of account of subjecthood.

Murasugi (1992) proposes a theory of ergativity within the framework of early MP. Murasugi hypothesizes a clausal architecture in which Infl is decomposed into two functional categories: Tense and Transitivity. Case is checked in the specifier positions of these functional categories when they have a positive value for the feature they host: the unmarked Case (nominative/absolutive) in [SPEC, TP] when T is [+tense] and the marked Case (accusative/ergative) in [SPEC, TrP] when Tr is [+trans]. In an intransitive clause, the S moves to [SPEC, TP] to check its Case (since Tr is [−trans], it cannot check Case). For this reason, S has the unmarked Case in all types of languages. On the other hand, there are two possibilities for NP movement in transitive clauses: either A moves to the higher position [SPEC, TP] and P to the lower [SPEC, TrP] or P moves to the higher position [SPEC, TP] and A to the lower [SPEC, TrP]. The former is the pattern in nominative-accusative languages, and the latter in ergative languages. The reason for the different NP-movement properties is taken to be feature strength: one of the functional categories has strong Case features, requiring overt movement, and for reasons of Economy the closest NP (the A) has to move there. The P moves to the other specifier position at LF. Schematically:
(10) Nominative/accusative language

a. D-structure

\[\text{TP} \]
\[\text{SPEC} \]
\[\text{T} \]
\[\text{TrP} \]
\[\text{[NOM]_{strong}} \]
\[\text{SPEC} \]
\[\text{Tr'} \]
\[\text{Tr} \]
\[\text{[ACC/ERG]_{weak}} \]
\[\text{VP} \]
\[\text{NP} \]
\[\text{V} \]
\[\text{NP} \]
\[\vdots \]
\[\text{P} \]

b. S-structure

\[\text{TP} \]
\[\text{NP}_i \]
\[\text{T} \]
\[\text{TrP} \]
\[\text{SPEC} \]
\[\text{Tr'} \]
\[\text{Tr} \]
\[\text{[ACC/ERG]_{weak}} \]
\[\text{VP} \]
\[\text{NP}_i \]
\[\text{V} \]
\[\text{NP} \]
\[\vdots \]
\[\text{P} \]
(11) Ergative languages
a. D-structure

\[
\text{TP} \\
\text{SPEC} \\
[T] \\
[\text{NOM}_{\text{weak}}] \\
\text{SPEC} \\
[T] \\
[\text{TrP}] \\
\text{TrP} \\
[\text{VP}] \\
[\text{NP}]_{\text{strong}} \\
\text{VP} \\
[\text{NP}]_{\text{strong}} \\
\text{NP} \\
\text{A} \\
\text{V} \\
\text{NP} \\
\text{...} \\
\text{P}
\]
Thus, the [SPEC, VP] position is the representation of \mathcal{G}_F and the [SPEC, TP] position (corresponding to [SPEC, IP] in Baker’s trees) is PIV. In Murasugi’s account, the difference between uniform-subject languages and mixed-subject languages is a technical question of feature strength in the functional layer of clausal structure. The resultant PIV, with its array of properties, is a by-product of the requirements of feature-checking. In this respect it is (unsurprisingly) similar to the GB accounts: pivothood is an accident: the grammar specifies what is not a pivot.

The only mixed-subject language type that Murasugi discusses explicitly is ergative. It is unclear how she would account for Philippine-type languages; plausibly, the choice of strong feature would be variable and linked to the voice morphology, but it is unclear what sort of feature configuration would be responsible for voices other than agent or direct-object. Even more mysterious is how Murasugi would account for active languages and pivotless languages. The critical question is how well structural theories explain the properties of \mathcal{G}_F and PIV.
The idea that control is related to binding theory is intuitively plausible, but it violates the leading idea behind control theory in GB, which is that since PRO is a pronominal “anaphor”, it cannot be subject to the principles of binding theory.

Consider, for example, the extraction properties of P IV. Both GB-type analyses that we have reviewed suggest that the prominent structural position is somehow involved. GHT suggest that some sort of locality may be involved, and Bittner and Hale argue that, since [SPEC, IP] is an A position, its prominence should manifest itself mostly in A dependencies. However, neither GHT nor Bittner and Hale propose a mechanism for achieving this, so it is not clear that they have explained anything.

Murasugi focuses on relative clauses (taking the position that other long-distance dependency constructions that appear to be limited to P IV are types of relative clauses), and argues that in a [-tense] clause relativization should be restricted to the nominative argument (PIV) because it can’t check its Case in [SPEC, TP], so it has to move to [SPEC, CP]. However, in finite clauses anything should be able to relativize, because everything can check its Case clause-internally, so movement to [SPEC, CP] is just ordinary A movement, not Case-motivated movement. She then discusses the fact that in some Mayan languages, such as Jakaltek, finite (+tense) relatives seem to be limited to relativizing the P IV (S/P), with antipassive (A→S) being used to relativize A arguments. While this appears to be a counterexample, she suggests that this may not be a structural (i.e. syntactic) restriction, but simply a “pragmatic” preference. Her only evidence for this is that other Mayan languages allow anything to be relativized but use antipassive as a disambiguating device, or a way to get a slightly different meaning. This is irrelevant for languages like Jakaltek, however; she appears to be left with no explanation of the P IV restriction.

Control constructions also appear to pose problems for structural accounts. The existence of both G R and P IV controlees is not recognized by everyone: Bittner and Hale appear to believe that only G R can be controlled. Strangely, they attribute this to Chomsky (1981), even though Chomsky’s PRO-must-be-ungoverned account applies to [SPEC, IP], the P IV position. GHT assume the standard Chomsky (1981) analysis that PRO must be ungoverned, which in their analysis (correctly) accounts for P IV controlees, as [SPEC, IP] is ungoverned if Infl is non-finite.

As for G R controlees, they suggest that PRO is possible in that position because of some relation between control and binding theory.\(^{10}\) Since binding theory is sensitive to argumenthood, as discussed in Chapter 2 of this book,\(^{11}\) and [SPEC, VP] is an argument position, PRO is possible

\(^{10}\)The idea that control is related to binding theory is intuitively plausible, but it violates the leading idea behind control theory in GB, which is that since PRO is a pronominal “anaphor”, it cannot be subject to the principles of binding theory.

\(^{11}\)In the interests of fairness, I should point out that the binding-theoretic prominence of G R can be accounted for within the structural theory if one accepts the assumption that G R is structurally higher than other arguments in all languages. The explanation works best in Bittner and Hale’s account. They observe, correctly, that under the VP-internal Subject Hypothesis, [SPEC, IP] is an A position, and thus irrelevant for binding theory. All binding theory can see is that [SPEC, VP] (or distinguished adjunct of VP in their implementation) c-commands the other arguments. This does not change the fact that other subject properties are not explained under structural accounts.
there. However, the nature of the relation to binding theory is not specified, and, as they point out, the analysis also entails that government of [SPEC, VP] by Infl is optional—a problematic concept. They do not discuss Raising, nor do they mention languages in which the controllee is limited to either Gf or PIV. Murasugi suggests that the only true cases of PRO control involve PIV, for reasons of Case, and that apparent cases of Gf controllees are either finite or involve pro instead of PRO. The latter approach bears some resemblance to our distinction between functional control (which would be the equivalent of Murasugi’s PRO) and anaphoric control (pro), although in the case of the account here the distinction is one independently motivated in the theory. The lack of independent motivation renders her account more stipulative and less explanatory than one would like. Murasugi also has nothing to say about Raising.

Another point that needs to be made about the structural analyses is that they do not seem to provide a way to account for topic-pivot languages like Acehnese. Bittner and Hale’s is the only account to even attempt this, but in their analysis of Acehnese the Gf is always the PIV (they hypothesize a null expletive for unaccusative clauses). They do not motivate this on grounds of pivot behavior, which is striking since the Core Topic (PIV) figures prominently in Durie (1985). Topic-pivot languages appear to pose a serious problem for any Case-theoretic account of pivothood, since Case is linked to argumenthood, and topic-pivot languages do not pick the pivot on the basis of argumenthood.

The structural analyses are similar to ours in recognizing Gf and PIV as two distinct elements, but require all languages to have the same c-structure configurations, and cannot provide analyses of pivothood in languages like Acehnese. Instead of directly addressing the question of grammatical functions, they create complex webs of c-structural conditions which conspire to create the surface grammatical relations that the analysis proposed here creates directly. The essential properties of the two kinds of subject, which are predicted by the current proposal by virtue of the nature of the two distinct grammatical functions, are not predicted by the structural accounts.

7.6. Final Thoughts

The theory of subjecthood that we have proposed in the present study has certain properties that distinguish it from other, similar theories. We have taken a multidimensional functionally-informed formalist approach, and we claim that this provides a better basis for understanding and explaining the properties of subjects than other approaches. In previous chapters, we have made this argument by showing how our theory, which factors the grammatical function SUBJ into the argument function Gf and the overlay function PIV, explains the cross-linguistic properties of subjects. We have even explained typologically strange facts, such as the differences between languages in choice of controllee in control constructions.

In this, the final chapter, we have contrasted our approach with related approaches based on different assumptions. We have argued that these other approaches, while they share certain features with ours, fall short of accounting for the full range of subject-related phenomena which we account for.

There are several broader issues which are raised by the present study, in particular the formalist-functionalist divide, the explanatory potential of a theory based on grammatical functions, approaches to typology, the relation between explanation and description, and parallel architecture in linguistic theory. We will discuss these briefly here.

We believe the distinction between formalism and functionalism which pervades linguistics today to be a harmful sociological phenomenon. While one can (perhaps inevitably)
approach language from one perspective or the other, ultimately language is built out of both form and function. The functions of language are expressed in form, and the forms of language serve functions (Falk 1992). In the present study, although our perspective has been primarily formalist, we have made use of observations from the functionalist side of the linguistics world. It is only through such a mixed perspective that true progress can be achieved.

Related to the breaking down of the formalist-functionalist barrier is the notion of grammatical functions: functionality based not on extra-syntactic dimensions but on the formal syntactic system itself. This notion of grammatical function has been the foundation on which the present analysis has been built. Such a concept is only truly possible if the formalist-functionalist distinction is rejected, and it is our contention that the generative goal of explaining linguistic phenomena requires a serious consideration of the formal syntactic functionality of linguistic elements. This was discussed in a preliminary way in Chapter 1, and the rest of this book can be seen as a case study in grammatical-function-based explanation. Further studies based on formal syntactic functionality will probably result in other explanations of phenomena that have resisted non-circular explanation in the past. This view of grammatical functions and explanatoriness runs counter to what is often assumed in the generative literature, particularly in the transformational literature; in fact, Chomsky (1981) argues explicitly against a role for grammatical functions in syntactic theory. Our approach is obviously different.

A second artificial division in contemporary linguistic research is the one between approaches to typology, as described in the following quotation from Comrie (1989: 1–2).

On the one hand, some linguists have argued that in order to carry out research on language universals, it is necessary to have data from a wide range of languages; linguists advocating this approach have tended to concentrate on universals statable in terms of relatively concrete rather than abstract analyses, and have tended to be open, or at least eclectic, in the kinds of explanations that may be advanced for the existence of language universals. On the other hand, some linguists have argued that the best way to learn about language universals is by the detailed study of a small number of languages; such linguists have also advocated stating language universals in terms of abstract structures and have tended to favor innateness as the explanation for language universals. The first of these two approaches is perhaps most closely associated with the work of Joseph H. Greenberg and those inspired by his work. . . . The second is most closely associated with the work of Noam Chomsky and those directly influenced by him, and might be regarded as the orthodox generative position.

The approach we have taken here is neither “Greenberg” typology nor “Chomsky” typology. We take it to be self-evident that a study of this kind could not be undertaken without a sufficiently broad sample of languages. In this way, we differ from the “Chomsky” approach, which advocates taking a smaller set of languages. We do not believe that any meaningful typological work can be accomplished by comparing, say, French and English. On the other hand, we differ with the “Greenberg” approach that linguistic universals must be stated in relatively surface terms. We believe that the correct approach to typology has to rely on relatively detailed analysis of a wide range of languages, a combination of “Greenberg” typology and “Chomsky” typology. It is only through detailed analysis that we can find the explanations for the illusion of mixed-pivot languages, by recognizing the existence of both functional control and anaphoric control, or different ways of sharing participants between coordinated clauses. And we see nothing undesirable in expressing universals in abstract formal terms; our Pivot Condition is a formal universal condition on rules (or constraints), not on directly observable data.

A third problematic distinction often found in contemporary linguistic work is the distinction between explanation and description. This distinction is often drawn by researchers in the transformational tradition, with the associated implication that explanation is superior to
“mere” description. Obviously, we do not wish to denigrate the idea that the goal of linguistics is explanation; the present study has been devoted to the concept of explanation. But explanation must be grounded in accurate description. Without a full understanding of the facts, any alleged explanation is useless. The present study has been solidly grounded in language description—in our view, the only possible way to do explanatory linguistics.

Finally, we have relied on a parallel-architecture multidimensional approach to language, the kind championed by LFG. We believe, with Bresnan (2001), that the multidimensionality of language holds the explanation for much of language variation. Such a multidimensional approach runs counter to the spirit of many other theoretical frameworks, which prefer to express all (or most) generalizations in terms of one type of linguistic representation. A multidimensional approach is a more realistic approach to language (Jackendoff 1997, 2002), and we take this to be one of the advantages of the theory proposed here.

The theory of subjecthood that we have proposed here, distinguishing Gr and PiV as functional elements with formal properties, and using a broad typological range of languages as its basis, is thus superior to other types of theories of subjecthood and ergativity in achieving the goal of explaining subjecthood.
REFERENCES

http://cslipublications.stanford.edu/LFG/6/lfg01.html
http://cslipublications.stanford.edu/LFG/5/lfg00.html
http://cslipublications.stanford.edu/LFG/7/lfg02.html

Moore, John, and David M. Perlmutter. 2000. “What Does it Take to be a Dative Subject?”

Shlonsky, Ur. 1988. “Complementizer-Cliticization in Hebrew and the Empty Category
Van Valin, Robert D., Jr., and Randy J. LaPolla. 1997. *Syntax: Structure, Meaning, and
Function*. Cambridge: Cambridge University Press.
Ziv, Yael 1976. “On the Reanalysis of Grammatical Terms in Hebrew Possessive Construc-
tions.” in Peter Cole, ed., *Studies in Modern Hebrew Syntax and Semantics: The
Transformational-Generative Approach*. Amsterdam: North Holland.