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Abstract
We address the problem of unsupervised tagging of phrase structure trees with phrase categories
(parse tree nonterminals). Motivated by the inability of a range of direct clustering approaches to
improve over the current leading algorithm, we propose a mixture of experts approach. In particular,
we tackle the difficult challenge of producing a diverse collection of useful tagging experts, which
can then be aggregated into a final high-quality tagging. To do so, we use the particular properties
of the Dirichlet Process mixture model. We evaluate on English, German and Chinese corpora and
demonstrate both a substantial and consistent improvement in overall performance over previous
work, as well as empirical justification of our algorithmic choices.

Keywords: Unsupervised parsing, Grammar induction, Non terminals, Dirichlet Process, Ensem-
ble learning.



1 Introduction
Grammar induction is the task of learning grammatical structure from plain text without human
supervision. The task is valuable for the understanding of human language acquisition and its
output can potentially be used by NLP applications, avoiding the costly and error prone creation of
manually annotated corpora. The task has been widely explored (Klein, 2001) and its importance
has increased due to the recent availability of huge corpora.

The induced grammar can be represented in various ways. Most work (e.g., (Klein and Manning,
2004; Smith and Eisner, 2006; Seginer, 2007; Headden et al., 2009)) annotate text sentences using
an unlabeled hierarchical phrase or a dependency structure, and thus represent the induced grammar
through its behaviour in a parsing task.

An important task in theory and practice that we consider in this work is how to enrich phrase
structures with syntactic categories. The two grammars that have been widely explored by the
NLP community in the last two decades, phrase structure grammars and dependency grammars,
allow the induced structure to be either labeled or not and use the labeling to describe substantially
different syntactic functions. In this paper we focus on the former formalism and induce parse
tree nonterminals (e.g., ‘NP’, ‘VP’, ‘PP’) in an unsupervised manner. We keep the discussion of
dependency parsing for future research.

Many linguistic theories posit a hierarchical labeled constituent (or constructional) structure, arguing
that it has a measurable psychological reality (e.g., (Goldberg, 2006)). Practically, most of the
syntactic annotation of corpora used by the NLP community comes in the form of labeled structures.
Indeed, modern supervised syntactic parsers aim at learning labeled structures. Moreover, phrase
categories are often used in a variety of NLP tasks, such as SRL (Gildea and Jurafsky, 2002;
punyakanok et al., 2008), alignment in syntax-based machine translation (Zhang and Gildea, 2004),
information extraction (Miyao et al., 2008), etc.

Phrase categories can be induced either jointly with the phrase structure (Haghighi and Klein, 2006)
or given a previously induced structure (Borensztajn and Zuidema, 2007; Reichart and Rappoport,
2008). Reichart and Rappoport (RR08), which has the leading results, uses a two stage approach
where the second stage clusters the phrases of the parse trees induced by an unsupervised parser
(Seginer, 2007). This is done by inducing an over-expressive large number of categories using the
BMM model of Borensztajn and Zuidema (2007), and then clustering these categories into a final
set.

In this work we focus on improving the critical last stage of narrowing down the large number of
induced BMM labels into a smaller set of informative categories1. Naively, one might think that
simply replacing the simple clustering algorithm used by RR08 with a more elaborate approach
would result in improved final categories. However, as we show in Section 3, a variety of clustering
approaches did not lead to a noticeable improvement.

To overcome this difficulty, we adopt a qualitatively different solution and tackle this task using
a multiple experts approach (Dietterich, 2000). Intuitively, averaging over multiple predictions
(experts) is useful when the output of the various experts obeys two requirements: (1) the output of
each expert is of useful quality; (2) the experts are sufficiently different from each other.

The central challenge in building such ensembles is in ensuring that different experts capture
different characteristics of the problem. To do so, we build on the Dirichlet Process Mixture Model

1It is also possible to directly cluster phrases without first inducting BMM categories. This, however, leads to inferior
overall results which we do not report for clarity.



(DPMM) (Ferguson, 1973; Antoniak, 1974) which relies on the Bayesian framework to induce an a
posteriori clustering. Each DPMM expert is characterized by a concentration parameter, and we vary
this parameter to induce different experts (clusterings). As our experiments show, it is the particular
properties of the DPMM that lead to a diverse ensemble.

Finally, with a diverse ensemble at hand, we aggregate the experts into a single coherent phrase
structure tagging. Qualitatively, the tendency of two phrases to share a category should increase
with the number of DPMM experts that independently cluster them together. We formalize this idea
as a global optimization problem and use the k-way normalized cut algorithm (Yu and Shi, 2003) to
solve it.

We evaluate our algorithm on English, German and Chinese, using various tag set sizes and
evaluation measures. Our results justify our reliance on DPMM and normalized-cut, and demonstrate
consistent improvement over previous work.

2 Previous Work
Unsupervised parsing attracts researchers for many years (see reviews in (Clark, 2001; Klein, 2001)).
In recent years efforts have been made to evaluate the algorithms on manually annotated corpora
such as the WSJ PennTreebank (Klein and Manning, 2002, 2004; Dennis, 2005; Bod, 2006; Smith
and Eisner, 2006; Seginer, 2007; Cohen and Smith, 2009; Headden et al., 2009; Berg-Kirkpatrick
and Klein, 2010; Blunsom and Cohn, 2010; Gillenwater et al., 2010; Spitkovsky et al., 2010a,b,
2011b,a). All these works induce unlabeled phrase or dependency structures.

In this paper we focus on the induction of syntactic categories for unlabeled phrase structures (parse
tree nonterminals) and its evaluation on corpora annotated with a similar representation. There
are three previous papers we are aware of that address this problem. Haghighi and Klein (2006)
presented two models: PCFG × NONE and PCFG × CCM. These models use the inside-outside and EM
algorithms to induce bracketing and labeling simultaneously 2.

Borensztajn and Zuidema (2007) presented the Bayesian Model Merging (BMM), a framework
for inducing a PCFG containing both a bracketing and a labeling. They use Stolcke’s algorithm
(Stolcke, 1994; Stolcke and Omohundro, 1994) with features from Petasis et al. (2004). The BMM
model uses an iterative greedy search for an optimal PCFG according to the Bayesian criterion of
maximum posterior probability. The data likelihood is proportional to the data description length
according to the grammar and the prior distribution on the grammar is proportional to the grammar
description length.

The number of categories induced by the BMM model is very large. For example, for the 7422
sentences of the WSJ10 corpus it induces 4944 categories. To enable generalization over the
unlabeled bracketing, a much smaller number of final categories should be induced.

RR08 proposed a clustering algorithm for the BMM categories. They map each of the BMM categories
to one of the R most frequent categories produced by the algorithm. Frequency was determined
according to the number of phrases each BMM category tags. To perform the mapping, they construct
a feature vector representation for each BMM category. The vector consists of 3|M |+ |S| features,
where M is the set of BMM categories and S is the set of POS tags in the corpus. For each category
l, they compute the cosine metric between its vector and that of every category among the R most
frequent BMM categories. l is mapped to the category with which it obtains the highest cosine score.

2Their other models, which were the core of their paper, are semi-supervised.



RR08 applied their clustering scheme to the bracketing produced by the unsupervised parser of
Seginer (2007). The labeled phrase structure trees induced by RR08 are better than those induced by
(Haghighi and Klein, 2006) and (Borensztajn and Zuidema, 2007) which motivates separate learning
of the phrase structures and their categories. In this work we provide an alternative algorithm for
BMM categories clustering. We provide a detailed comparison to the work of RR08 and show
superior results.

Sangati and Zuidema (2009) proposed head assignment algorithms. The concept of a head is related
to syntactic categories. Their algorithms are trained on data without head annotations, but, unlike
our unsupervised approach, requires manually created labeled phrase-structure trees as input.

The concept of head naturally connects to dependency parsing (Kubler et al., 2009) which has been
extensively studied in the last decade. While the categories assigned to dependency structures are
different in nature from the phrase categories explored in this paper, our algorithm may be applicable
to this case as well. We keep this question for future research.

DP has been used for unsupervised syntactic acquisition tasks. Finkel and Manning (2007) Used
DP for unsupervised POS induction from dependency structures. Liang et al. (2009) proposed
a nonparametric Bayesian generalization of PCFG, based on the hierarchical Dirichlet Process,
and applied it to supervised parsing. DP has been used for many other NLP tasks as well (e.g.
(Goldwater et al., 2006; Johnson et al., 2007; Haghighi and Klein, 2007; Johnson and Goldwater,
2009)). However, we are not aware of works that explored DP as a model for creating a diverse
ensemble of experts for clustering tasks.

3 Building a Diverse Clustering Ensemble
As discussed, to induce phrase categories we adopt a two stage approach where we first induce a
large number of categories and then narrow this into a final set. The first stage, leading to a collection
of BMM categories is similar to RR08. Our novelty is in taking a qualitatively different approach to
the critical stage of narrowing down the large number of categories into a small informative set.

Motivation For the Ensemble Approach. To motivate our ensemble approach we must first
consider more straightforward alternatives. Probably the simplest one is to use a one stage approach
where we cluster phrases directly using several clustering algorithms (K-means, complete link,
single link and average link) and distance metrics (Euclidean and cosine). Another alternative, is
to keep running the BMM until the desired number of categories is obtained (that is, by selecting
the least harmful update of its objective when no further improvement is possible) . In preliminary
experiments, these approaches resulted in inferior results to RR08. For example, for WSJ10 with
26 clusters, the best of these algorithms (K-means with cosine distance), achieves F-score with
many-to-one mapping of 38.7 compared to 58.9 of RR08 (see Table 2).

Building on the good performance of RR08, we next tried to simply replace its final clustering
algorithm (of BMM labels). We tried the K-mean algorithm both with a random starting point and an
informed starting point with the cluster centers initialized as the K most frequent BMM categories.
We tried both variants with several different cluster set sizes. In both cases, the resulting final
clustering was not superior to that of RR08.

Our next step was to adopt a Bayesian approach where multiple clusterings are considered. Con-
cretely, the Dirichlet process mixture model (DPMM) defines a distribution over clusterings that
is governed by a concentration parameter α. Given α, to get a specific clustering, the maximum
a-posteriori clustering is a natural choice. One can also consider defining a prior over α to lessen



V NVI Many–to–1
DP 0.26 1.53 34.1

0.23 1.59 37
0.2 1.68 44.1

KM 0.65 0.74 69.4
0.6 0.83 65.2
0.65 0.75 66.8

RR08 0.67 0.71 73.1
0.64 0.74 71.6
0.61 0.84 68

Table 1: Average pairwise similarity between the clustering experts induced by the different
clustering algorithms we use in this paper. KM is K–means. RR08 is the algorithm of Reichart and
Rappoport (2008) run each time with a different number of induced clusters. For each clustering
algorithm, the first line is for WSJ10 (English), the second line is for NEGRA10 (German) and the
third line is for CTB10 (Chinese). Higher V and Many–to–1 and lower NVI scores imply that the
clusterings are more similar. DP produces the least similar clusterings.

the arbitrariness of the choice of parameters. We tried DPMM with a uniform prior over α which
did not lead to an improvement in the results. Furthermore, individual clusterings for a range of α
values, were all of similar quality. Thus, we cannot expect a more informed prior over α to lead to
better performance3.

Ensemble Construction: First Approach. With the above evidence as to the need of an ensemble
approach, we are still left with the challenge of constructing diverse clustering experts. Intuitively,
if we allow a different number of clusters for each experts we would often get qualitatively different
solutions as, for example, the best three cluster solution is typically not a simple refinement of
the best two cluster solution. The simplest approach to carry this out is to run different K-means,
each with a different number of target clusters. Another possibility is to use the method of RR08,
again with a different number of target clusters. Unfortunately, as Table 1 shows, in both cases the
similarity of the different experts (clusterings) is quite high. Indeed, as we report in Section 7, this
did only result in small improvement of the performance.

Part of the difficulty with this approach for constructing a clusterings ensemble is that both clustering
methods used highly depend on the initial (informed) starting point. Unfortunately, as discussed
above, starting with random initializations leads the K-means algorithm to low-quality clusterings.

Ensemble Construction: Improved Approach. To overcome the sensitivity to the initial clus-
tering, we consider the Bayesian DPMM framework. Using standard MCMC techniques (e.g.,
Gibbs sampling), the resulting clustering converges to the mode of the posterior solution, which is
independent of the initialization of the procedure4. We start by describing the DPMM framework
and then explain how it can be used to construct multiple diverse clusterings.

The DPMM defines a prior over the number of clusters that can be described via the so-called Chinese
restaurant process (CRP). In this metaphor we have a Chinese restaurant with an infinite number of
tables (clusters), each of which can seat an infinite number of customers (BMM categories). The first

3The effective range of α values in our experiments is [10−4, 10]. We run the DP algorithm 1000 times with α values
changed from 10−4 to 10 in steps of 10−3.

4In practice, there are deterministic effective alternatives to the stochastic Gibbs procedure which are highly effective. In
this work we use the one proposed in Daume (2007).



customer enters the restaurant and seats at the first table. When a new customer (BMM category)
arrives at the restaurant, s/he either sits at an existing table with probability proportional to the
number of customers already seated at the table (cluster size), or at a new table with probability
proportional to α. This process defines a coherent probabilistic prior over the number of clusters
(Ferguson, 1973).

Formally, let G be a collection of likelihood parameters, sampled for each cluster. Parameters
θ1:M , one for each sample, are drawn from G and, finally, observations, x1:M (the BMM categories)
are drawn from a distribution associated with the parameters. Each observation x i is represented
by a vector in N d , and the values in its corresponding parameter vector, θi ∈ Rd , sum to 1 (d is
fixed for all observations). The probability of the i-th observation x i is associated with the i-th
parameter θi by a likelihood function F(θi). Now, since the number of clusters is unknown a-priori,
the DP defines a distribution over G, governed by a base measure G0 (parameter factory) and the
concentration parameter α. The entire generative process is defined by the equations:

G|α, G0 ∼ DP(α, G0)

θm|G ∼ G

xm|θm ∼ F(θm)

Our likelihood function F(θi) is a multinomial (see below) with parameters θ1:M . G0 is chosen to
be the Dirichlet distribution, the conjugate of the multinomial. The DP concentration parameter, α is
kept fixed during the clustering process.

Given a DPMM, a concrete clustering is defined by the mode of the posterior distribution. Each
cluster is assigned a different parameter from the collection defined by G, and observations (x i ,
BMM labels) belonging to the same cluster (final phrase category), share this parameter.

Constructing multiple experts using the DPMM framework is simply done by varying the con-
centration parameter α. That is, each expert is associated with a different α value, resulting in a
different clustering. While the quality of each such expert is not substantially different than RR08, as
Table 1 shows, the resulting experts (clusterings) are substantially more varied than the alternatives
considered above.

4 Model Averaging
We now face the task of aggregating the individual clusterings induced by the different DP experts.
Intuitively, if several experts independently cluster together two BMM categories, our belief that
these categories belong in the same cluster should increase.

We now formalize this idea using the k-way normalized cut clustering algorithm (Yu and Shi, 2003).
Its input is a undirected graph G = (V, E, W ) where V is the set of vertices, E is the set of edges and
W is an edge weight matrix assumed to be non-negative and symmetric. For A, B ⊆ V define:

l inks(A, B) =
∑

i∈A, j∈B

W (i, j).

Using this definition, the normalized link ratio of A and B is defined to be:

NormLinkRatio(A, B) =
l inks(A, B)
l inks(A, V )

.



The k-way normalized cut problem is to minimize the links that leave a cluster relative to the total
weight of the cluster. Denote the set of clusterings of V that consist of k clusters by C = {c1, . . . ct}
and the j-th cluster of the i-th clustering by ci j . Then

c∗ = argmin
ci∈C

k
∑

j=1

NormLinkRatio(ci j , V − ci j)

To apply an algorithm that solves this clustering problem to our task, we construct the input graph
G from the clusterings contained in the ensemble. The graph vertices V correspond to the BMM
categories and the (i, j)-th entry of the matrix W is the number of ensemble members that cluster
the ith and jth BMM categories together.

A low edge weight implies that a small number of ensemble members cluster together the BMM
categories represented by the vertices connected by the edge. To reduce noise, we exclude edges
whose weight is less than 3 from the graph.

5 Feature Representation
To complete the picture, we now describe the feature representation of the BMM categories. We
create for each BMM category a vector x ∈ N6·|S| where S is the set of POS tags in the corpus. The
first 2S features correspond to the appearance of a POS tag in the leftmost/rightmost position of a
constituent labeled by the represented BMM category. Specifically, the i-th feature (i ∈ {1, . . . , |S|})
is the number of times the i-th POS tag appears in the leftmost position of a constituent labeled
by the represented BMM category, and the (|S|+ i + 1)-th feature is the number of times that tag
appears in the rightmost position of a constituent labeled by the BMM category.

Similarly, the next 2|S| features correspond to the appearance of a POS tag in the leftmost/rightmost
position of a leftmost sibling of a constituent annotated by the BMM category, and the last 2|S|
features correspond to the appearance of a POS tag in the leftmost/rightmost position of a rightmost
sibling. A constituent C1 is defined to be the leftmost sibling of a constituent C2 iff C1 is an
immediate left neighbour of C2, and C1 and C2 have the same parent. A rightmost sibling is defined
accordingly.

Note that DP does not force a specific parametric family for the likelihood. Our decision to use a
multinomial likelihood function is due to the fact that our features are counts of events.

6 Experimental Setup
Overall Setup. We evaluated our algorithm on English, German and Chinese corpora: the WSJ Penn
Treebank, the Negra corpus (Brants, 1997), and version 5.0 of the Chinese Penn Treebank (Nianwen
et al., 2002). In each corpus, we used the sentences of length at most 105, numbering 7422 (WSJ10),
7542 (NEGRA10) and 4626 (CTB10). We used the gold standard POS tag annotation of these corpora.

To initialize the clustering algorithms, we sort the BMM categories according to the number of
constituents they label, and use the most frequent ones. For K-means, this provides an informed
starting point, which proved crucial to the performance of the algorithm. For DPMM, although in
theory the algorithm does not depend on its starting point, such initialization is helpful in practice6.

5Excluding punctuation and null elements, as in (Klein, 2001) and other previous work.
6Note that this is true even when stochastic algorithms are used to infer the clusterings since convergence time strongly

depends on the starting point.



We induce D = 10 different experts. For the K-means and RR08 baselines we do so by changing
the number of induced clusters from 5 to 50, in steps of 5. For DPMM we use different values of α
sampled log-uniformly in the range [10−4, 10] (5 orders of magnitude). The DP search procedure
we use is that of (III, 2007)7, whose good convergence properties have been demonstrated. The
k-way normalized cut code was written by Jianbo Shi8. The code of RR08 was provided to us by the
authors9.

Number of Final Categories. As discussed, the quality of the different experts (clusterings)
induced by the DPMM was not substantially different than RR08. Thus, despite the fact that the
number of clusters for each expert is inferred automatically, we are still faced with the problem of
choosing the final number of categories that will be inferred using the expert ensemble. We face the
same problem when considering the baseline ensembles.

Reichart and Rappoport (2008) induced for each corpus two sets of clusters. A first set consists of
T clusters, where T is the number of gold categories in the experimental corpus. For the second
set size they observed that in all three corpora about 95% of the constituents are covered by 23% –
37% of the categories, and the curve rises very sharply until that 95% value. Therefore, the number
of clusters in the second set is the number of categories that cover at least 95% of the constituents
in the corpus (denoted by P, for prominent categories). Following their work, we induce for each
corpus T and P categories according to the values they defined.

The specification of syntax annotation schemes, including the number of categories, usually involves
arbitrary decisions (see (Klein and Manning, 2003) for an example and its effects on parsing). We
thus induce for each corpus 5 different sets of clusters. Two of these are the set consisting of T
clusters and the set consisting of P clusters. The other set sizes are the 3 values in {5,10, . . . 25}
that are not the two closest values to T and P (see Table 2).

Evaluation Measures. The induced labels have arbitrary names. To evaluate them against a
manually annotated corpus, a proper correspondence with the gold standard labels should be
established. We explore two types of evaluation measures, one is based on mapping between the
induced and gold labels and one is based on information theory (IT) concepts. All measures are
based on the co-occurrence matrix between the induced and gold labels defined as follows: given
a corpus tagged once with the n1 gold standard labels and once with the n2 induced labels, the
co-occurrence matrix has n1 × n2 and the number in the (i, j)-th entry is the number of times the
i-th gold cluster and the j-th induced cluster annotate the same constituent.

We evaluate with two mapping schemes: greedy many–to–1 and greedy 1–to–1 mappings. In
both cases we find the mapping between the induced and gold clusters which maximizes the co–
occurrence between the clusterings. In the first mapping two induced clusters can be mapped to
the same gold standard cluster, while in the latter each and every induced cluster is assigned a
unique gold cluster. Under both mapping schemes, if the number of induced clusters is lower than
the number of gold clusters, there will be gold clusters to which no induced cluster is mapped.
Computing the greedy 1–to–1 mapping is equivalent to finding the maximal weighted matching in a
bipartite graph, whose weights are given by the co-occurrence matrix. We use the Kuhn–Munkres
(Kuhn, 1955; Munkres, 1957) algorithm to solve this problem.

For these measures, we follow the previous works and apply labeled parse trees evaluation by first
mapping the induced labels to the gold labels and then computing the standard labeled parsing

7http://www.cs.utah.edu/∼hal/DPsearch
8http://www.cis.upenn.edu/∼jshi/
9We thank the authors for letting us use their code.



F–score 10. While the labeling accuracy after mapping is not explicitly given, it can computed by
dividing the unlabeled F–score with the labeled F–score.

The IT based measures provides a way to evaluate the induced clustering without performing a direct
mapping to the gold standard. They are based on the observation that a good clustering reduces
the uncertainty of the gold standard cluster given the induced cluster and vice-versa. Several such
measures exist, we use two widely–accepted ones, the V (Rosenberg and Hirschberg, 2007) measure
and the VI (Meila, 2007) measure.

The V measure is defined as follows:
V =

2hc

h+ c

h= 1−
H(G|T )
H(G)

, c = 1−
H(T |G)
H(T )

For the VI measure, we report its normalized version, NVI. NVI and VI induce the same order over
clusterings but NVI values for good clusterings ranges in [0, 1] (Reichart and Rappoport, 2009).
The NVI measure is defined to be:

NV I =
H(G|T ) +H(T |G)

H(G)

Note that V scores are in [0, 1] and the higher the score, the better the clustering. For NVI, the
scores are non-negative and lower scores imply improved clustering quality. We use e as the base
of the logarithm. Many other clustering evaluation measures exist. The ones we use here are well
accepted in the literature. For a recent review see (Reichart and Rappoport, 2009).
7 Results
In this section we demonstrate the effectiveness of our DPMM ensemble for the task of unsupervised
induction of syntactic categories (parse tree non-terminals) for three different languages. We start
by demonstrating an overall and consistent improvement over RR08 and then provide evidence that
justify the specific algorithmic choices.

Our Expert Ensemble Approach. We start by comparing our DPMM with normalized-cute ap-
proach (DP+NC) to RR08. Table 2 shows that DP+NC clearly outperforms the RR08 model. For IT
measures it is better in 28 out of 30 experimental conditions and for F(1:1) it is better in 14 of 15
conditions. For F(m:1), DP+NC is better for English while for German and Chinese it is better when
the number of induced clusters is small.

RR08 showed that their algorithm is superior to an algorithm that performs random labeling or
replaces their final BMM mapping with a random mapping. Since our algorithm is shown to be
superior over theirs, it is also better than these random baselines.

Note that RR08 proposed a representation vector of 3|M |+ |S| features where M is the number
of BMM categories. Our DPMM algorithm with this feature representation is very slow due to the
high values of |M | (between 2299 and 5559 for our experimental corpora). Consequently, we used
a different representation (Section 5). To make sure that our results are not due to this change of
features, we also ran their algorithm using our feature set. The superiority of our approach relative
to RR08 using this setting was essentially similar to that reported above.

10 f = 2∗LP∗LR
LP+LR , LP and LR are labelled precision and recall.



English, WSJ10, IT measures
|C |= 5 |C |= 8(P) |C |= 15 |C |= 20 |C |= 26(T )

NVI V NVI V NVI V NVI V NVI V
DP+NC 0.98 0.5 1.02 0.5 1.2 0.47 1.22 0.47 1.3 0.47
RR08 1.2 0.38 1.15 0.4 0.89 0.51 1.33 0.44 1.44 0.44

German, NEGRA10, IT measures
|C |= 6(P) |C |= 10 |C |= 15 |C |= 22(T ) |C |= 25
NVI V NVI V NVI V NVI V NVI V

DP+NC 0.85 0.53 0.87 0.54 0.94 0.53 0.92 0.55 0.98 0.52
RR08 1.05 0.44 1.09 0.46 1.06 0.5 1.14 0.48 1.18 0.48

Chinese, CTB10, IT measures
|C |= 5 |C |= 9(P) |C |= 15 |C |= 20 |C |= 24(T )

NVI V NVI V NVI V NVI V NVI V
DP+NC 0.9 0.47 0.92 0.47 0.95 0.47 1 0.46 1 0.46
RR08 0.96 0.44 1 0.44 1.18 0.41 1.21 0.42 1.26 0.42

English, WSJ10, Mapping measures, (UF = 74.6)
|C |= 5 |C |= 8(P) |C |= 15 |C |= 20 |C |= 26(T )

F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1)
DP+NC 59.7 50.8 61 48.9 60.6 42.6 61.8 42.3 61.4 38
RR08 50 42.7 49.6 42.5 55.9 42.8 60.5 38.9 58.9 33.2

German, NEGRA10, Mapping measures, (UF = 58.1)
|C |= 6(P) |C |= 10 |C |= 15 |C |= 22(T ) |C |= 25

F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1)
DP+NC 44.9 44.6 44.7 43 45 41.1 46.6 41.1 45.4 40.6
RR08 42.6 37.7 43.6 37 48.1 36.7 48.1 35.2 48.2 34.9

Chinese, CTB10, Mapping measures, (UF = 51.8)
|C |= 5 |C |= 9(P) |C |= 15 |C |= 20 |C |= 24(T )

F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1) F(m:1) F(1:1)
DP+NC 35 29.8 35.5 29.8 35.8 29.6 35.9 28 36 28
RR08 33.6 28.5 34.7 27.1 35.2 23.1 36.2 21.5 36.4 22

Table 2: Comparison between our main clustering ensemble model and the model of Reichart and
Rappoport (2008) (RR08). DP: Dirichlet process. NC: normalized cut. The top three tables are for
information theoretic based measures. The bottom three tables are for mapping-based measures.
The columns of each table represent the specified number of induced clusters. F(m:1) and F(1:1) are
labeled F-score values computed after the induced categories were mapped to the gold categories
with many-to-one and 1-to-1 mappings respectively. Higher V, F(m:1) and F(1:1) and lower NVI
scores imply the induced clustering to be more similar to the gold standard. The clustering ensemble
model (DP+NC) provides considerable improvement over RR08.



DPMM Clustering. To justify our selection of a DPMM for clustering we compare our results to
a variant where DPMM is replaced by K-means (KM) with a cosine similarity measure. KM is
known to be very sensitive to its initialization. We ran it once where the cluster centers are randomly
initialized and once where, like our DPMM models, cluster centers are initialized to be the k most
frequent BMM categories. Since the former model has a substantially inferior performance, we only
compare to the latter. We also compare to an ensemble of experts, where each expert is a run of
the BMM mapping scheme of RR08 with a different number of target clusters. For both K-means
and RR08, we averaged the resulting experts using the same normalized cut algorithm used by our
method.

Due to the large number of experimental conditions (3 models and 60 setups: 3 corpora, 4 measures
and 5 label set sizes), for clarity of exposition, we only provide a summary of the results. For V,
NVI and F(1:1), DP+NC achieves the best score in 39 out of 45 cases. For F(m:1), DP+NC is the best
performing model for WSJ10. For NEGRA10 and CTB10, RR08+NC and KM+NC often provide the
best performance, but DP+NC is superior to RR08 when the number of induced clusters is small.

Normalized Cut Model Averaging. To justify our selection of the normalized cut algorithm
for model averaging, we experimented with various variants of our algorithm (DP+NC) and of
the baseline ensemble of experts algorithm where the experts are induced by the informed KM
algorithm (KM+NC). In these variants only the model averaging component (NC) is changed. We
experimented with several linkage clustering algorithms (complete, single and average) and distance
functions (cosine, sample correlation between observations, sample Spearman’s correlation between
observations and Euclidean). In these experiments each BMM category j is represented by a vector
in which the value of the ith coordinate is the number of ensemble members that cluster the ith and
jth categories together. We report only the results of the complete link (CL) with cosine distance
that provides the best results11.

In 52 out of the 56 cases where a clustering ensemble model outperforms RR08 NC is the algorithm
that is used by the best performing model. Over all cases, DP+NC produces better clustering than
DP+CL in 53 of the 60 cases.

The Mixture of Experts Approach. Finally, we want to demonstrate the importance of adopting an
ensemble approach regardless of the specifics of the experts or the aggregation algorithm. Looking
at a total of 60 experiments for corpora (3), evaluation measures (4) and number of induced clusters
(5), we see a clear advantage of the ensemble approach: in 56 of the 60 cases the ensemble models
substantially outperform the RR08 model, and are competitive in the other 4 experiments.

For F(m:1) the difference is up to 11.4% (WSJ10), up to 4.3% (NEGRA10) and up to 1.9% (CTB10).
For V it is up to 12%, up to 9% and up to 6% for these corpora respectively. Results are even more
impressive for F(1:1) and NVI. For F(1:1), improvement is up to 8.1% (WSJ10), 6.9% (NEGRA10)
and 6.5% (CTB10). For NVI, the error reduction12 is up to 18.3%, 20.2% and 20.6% respectively.

8 Qualitative Analysis
To get a better understanding of the quality of the syntactic categories induced by our model, we
provide in this section a qualitative analysis of the performance of our model. We first provide a
detailed error analysis of the performance of one of our models, the DP+NC model on the WSJ10

11In summary, we now discuss five ensemble models. The three that were defined above: DP+NC, KM+NC, and
RR08+NC, and the DP+CL and KM+CL defined here.

12NVI values are not limited to [0,1], we thus report error reduction, computed as: NV Imodel−NV Ibasel ine
NV Ibasel ine



No. of Constituents 1 2 3 4 5 6
NP 7898 40.4 59.76 70.4 80.3 88 90.1
VP 6758 60.18 74.77 85.35 90.2 94.24 95.96
PP 3234 44.77 45.92 63.73 71.8 79.22 85.93
S 1076 25.84 43.22 58.74 70.07 81.13 89.22
SBAR 492 34.15 47.56 60.57 72.97 80.78 87.2
ADJP 331 47.13 67.98 74.02 79.76 85.2 90.7
ADVP 226 43.8 66.8 77.88 84.96 89.82 92.48
SQ 119 45.38 85.7 96.6 98.3 100 100

Table 3: Performance of the DP+NC model on the 8 most frequent WSJ10 syntactic categories. For
each gold category (lines) we show the fraction of the constituents it annotates that are labeled in
the induced annotation by the k induced categories that label the most of these constituents (column
headed with ’k’).

Measure V NVI F(m:1) F(1:1)
English 0.034 0.12 0.013 0.117
German 0.048 0.049 0.017 0.040
Chiense 0.031 0.119 0.032 0.123

Table 4: The standard deviation to mean performance ratio of the DP+NC model when the number
of induced clusters is varied. The effect of the change in the number of clusters on the F(1:1) and
NVI measures is an order of magnitude larger, for English and Chinese.

corpus when 15 categories are induced 13. We then analyze the cross-lingual effect of an important
aspect of our model – the number of induced clusters.

English Error Analysis The WSJ10 gold annotation obeys the Zipf law according to which most of
the constituents (phrases) of the corpus are annotated with a small number of categories and the rest
of the constituents are annotated by a larger number of much smaller categories. Concretely, while
this gold annotation consists of 26 categories, 97.6% (91.8%) of the corpus constituents are labeled
with the 8 (4) categories that annotate the highest number of constituents (referred to as ’the most
frequent 8(4) categories’).

A similar pattern is observed in the categories induced by the DP+NC model: the 8(4) most frequent
categories annotate 88.5% (62.2%) of the constituents. The stronger magnitude of the Zipfian effect
in the gold annotation suggests that biasing our model towards a stronger Zipfian pattern (e.g. by
adding a normalization term to the NC optimization problem) may improve its performance.

Table 3 presents the distribution of each of the 8 most frequent gold categories between the 6 most
frequent induced categories that annotate most of its constituents. The table shows that for 6 of
these categories (all categories except from ’S’ and ’SBAR’) at least 40% of the constituents are
annotated by the same induced category and 63.7%-96.6% of the constituents are annotated by 3
induced categories. The algorithm is shown to performs especially well in detecting the ’VP’ and
’SQ’ categories (60.18%-85.35% and 45.38%-96.6% of the constituents in 1-3 induced categories
respectively). Performance on the ’SBAR’ and ’S’ categories are somewhat lower (at least in terms
of overlapping with their 3 most overlapping categories).

13In order to better analyze the ability of our algorithm to detect the ’S’ category, in the analysis of this section we do not
count the sentence level constituent which is annotated with this category in 84.7% of the cases.



Cross-Lingual Analysis Here we provide cross-lingual error analyse for one of the choices made
by our model, the number of induced clusters. Table 4 shows the standard deviation to mean
performance ratio for the DP+NC model in all three languages. While for German, all measures are
relatively indifferent to the number of clusters, for Chinese and English the ratio for the F(1:1) and
NVI measures is an order of magnitude larger than for F(m:1) and V.

This pattern leads us to two interesting observations that may guide future research in the field. First,
a large number of clustering evaluation measures have been proposed in the literature (Reichart
and Rappoport, 2009). Our experiments suggest that F(1:1) and NVI are more sensitive to a change
in the number of induced clusters. Second, the performance of our model on German is mostly
indifferent to the number of clusters, according to all measures. This calls for a deeper investigation
of the properties of our algorithm especially with respect to languages that are typologically similar
to German.

9 Conclusions
We presented a novel clustering ensemble model for unsupervised induction of syntactic categories.
Our model uses the Dirichlet process mixture model for expert induction and normalized-cut model
averaging, providing a substantial improvement over previous works in English, German and
Chinese.

Our contribution is two-fold. First, we bring the idea of ensemble learning into the task of unsuper-
vised induction of syntactic categories, leading to substantial performance improvement. Second,
and more importantly, we show how to construct a diverse ensemble of experts using the Dirichlet
Process mixture model.

In future work we intend to experiment with more languages. The hierarchical generalization of
the Dirichlet Process offers an opportunity for future joint learning of the syntactic structures and
its annotation. On an orthogonal axis, the output of our algorithm can be used to train supervised
parsers.
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