The following homework assignment should be submitted in writing no later than Tuesday, 30/6/10. No delays are allowed, unless they are both justified and pre-approved by me. You may submit the project in pairs.

A system is observed in 4 time points: $0<t_{1}<t_{2}<t_{3}<t_{4}$. At each point the incremental movement of a particle since the previous observation is assessed. Let X_{i} be the assessment made at time t_{i}. Assume that the expectation of X_{i} is the actual incremental movement, the variance is σ^{2} (known) and the correlation between observations X_{i} and X_{j} is $\rho^{|i-j|}$, for some known ρ. It is known that the actual increment movements are non-negative and that particle moves a total distance of one between time 0 and time t_{4}. It is hypothesized that the total distance that the particle moved until time t_{2} is at least half the overall distance.

1. Formulate the problem of estimating the incremental movements based on the observations in terms of a minimization problem with constraints. Give a justification for this formulation under the assumption that the observation have a joint Gaussian distribution.
2. Select increments that satisfy the assumptions of the system and select values for σ^{2} and ρ. Generate observations X_{1}, \ldots, X_{4} under the Gaussian assumption and according to the given parameters. Use the simulated observations in order to estimate the actual increments. Present the R code you used. (You may use the function mvrnorm from the library MASS in order to generate multi-normal observations.)
