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1 Solutions for Chapter 1

Prob. 1: Define the point-to-set mapping on Rn by

A(x) = {y : y′x ≤ b},

where b is a fixed constant. Is A closed?

Solution: Yes, it is. Let xn be a sequence that converges to x and let yn

be a sequence that converges to y and satisfies that y′
nxn ≤ b for all n.

Since the inner product is a continuous operator we obtain that y′x ≤ b as
required. To add more details, assume the contrary, i.e. the existence of
ε > 0 such that y′x > b + ε. However,

|y′
nxn − y′x| ≤ |y′

nxn − y′xn|+ |yxn − y′x| ≤ ‖yn − y‖‖xn‖+ ‖y‖‖xn − x‖

and the contradiction now follows from the assumptions on convergence and
the fact that a converging sequence is bounded.

Prob. 2: Consider the iterative process

xn+1 =
1
2

(
xn +

a

xn

)
,

where a > 0. Assuming the process converges, to what does it converge?
What is the order of convergence.

Solution: The solutions of x = (1/2)(x+a/x) is x∗ = ±a1/2. If we denote

f(x) =
1
2

(
x +

a

x

)
,

then f(x∗) = x∗ and

f(x) ≈ x∗ +
a

4(x∗)3
(x− x∗)2.

It follows that the order of convergence is 2.
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2 Solutions for Chapter 2

Prob. 1: Let f(x) = ax2 − 2bx + c. Under which conditions does f has a
minimum? What is the minimizing x?

Solution: Taking derivative we get ḟ(x) = 2ax − 2b = 0 as the first-order
condition. The second derivative is 2a. All points are inner points. Hence a
nesesery and sufficient condition for x∗ = b/a to be the minimum is a > 0.

Prob. 2: Let f(x) = x′Ax−2b′x+c, with A an n×n matrix, b an n-vector
and c a scalar. Under which conditions does f has a minimum? a unique
minimum? What is the minimizing x?

Solution: Write

x′Ax− 2b′x + c = (x−A−1b)′A(x−A−1b)− b′A−1b + c

The point x∗ = A−1b is a minimum if and only if A is positive-definite. If
it is — it is obvious the point is a minimum. If it is not — one can find a
direction along which one can approach −∞.

Prob. 3: Write a function that finds the location and value of the minimum
of a quadratic function.

Solution:

> minquad <- function(A,b,c)
+ {
+ x <- solve(A)%*%b
+ f <- t(x)%*%A%*%x -2*b%*%x + c
+ return(list(x=x,f=f)) + }
>
> A <- matrix(c(1,3,-1,2),2,2,byrow=TRUE)
> b <- c(5,2)
> c <- 1
> A

[,1] [,2]
[1,] 1 3 [2,] -1 2
> b
[1] 5 2
> c
[1] 1
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> minquad(A,b,c)
$x

[,1]
[1,] 0.8 [2,] 1.4

$f
[,1]

[1,] -5.8

Prob. 4: Plot a contour plot of the function f with A =
( 1 3
−1 2

)
,

b = (5, 2)′ and c = 1. Mark, on the plot, the location of the minimum.

Solution:

> x <- y <- seq(-20,20,by=0.1);
> z <- outer(x,y,function(x,y)
+ x^2 + 2*x*y + 2*y^2 - 2*5*x - 2*2* y + 1)
> contour(x,y,z)
> points(8,-3,col=2)
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3 Solutions for Chapter 3

Prob. 1: Find the minimum of the function -humps. Use different ranges.

Solution:

> humps <- function(x) 1/((x-0.3)^2+0.01)+1/((x-0.9)^2+0.04)-6
> x <- seq(-5,5,by=0.01)
> plot(x,humps(x),type="l")
> optimize(humps,c(-2,2),max=TRUE)
$maximum [1] 0.300377
$objective [1] 96.5014
> optimize(humps,c(0.31,2),max=TRUE)
$maximum [1] 0.8927036
$objective [1] 21.73457
> optimize(humps,c(0.5,1.5),max=TRUE)
$maximum [1] 0.8927257
$objective [1] 21.73457
> optimize(humps,c(0.2,1),max=TRUE)
$maximum [1] 0.3003759
$objective [1] 96.5014

Prob. 2:

1. Given f(xn), f ′(xn) and f ′(xn−1), show that

q(x) = f(x) + f ′(xn)(x− xn) +
f ′(xn−1)− f ′(xn)

xn−1 − xn
· (x− xn)2

2
,

has the same derivatives as f at xn and xn−1 and is equal to f at xn.

2. Construct a line search algorithm based on this quadratic fit.

Solution:

1. When x = xn the second and third terms in g vanish. Thus, g(xn) =
f(xn). Also

q′(x) = f ′(xn) + (f ′(xn−1 − f ′(xn))
x− xn

xn−1 − xn
.

plugging x = xn and x = xn−1 gives the result.
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2. The function g attains its minimum (if [f ′(xn−1)−f ′(xn)]/[xn−1−xn] >
0.) at

xn+1 = xn −
f ′(xn)(xn−1 − xn)
f ′(xn−1)− f ′(xn)

.

Prob. 3: What conditions on the values and derivatives at two points
guarantee that a cubic fit will have a minimum between the two points?
Use the answer to develop a search scheme that is globally convergent for
unimodal functions.

Solution: Assume xn−1 < xn. A sufficient condition that a unimodal
function has its minimum between these two points is f ′(xn−1) < 0 < f ′(xn).
Given a two-points pattern with this property, we can move to the next
two-points pattern by selecting an interior point for which the value of the
target function is strictly smaller and the pattern is sustained (with one of
the two edge points. Using the function Z(x1, x2) = f(x1) + f(x2) and the
continuoity of the algorithm we get global convergence.

Prob. 4: Consider the function

f(x, y) = ex(4x2 + 2y2 + 4xy + 2y + 1).

Use the function fmin to plot the function

g(y) = min
x

f(x, y).

Solution:

> fun2 <- function(x,y) exp(x)*(4*x^2+2*y^2+4*x*y+2*y+1)
> xy <- y <- x <- seq(-2,2,length=100)
> for (i in 1:length(y)) xy[i] <- optimize(fun2,c(-2,2),y=y[i])$min
> plot(y,fun2(xy,y),type="l")
> z <- outer(x,y,fun2)
> contour(x,y,z,nlev=200)
> lines(xy,y,col="red")
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4 Solutions for Chapter 4

Prob. 1: Prove Theorem 4.2.2.

Solution: Consider a Taylor expansion of order two:

f(x) = f(x∗) +
1
2
(x− x∗)′f̈(x∗)(x− x∗) + o(‖x− x∗‖2),

since ḟ(x∗) = 0. From the fact that

(x− x∗)′f̈(x∗)(x− x∗) ≥ λmin(f̈(x∗))‖x− x∗‖2,

where λmin(A) is the smallest eigenvalue of the matrix A we obtain that
there is a ball about x∗ over which f(x) ≥ f(x∗) + 1

4(x−x∗)′f̈(x∗)(x−x∗).
Without loss of generality this ball is in the interior of Ω. The claim now
follows from the fact that (x− x∗)′f̈(x∗)(x− x∗) > 0.

Prob. 2: To approximate the function g over the interval [0, 1] by a poly-
nomial h of degree n (or less), we use the criterion

f(a) =
∫ 1

0
[g(x)− h(x)]2dx,

where a ∈ Rn+1 are the coefficients of h. Find the equations satisfied by the
optimal solution.

Solution: Denote h(x) = ha(x) = a′x, with a = (a0, . . . , an)′ and x =
(1, x, x2, . . . , xn). Thus,

(g(x)− h(x))2 = (g(x)− a′x)(g(x)− a′x)′

= a′xx′a− 2g(x)x′a + g(x)2.

It follows that ∫ 1

0
[g(x)− h(x)]2dx = a′Xa− 2b′a + c,

where (X)ij =
∫ 1
0 xi+jdx = 1/(i + j + 1), 0 ≤ i, j ≤ n, (b)i =

∫ 1
0 g(x)xidx,

and c =
∫ 1
0 g(x)2dx. Either from Question 3.8.2 or by taking derivatives,

the first order equations are: Xa = b or a = X−1b.
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Prob. 3: Using first-order necessary conditions, find the minimum of the
function

f(x, y, z) = 2x2 + xy + y2 + yz + z2 − 6x− 7y − 8z + 9.

Verify the point is a relative minimum by checking the second-order condi-
tions.

Solution: Taking derivatives we get

ḟ(x, y, z) =

 4x + y − 6
2y + x + z − 7

2z + y − 8

 = 0.

The solution is x∗ = 6/5, y∗ = 6/5, z∗ = 17/10. At the solution,

f̈(x∗, y∗, z∗) =

 4 1 0
1 2 1
0 1 2

 .

The eigenvalues of this symmetric matrix are 4.4812, 2.6889, and 0.8299 —
all positive. (Try with MATLAB!) The matrix is thus positive definite. The
point is in the interior of Ω. From the second order sufficient conditions
theorem it follows that the point is a local minimum.

Prob. 4: In control problem one is interested in finding numbers u0, . . . , un

that minimize the objective function

J =
n∑

k=0

{(x0 + u0 + · · ·+ uk−1)2 + u2
k},

for a given x0. Find the equations that determine the first order conditions.

Solution: Denote by 1k the vector of one at the kth coordinate and zeros
elsewhere. Let u = (u0, . . . , un)′. Thus,

J = x2
0 +

n∑
k=1

{(x0 + u′1k−1)2 + (u′1k)2}

= x2
0 +

n∑
k=1

{x2
0 + 2x01′k−1u + u′1k−11′k−1u + u′1k1′ku}

= (n + 1)x2
0 + 2x0

( n∑
k=1

1k−1

)′
u + u′

( n∑
k=1

{1k−11′k−1 + 1k1′k}
)
u

= (n + 1)x2
0 + 2b′u + u′Au,
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where

(A)ij =


0 i 6= j
1 i = j = 0, n
2 1 ≤ i = j < n,

bi = x0 when i < n, and bn = 0. Finally, either from Question 3.8.2 or by
taking derivatives, the first order equations are: Au = −b or u = −A−1b.
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5 Solutions for Chapter 5

Prob. 1: Investigate the function

f(x, y) = 100(y − x2)2 + (1− x)2.

Why doesn’t the steepest decent algorithm converge?

Solution: We write the code of the function and its gradient. We then
use the function steepest.decent that was presented in class in order to
produce iterations of the algorithm:

> banana <- function(x) 100*(x[2]-x[1]^2)^2 + (1-x[1])^2
> banana.grad <- function(x)
+ {
+ fx1 <- -400*(x[2]-x[1]^2)*x[1] -2*(1-x[1])
+ fx2 <- 200*(x[2]-x[1]^2)
+ return(matrix(c(fx1,fx2),2,1))
+ }
> x0 <- xn <- x <- c(-1.9,2)
> fn <- banana(x)
> for (i in 1:30)
+ {
+ out <- steepest.decent(banana,banana.grad,x)
+ x <- out$x
+ xn <- cbind(xn,x)
+ fn <- c(fn,out$obj)
+ }
> fn
[1] 267.62000000 0.61940091 0.51098122 0.51078300 6.43313982
[6] 6.39978521 0.49922995 0.49910460 4.89353955 3.08695351
[11] 0.04347390 0.04143002 6.43184792 6.42924775 0.04321545
[16] 0.03682197 6.52399187 6.52154732 0.03705950 0.03697912
[21] 0.03689848 0.03681941 0.03674008 0.03666211 0.03658388
[26] 0.03650684 0.03642955 0.03635333 0.03627686 0.03620136
[31] 0.03612561
> xn

xn
[1,] -1.9 1.705747 1.714492 1.714647 -1.535166 -1.527631 1.706145 1.706354
[2,] 2.0 2.944404 2.941679 2.940804 2.364528 2.323230 2.913358 2.912943
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[1,] -1.210836 -0.7297018 1.208367 1.200266 -1.534420 -1.535257 1.207750
[2,] 1.473703 0.5016289 1.460906 1.437000 2.363699 2.361161 1.459404

[1,] 1.181528 -1.552509 -1.553361 1.192420 1.191730 1.192002 1.191320 1.191590
[2,] 1.389787 2.419606 2.417283 1.422449 1.421700 1.421449 1.420714 1.420464

[1,] 1.190915 1.191182 1.190513 1.190779 1.190115 1.190379 1.189719 1.189981
[2,] 1.419740 1.419492 1.418776 1.418529 1.417821 1.417574 1.416874 1.416628

Compare that to the actual minimum of the function:

> optim(x0,banana)
$par
[1] 0.9992542 0.9984668

$value
[1] 7.337513e-07

$counts
function gradient

209 NA

$convergence
[1] 0

$message
NULL

Now let us plot the function, identify the initial point and the solution, and
plot the path the algorithm went through:

> xx <- seq(-2,2,by=0.01)
> yy <- seq(-1,3,by=0.01)
> zz <- outer(xx,yy,function(x,y) 100*(y-x^2)^2 + (1-x)^2)
> contour(xx,yy,zz,nlev=30)
> points(x0[1],x0[2],col=2)
> text(x0[1],x0[2]+0.2,"start")
> points(1,1,col=2)
> text(1,1+0.2,"solution")
> lines(xn[1,],xn[2,],type="b",col=2)
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Examining the iterations, we see that the algorithm moves from one side
of the valley to the other side and then it moves very slowly towards the
solution.
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6 Solutions for Chapter 6

Prob. 1: Investigate the the performance of the DFP algorithm on the
function

f(x, y) = 100(y − x2)2 + (1− x)2

that was investigated in the previous homework.

Solution: We run, essentially, the same code that we used in the homework
for the steepest decent. This time we use the function DFP, that is given in
the notes:

> banana <- function(x) 100*(x[2]-x[1]^2)^2 + (1-x[1])^2
> banana.grad <- function(x)
+ {
+ fx1 <- -400*(x[2]-x[1]^2)*x[1] -2*(1-x[1])
+ fx2 <- 200*(x[2]-x[1]^2)
+ return(matrix(c(fx1,fx2),2,1))
+ }
> x0 <- xn <- x <- c(-1.9,2)
> S <- diag(2)
> fn <- banana(x)
> for (i in 1:20)
+ {
+ out <- DFP(banana,banana.grad,x,S)
+ x <- out$x
+ S <- out$S
+ xn <- cbind(xn,x)
+ fn <- c(fn,out$obj)
+ }
> fn
[1] 2.676200e+02 6.194009e-01 5.050069e-01 4.880408e-01 2.979314e-01
[6] 2.949670e-01 2.270763e-01 2.163086e-01 1.325023e-01 8.962444e-02
[11] 8.054625e-02 6.505483e-02 4.256467e-02 1.844240e-02 7.760900e-03
[16] 3.034009e-03 6.427977e-04 4.353188e-05 1.362797e-06 2.358034e-09
[21] 1.179113e-13
> xn

xn
[1,] -1.9 1.705747 1.710581 1.698323 1.516109 1.513588 1.409638 1.406992
[2,] 2.0 2.944404 2.926989 2.886265 2.280821 2.273286 1.962733 1.957117
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[1,] 1.358031 1.298304 1.265166 1.238358 1.161498 1.133352 1.076829 1.027723
[2,] 1.850818 1.683065 1.590529 1.524454 1.336240 1.287056 1.155249 1.051455

[1,] 1.025323 1.003134 1.001108 1.000018 1.000000
[2,] 1.051411 1.005697 1.002255 1.000031 1.000001
> optim(x0,banana)
$par
[1] 0.9992542 0.9984668
$value
[1] 7.337513e-07
$counts
function gradient

209 NA
$convergence
[1] 0
$message
NULL
> xx <- seq(-2,2,by=0.01)
> yy <- seq(-1,3,by=0.01)
> zz <- outer(xx,yy,function(x,y) 100*(y-x^2)^2 + (1-x)^2)
> contour(xx,yy,zz,nlev=30)
> points(x0[1],x0[2],col=2)
> text(x0[1],x0[2]+0.2,"start")
> points(1,1,col=2)
> text(1,1+0.2,"solution")
> lines(xn[1,],xn[2,],type="b",col=2)

Observe that convergence was obtained after 20 steps, which all went in the
right direction, as can be seen in the plot that is generated by the code.

Prob. 2: Investigate the rate of convergence of the algorithm

xn+1 = xn − [δI + (f̈(xn))−1]ḟ(xn).

What is the rate if δ is larger than the smallest eigenvalue of (f̈(x∗))−1?

Solution: Repeating the arguments that were presented in the context
of the steepest decent algorithm and repeated in the context of the quazi-
Newtonian algorithms we get that if the function is quadratic then the rate
is govern by the eigenvalues of the matrix SQ, where S = δI + (f̈(xn))−1

and Q = f̈(xn). Observe that in this case SQ = I+δf̈(xn). The eigenvalues
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of QS are {1 + δλi : i = 1, . . . , d}, where {λi} are the eigenvalues of f̈(xn).
Based on Kantarovich’ inequality one gets that the rate is bounded by( δ(λ(1) − λ(d))

2 + δ(λ(1) + λ(d))

)2
.

A general function may be approximated by a quadratic function in the
vicinity of the solution. Hence, the above bound is an approximate bound
once the algorithm approaches the solution.

Prob. 3: Use the formula

[A + ba′]−1 = A−1 − A−1ab′A−1

1 + b′A−1a
,

in order to get a direct updating formula for the inverse of Hn in the BFGS
method.

Solution: Recall that the approximation of the hessian is updated using
the recursion:

Hn+1 = Hn +
(∆nḟ)(∆nḟ)′

(∆nḟ)′(∆nx)
− Hn(∆nx)(∆nx)′Hn

(∆nx)′Hn(∆nx)
.

Assume that the inverse of Hn, denoted Sn, was computed and stored in the
previous iteration. Based on the relation that was given in the formula we
get that

S̃n+1 =
[
Hn +

(∆nḟ)(∆nḟ)′

(∆nḟ)′(∆nx)

]−1
= Sn −

Sn(∆nḟ)(∆nḟ)′Sn

(∆nḟ)′(∆nx) + (∆nḟ)′Sn(∆nḟ)
.

Denote the inverse of S̃n+1 by H̃n+1. A second application of the same
formula produces:

Sn+1 =
[
H̃n+1 −

Hn(∆nx)(∆nx)′Hn

(∆nx)′Hn(∆nx)

]−1

= S̃n+1 +
S̃n+1Hn(∆nx)(∆nx)′HnS̃n+1

(∆nx)′Hn(∆nx)− (∆nx)′H ′
nS̃n+1Hn(∆nx)

,

which involves only products of matrices.

Prob. 4: Read the help file on the function “optim”. Investigate the effect
of supplying the gradients with the parameter “gr” on the performance of
the procedure.

Solution:
We try the function optim with and without the gradient function:
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> ?optim
> optim(x0,banana)
$par
[1] 0.9992542 0.9984668
$value
[1] 7.337513e-07
$counts
function gradient

209 NA
$convergence
[1] 0
$message
NULL
> optim(x0,banana,banana.grad)
$par
[1] 0.9992542 0.9984668
$value
[1] 7.337513e-07
$counts
function gradient

209 NA
$convergence
[1] 0
$message
NULL
> optim(x0,banana,banana.grad,method="BFGS")
$par
[1] 1 1
$value
[1] 3.222467e-26
$counts
function gradient

85 31
$convergence
[1] 0
$message
NULL

Observe that it is not enough to provide the gradient. One needs to specify
a method that uses the gradient in order to have an effect. Also, observe
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that using the gradient resulted in less applications of both functions and in
better convergence.
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7 Solutions for Chapter 7

Prob. 1: Consider the constraints x1 ≥ 0, x2 ≥ 0 and x2 − (x1 − 1)2 ≤ 0.
Show that (1, 0) is feasible but not regular.

Solution: The gradients of the active constraints at the point (1, 0) are
(0, 1) (second constraint) and (−2(1−1), 1) = (0, 1) (third constraint). They
are linearly dependent, hence the point is not regular.

Prob. 2: Find the rectangle of given perimeter that has greatest area by
solving the first-order necessary conditions. Verify that the second-order
sufficient conditions are satisfied.

Solution: Let P be the perimeter. The problem can be formulated as a
constraint minimization problem:

minimize −xy

subject to x + y = P/2; −x ≤ 0; −y ≤ 0.

The minimum is obtained when the inequality constraints ar not active. The
Lagrangian is l(x, y, λ) = −xy+λ(x+y−P/2), which leads to the first order
necessary conditions:

−y + λ = 0 (1)
−x + λ = 0 (2)

x + y − P/2 = 0, (3)

the solution of which is x = y = P/4; i.e. a square.
The subspace M is given by {(x, y) : x + y = 0} = {(x,−x) : x ∈ R}.

The partial hessian of the Lagrangian is the matrix

l̈x(x∗) =
( 0 −1
−1 0

)
.

Consequently, for every x ∈ M , x′Mx = −2xy = 2x2 > 0. Hence, the
second order sufficient condition of minimization is satisfied.

Prob. 3: Three types of items are to be stored. Item A costs one dollar,
item B costs two dollars and item C costs 4 dollars. The demand for the three
items are independent and uniformly distributed in the range [0, 3, 000]. How
many of each type should be stored if the total budget is 4,000 dollars?
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Solution: Let Xi be the demand for item i, i = 1, 2, 3, and let xi be its
stored amount. The unsold leftover is (xi − Xi)+, which has the expected
value of

E(xi −Xi)+ =
1

3, 000

∫ xi

0
(xi − y)dy =

x2
i

6, 000
,

when xi ≤ 3, 000 and is equal to xi − 3, 000 + 1, 500 = xi − 1, 500 otherwise.
Let us look for solutions that satisfy 0 ≤ xi ≤ 3, 000, for 1 ≤ i ≤ 3. The

problem is to minimize x2
1+2x2

2+4x3
2, subject to the constraint x1+x2+x3 =

4, 000. The first order conditions are

2x1 + λ = 0
4x2 + λ = 0
8x3 + λ = 0

x1 + x2 + x3 = 4, 000.

Therefore, λ/2+λ/4+λ/8 = −4, 000 and thus λ = −(8/7) 4, 000. It follows
that x1 = 2, 285.71, x2 = 1, 142.86 and x3 = 571.42.

Prob. 4: Let A be an n×m matrix of rank m and let L be an n×n matrix
that is symmetric and positive-definite on the subspace M = {y : Ay = 0}.
Show that the (n + m)× (n + m) matrix[

L A′

A 0

]
is non-singular.

Solution: Let x ∈ Rn and y ∈ Rm be two vectors. We need to show that
the equation [

L A′

A 0

](
x
y

)
=

(
Lx + A′y

Ax

)
=

(
0
0

)
implies x = 0 and y = 0. Multiplying by x from the left yeilds

x′Lx + x′A′y = x′Lx = 0, (4)

since x′A′ = (Ax)′ = 0′. The matrix L is positive definite over M . The
vector x belongs to M . Thus the second equation in (4) implies x = 0.
Consequently, A′y = 0. Thus, y = 0 since the rank of A is m.

Prob. 5: Maximize 14x−x2 +6y− y2 +7 subject to x+ y ≤ 2, x+2y ≤ 3.
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Solution: Start with the case where J = ∅ then

2x− 14 = 0
2y − 6 = 0,

which has the solution x = 7, y = 3. However, this point is not feasible.
(For example, it does not satisfy the first constraint.

Consider, next, the case J = {1}. The first order conditions are

2x− 14 + λ1 = 0
2y − 6 + λ1 = 0

x + y = 2,

This produces λ1 = 8, y = −1, and x = 3.
For J = {2} the first order conditions are

2x− 14 + λ2 = 0
2y − 6 + 2λ2 = 0

x + 2y = 3,

Here we get that λ2 = 4, x = 5, and y = −1, which is not feasible.
Finally, for J = {1, 2} we get that x = y = 1 and

λ1 + λ2 = 12
λ1 + 2λ2 = 4.

As a result, λ2 = −8 < 0 and the K-T conditions are not satisfied.
To summarize, only the case J = {1} is consistent with the K-T condi-

tions. As for the sufficient condition observe that

l̈x(x∗) =
( 2 0

0 2

)
,

which is positive definite.
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