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Abstract

Graphical models are widely used to reason
about high-dimensional domains. Yet, learn-
ing the structure of the model from data re-
mains a formidable challenge, particularly in
complex continuous domains. We present
a highly accelerated structure learning ap-
proach for continuous densities based on the
recently introduced Copula Bayesian Net-
work representation. For two common cop-
ula families, we prove that the expected like-
lihood of a building block edge in the model
is monotonic in Spearman’s rank correlation
measure. We also show numerically that
the same relationship holds for many other
copula families. This allows us to perform
structure learning while bypassing costly pa-
rameter estimation as well as explicit com-
putation of the log-likelihood function. We
demonstrate the merit of our approach for
structure learning in three varied real-life do-
mains. Importantly, the computational ben-
efits are such that they open the door for
practical scaling-up of structure learning in
complex nonlinear continuous domains.

1 Introduction

Probabilistic graphical models, and in particular di-
rected Bayesian networks (BNs) [Pearl, 1988], have
become increasingly popular as a flexible and intuitive
framework for modeling multivariate densities. An im-
portant super-exponential challenge is that of learning
the graph structure G of these models from training
data. Unfortunately, even when using on a simple
greedy procedure, structure learning can be computa-
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tionally prohibitive. This is particularly true for con-
tinuous nonlinear domains. In practice, with as few as
tens of variables, learning any continuous model be-
yond the simple linear Gaussian BN one can be com-
putationally demanding (see Section 6 for a recent ex-
ception). Unfortunately, for many domains, the linear
parameterization can be too restrictive. Our goal is to
overcome this barrier and scale up structure learning
of complex continuous high-dimensional distributions.

A copula function [Nelsen, 2007] links any univari-
ate marginals (e.g., nonparametric) into a multivari-
ate joint distribution. A joint distribution parame-
terized by a copula is often easier to estimate and
less prone to over-fitting than a fully nonparametric
one. At the same time, copulas offer great flexibil-
ity in capturing nonlinear and multi-modal distribu-
tions. Recently, Elidan [2010] introduced the Copula
Bayesian Networks (CBNs) model that fuses the cop-
ula and BN formalisms, allowing for the construction
of high-dimensional graph-based distributions, while
retaining the flexibility of copulas. In the context of
multivariate density estimation, the construction has
led to appealing performance gains. In this work we
show that the CBN model opens the door for acceler-
ated and effective structure learning.

Structure learning is most commonly carried out via a
greedy search that is guided by a model selection score
that is used to assess the merit of candidate structures
(e.g., BIC [Schwarz, 1978]). The computational diffi-
culty is in the evaluation of the log-likelihood function
that, for BNs, equals a constant plus the mutual in-
formation between variables and their parents in the
network. In the case of two jointly Gaussian variables,
the expected information is monotonic in the abso-
lute value of Pearson’s correlation [Cover and Thomas,
1991]), so that the empirical correlation can be used
as a surrogate model selection measure (this was re-
cently used by Goldberger and Leshem [2011] to esti-
mate Gaussian tree approximations). In this work we
propose a more general proxy to the expected likeli-
hood of the model that can be used to substantially
speed-up structure learning of nonlinear CBNs.
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Spearman’s rank correlation coefficient ρs is a scale-
invariant measure of association that is closely related
to copulas. Specifically, it is a simple linear function
of the integral of the copula (cumulative) distribution
(see Section 2 for details). In this work we prove that
the absolute value of Spearman’s rho is monotonic in
the expected likelihood of the model for two important
copula families: the Gaussian and the Farlie-Gumbel-
Morgenstern (FGM) copulas. We also show numeri-
cally that a similar monotonicity holds for many other
common copula families.

The monotonicity result implies that, in place of costly
computation, the easy to compute empirical Spear-
man’s rho can serve as an accurate proxy to the benefit
of an edge in a network. This allows us to bypass costly
parameter estimation as well as explicit computation
of the log-likelihood, thereby substantially speeding
up the building block computation of structure learn-
ing. For few copula families (Gaussian,Plackett,FGM
[Nelsen, 2007]), an explicit relationshop is known be-
tween the copula parameter and ρs, so that param-
eter estimation can already be carried out efficiently
(e.g., [Genest and Favre, 2007]). As we show in the
experimental evaluation, even in these cases, our ap-
proach results in substantial computational speed-ups.
For other copula families, the running time benefits
can be even more considerable.1

We use our approach to learn the structure of CBNs
in three varied real-life domains, and demonstrate dra-
matic running time improvements. For the largest do-
main, we are able to learn a CBN model that offers
considerable generalization benefits while taking no
longer to learn than a simple linear Gaussian BN. This
is in contrast to the typical learning scenario where a
more expressive model that generalizes well goes hand
in hand with increased computational demands. Im-
portantly, the computational benefits are such that
they facilitate practical scaling up of structure learning
in complex nonlinear continuous domains.

2 Background

We briefly review copulas and the recently introduced
Copula BN model [Elidan, 2010]. We start with
the necessary notation. Let X = {X1, . . . , XN} be
a finite set of real-valued random variables and let
FX (x) ≡ P (X1 ≤ x1, . . . , Xn ≤ xN ) be a (cumula-
tive) distribution over X , with lower case letters de-

1We note that an explicit relationship between copulas
and Kendall’s τ is used in practice to perform parameter
estimation for a few additional copula families (e.g., [Gen-
est and Rivest, 1993]). However, computation of τ (cubic
in the number of instances) is considerably slower than ρs
and is typically not faster than an efficient conjugate gra-
dient procedure, as was verified in our implementation.

noting assignment to variables. For compactness, we
use Fi(xi) ≡ FXi(xi) = P (Xi ≤ xi, XX/Xi = ∞) and
fi(xi) ≡ fXi(xi). When there is no ambiguity we
sometimes abuse notation and use F (xi) ≡ FXi(xi),
and similarly for densities and for sets of variables.

2.1 Copulas

A copula function [Sklar, 1959] links marginal distri-
butions to form a multivariate one. Formally,

Definition 2.1: Let U1, . . . , UN be real random vari-
ables marginally uniformly distributed on [0, 1]. A cop-
ula function C : [0, 1]N → [0, 1] is a joint distribution

Cθ(u1, . . . , uN ) = P (U1 ≤ u1, . . . , UN ≤ uN ),

where θ are the parameters of the copula function.

Sklar’s seminal theorem states that any joint distribu-
tion FX (x) can be represented as a copula function C
of its univariate marginals

FX (x) = Cθ(F1(x1), . . . , FN (xN )).

When the univariate marginals are continuous, C is
uniquely defined. The constructive converse, which is
of central interest from a modeling perspective, is also
true: any copula function taking any marginal dis-
tributions {Fi(xi)} as its arguments, defines a valid
joint distribution with marginals {Fi(xi)}. Thus, cop-
ulas are “distribution generating” functions that allow
us to separate the choice of the univariate marginals
and that of the dependence structure, encoded in the
copula function C. Importantly, this flexibility often
results in a construction that is beneficial in practice.

Assuming C has Nth order partial derivatives (true
almost everywhere when continuous), the joint den-
sity can be derived from the copula function using the
derivative chain rule

f(x) =
∂NCθ(F1(x1), . . . , FN (xN ))

∂F1(x1) . . . ∂FN (xN )

∏
i

fi(xi)

≡ cθ(F1(x1), . . . , FN (xN ))
∏
i

fi(xi), (1)

where cθ(·) is called the copula density.

Example 2.2: Perhaps the most commonly used is
the Gaussian copula [Embrechts et al., 2003]:

CΣ({Fi(xi)}) = ΦΣ

(
Φ−1(F1(x1)), . . . ,Φ−1(FN (xN ))

)
,

(2)
where Φ is the standard normal distribution and ΦΣ is
a zero mean normal distribution with correlation ma-
trix Σ. Figure 1 shows samples from this copula using
two different marginals. As can be seen, even with a
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Figure 1: Samples from the bi-
variate Gaussian copula with cor-
relation θ = 0.25. (left) with
unit variance Gaussian marginals;
(right) with a mixture of Gaussian
marginals.
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simple elliptical copula, a variety of markedly differ-
ent and multi-modal distributions can be constructed.
More generally, and without any added computational
difficulty, we can use different marginals for each vari-
able, and can also mix and match marginals of different
forms with any copula function.

2.2 Copulas and Spearman’s Rho

Spearman’s rank correlation coefficient or Spearman’s
rho is a nonparametric measure of statistical depen-
dence that measures how well the relationship between
two variables can be described using a monotonic func-
tion. Formally, let U ≡ FX(x) be the rank (quantile)
of X and V ≡ FY (y) be the rank of Y . Spearman’s
rho, denoted by ρs, is defined as the standard Pear-
son’s correlation between U and V

ρs(X,Y ) ≡ cov(U, V )

σ(U)σ(V )
,

where σ denotes the standard deviation. Copula func-
tions, which are aimed at capturing the dependence
structure between variables, are closely related to ρs
(as well as other rank correlation measures). Con-
cretely, if FX,Y (x, y) = Cθ(U, V ) then it can be easily
shown (e.g., [Nelsen, 2007]) that

ρs(X,Y ) = ρs(Cθ) ≡ 12

∫∫
Cθ(U, V )dudv − 3, (3)

where ρs(Cθ) is a notation used to emphasize that ρs
can be computed directly from the copula function.
As can be expected, ρs = 1 if and only if X and Y
exhibit perfect monotonic dependence; ρs = −1 when
X and Y are perfectly negatively correlated.

2.3 Copula Bayesian Networks

We now briefly describe the multivariate density model
proposed by Elidan [2010] that fuses the copula and
Bayesian networks [Pearl, 1988] formalisms. Let G
be a directed acyclic graph whose nodes correspond
to the random variables X = {X1, . . . , XN}, and let
Pai = {Pai1, . . . ,Paiki} be the parents of Xi in G.
As for standard BNs, we use G to encode the indepen-
dence statements I(G) = {(Xi ⊥ NDi | Pai)}, where

⊥ denotes the independence relationship, and NDi are
nodes that are not descendants of Xi in G.

Definition 2.3: A Copula Bayesian Network (CBN)
is a triplet C = (G,ΘC ,Θf ) that defines fX (x). G
encodes the independencies (Xi ⊥ NDi | Pai), as-
sumed to hold in fX (x). ΘC is a set of local copula
functions Ci(F (xi), F(pai1), . . . , F(paiki)) that are as-
sociated with the nodes of G that have at least one
parent. In addition, Θf is the set of parameters repre-
senting the marginal densities fi(xi) (and distributions
Fi(xi)). The joint density fX (x) then takes the form

fX (x) =

N∏
i=1

Rci
(
F (xi), F(pai1), . . . , F(paiki)

)
fi(xi),

where, if Xi has at least one parent in the graph G,
the term Rci

(
F (xi), F(pai1), . . . , F(paiki)

)
is defined

as

Rci(·) ≡
ci(F (xi), F(pai1), . . . , F(paiki))

∂KCi(1,F(pai1),...,F(paiki ))

∂F (pai1)...∂F (paiki )

When Xi has no parents in the graph G,
Rci

(
F (xi), F(pai1), . . . , F(paiki)

)
≡ 1.

The term Rci
(
F (xi), F(pai1), . . . , F(paiki)

)
fi(xi) is

always a valid conditional density f(xi | pai) and can
be easily computed. In particular, when the copula
density c(·) has an explicit form, so does this term.

Elidan [2010] showed that a CBN defines a valid joint
density, and further that the product of local ratio
terms Rci defines a joint copula over X . Thus, like
other graphical models, a CBN takes advantage of the
independence assumptions to represent fX (x) com-
pactly via a product of local terms. Differently from
a regular BN, a CBN has an explicit marginal rep-
resentation. This can result in substantial practical
advantages (see Elidan [2010] for more details).

Given a complete dataset D of M instances where all
of the variables X are observed in each instance, the
log-likelihood of the data given a CBN model C is

`(D : C) =

M∑
m=1

N∑
i=1

log f(xi[m]) + logRci [m],
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where Rci [m] is a shorthand for the value that the cop-
ula ratio Rci(·) takes in the m’th instance. While this
objective appears to fully decompose according to the
structure of G, each marginal distribution Fi(xi) can
appear in several local copula terms (of Xi and its chil-
dren in G). Thus, to facilitate efficient estimation, we
adopt the common approach where the marginals are
estimated first [Joe and Xu, 1996]. Given Fi(xi), we
can then estimate the parameters of each local copula
function independently of the others using standard
procedures (e.g., conjugate gradient when a closed
form solution is not available).

3 Spearman’s rho as a Proxy to
Expected Likelihood

As discussed, structure learning is computationally
demanding since, to evaluate the merit of each of
the numerous candidate structures, we need to find
the maximum-likelihood parameters and then com-
pute the log-likelihood function given these parame-
ters. For many parametric forms, the parameter esti-
mation stage dominates computations, while in other
cases the computation of the log-likelihood function
given the maximum likelihood parameters can take
longer than parameter estimation (e.g., for the linear
Gaussian model). Our goal is to bypass the bulk of
these computations by using a proxy model selection
measure that can be computed efficiently. Ideally, we
would like a proxy that is monotonic in the expected
maximum log-likelihood function, so that it can be
used to accurately rank competing models. In this
section we identify such a measure.

The building-block task of structure learning is the
evaluation of the merit of an edge X → Y , indepen-
dently of other edges (in Section 4 we explain how this
is utilized when learning a full structure). The part of
the model selection score for a CBN that depends on
this edge is

M∑
m=1

log cθ̂(FX(x[m]), FY (y[m])),

where θ̂ are the estimated parameters, and the sum
is over training instances. When data is generated
from the copula, as M → ∞, the above expression
approaches the negative (differential) entropy

−H(Cθ(U, V )) =

∫
cθ(u, v) log cθ(u, v)dudv, (4)

where, as before, U, V are the ranks of X,Y , respec-
tively. Thus, if we find an efficient surrogate for the
computation of this entropy, we will have a surrogate
for the expected log-likelihood of the model.

We now prove that the magnitude of Spearman’s rank
correlation coefficient |ρs(X,Y )| is monotonic in the
expected likelihood for two important copula families.
We then show numerically that the same relationship
holds for many other common copulas.

3.1 The Gaussian Copula

We start by proving the result for the undoubtedly
most popular copula, namely the Gaussian copula de-
fined in Eq. (2).

Theorem 3.1 : −H(Cθ(U, V )) is monotonic in
|ρs(X,Y )| for the bivariate Gaussian copula

Proof: For the Gaussian copula, Eq. (3) has a known
explicit form: ρs = 6

π sin−1 θ
2 (see, for example [Gen-

est and Favre, 2007])). Similarly to the case of
the standard bivariate Gaussian [Cover and Thomas,
1991], it is easy to show that entropy of the copula is
1
2 log(1− θ2) +A, where A does not depend on θ. The
result follows from the fact that the entropy is mono-
tonic in θ2, and the monotonicity of the absolute value
of the sine function for θ ∈ [−1, 1].

3.2 The Farlie-Gumbel-Morgenstern Copula

The Farlie-Gumbel-Morgenstern (FGM) copula func-
tion is defined as

Cθ(u, v) = uv + θuv(1− u)(1− v), (5)

for θ ∈ [−1, 1]. This family has been widely used de-
spite its limited dependency range due to its analytical
simplicity (see [Nelsen, 2007, Joe, 1997] for properties
and [Hutchinson and Lai, 1990] for applications).

Theorem 3.2 : −H(Cθ(U, V )) is monotonic in
|ρs(X,Y )| for the FGM family of copulas

Proof: The FGM family is continuous in θ, and it is
easy to show that every copula in the FGM family can
be represented as a convex combination of its extreme
members C−1(u, v) and C1(u, v) [Nelsen, 2007]. Fur-
ther, C0(u, v) = uv is the independence copula. The
entropy is concave in its argument and thus, since it
is maximal for C0(u, v), it must increase monotoni-
cally in the range θ ∈ [−1, 0] and similarly decrease
monotonically in the range θ ∈ [0, 1]. It follows that
the entropy is monotonic in the absolute value of the
copula parameter θ. Now, like most common copu-
las, the FGM family is also positively ordered so that
Cθ2(u, v) > Cθ1(u, v) for all u, v whenever θ2 > θ1

[Nelsen, 2007, Joe, 1997]. Our result follows from
the fact that ρs grows monotonically with C(·) (see
Eq. (3)) so that the absolute value of ρs increases with
θ for θ > 0 and decreases with θ for θ < 0.
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Figure 2: Numerical experiments demonstrating the monotonic relationship between the absolute value of Spear-
man’s rho (x-axis) and the expected likelihood (y-axis) for eight varied copula families. For each copula, using
25000 samples, shown is the empirical log-likelihood function vs. Spearman’s rho for 500 parameter values. The
T copula shown has 5 degrees of freedom (results were similar for values from 2 to 20).

3.3 Additional Copula Families

Deriving an explicit expression for the copula entropy
is difficult and, aside from the Gaussian copula, we
are not aware of any known analytic forms. We can,
however, easily evaluate the entropy numerically for
different parameter values, and assess whether mono-
tonicity in |ρs| holds for additional copula families.

In addition to the Gaussian and FGM copulas, we con-
sider seven popular single parameter copulas, as well
as a two parameter family (symmetric Joe-Clayton).
Properties of all of these copula families can be found
in Joe [1997], Nelsen [2007], Patton [2006]. Note that
an explicit relationship between ρs and the copula pa-
rameter θ is known only for the Plackett family.

For each family, for 500 different parameter values, we
generated 25000 samples from the copula distribution.
For each set of samples (representing the true distri-
bution), we then computed the log-likelihood function
and the absolute value of Spearman’s rho. The plots
in Figure 2 compare these two measures for the differ-
ent copula families. A monotonic relationship between
the absolute value of Spearman’s rho and the expected
log-likelihood is evident in all cases.

Given the above theoretical and numerical results, it
seems likely that a common property of the copulas
considered underlies the monotonicity of the entropy
in |ρs|. We leave the elusive identification of sufficient
and/or necessary conditions for future work, and only
briefly discuss possible commonalities. All single pa-
rameter families are symmetric and define a concor-

dance ordering, i.e., the copula function is monotonic
in the dependence parameter. For the symmetric Joe-
Clayton family, concordance ordering is conjectured
for θ > 1 and is known to hold otherwise. It would
indeed be remarkable if concordance ordering implies
the monotonicity relationship since most known cop-
ulas are symmetric and define a concordance ordering
(including all B1-B12 single parameter families in Joe
[1997]) . Another property shared by the single param-
eter families we considered is that the copula distribu-
tion function is Schur-concave [Durante and Sempi,
2003]. Although the implications on the copula den-
sity are currently unknown, majorization theory may
provide the tools needed to prove the monotonicity
relationship (see Marshall and Olkin [1979], and Joe
[1987] for a generalization for densities) . It is un-
known whether the symmetric Joe-Clayton copula is
also Schur-concave, and we are not aware of any other
commonality between the copulas considered.

4 Lightning-speed Structure Learning

We now briefly describe how the results of Section 3
can be used to learn the structure of a CBN model.

Learning A Tree-structured Network

When the structure G is constrained so that each ran-
dom variable has at most one parent, the local copula
ratio Rci

(
F (xi), F(pai1), . . . , F(paiki)

)
in Eq. (4) re-

duces to the bivariate copula density ci(F (xi), F (xj)),
where Xj is the parent of Xi. In this case the log-
likelihood function decomposes into pairwise terms.
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Figure 3: The empirical
maximum-likelihood function
for pairs of variables in the
Crime dataset vs. Pearson’s
correlation (left) and Spear-
man’s rho (right).

Thus, similarly to learning a tree structured BN [Chow
and Liu, 1968], given the benefit of each edge indepen-
dently, the optimal structure can be learned efficiently
using a maximum spanning tree algorithm.

The above still requires that we perform costly com-
putations for all N(N − 1)/2 edges. However, since
only bivariate copulas are involved, the developments
of Section 3 are applicable directly. That is, we sim-
ply replace the pairwise likelihood component with an
efficient empirical computation of ρs(Xi, Xj). As our
experimental results show, despite the fact that train-
ing data in practice is finite and is not necessarily gen-
erated from the specific copula used, ρs serves as an
extremely accurate proxy to the merit each edge.

Learning More Complex Structures

More generally, structure learning is computationally
difficult [Chickering, 1996], and we typically resort to
a greedy search procedure that involves local modifi-
cations to the structure (e.g., add/delete/reverse an
edge), see Koller and Friedman [2009] for details. In
this case, a variable Xi can have more than a single
parent and our results do not apply directly.

Yet, intuitively, variables that are highly correlated
with Xi (as measured via Spearman’s rho) are likely
candidates as additional parents. Thus, similarly to
the two-stage approach used by Della Pietra et al.
[1997] and Friedman et al. [1999], we use ρs to crudely
yet efficiently pre-rank candidate structure modifica-
tions. We then perform exact costly computation of
the score only for the K most promising candidates.
In our experiments we set K = 2 for all domains.

5 Experimental Evaluation

To asses the benefit of our approach for learning the
structure of CBNs, we compare the performance and
running time to learning CBNs and BNs using a stan-
dard approach. For the linear Gaussian BN, we use
a closed form estimator; for the nonlinear sigmoid
BN, we use a conjugate gradient procedure. For the
Gaussian CBN, we perform baseline parameter esti-
mation using Spearman’s rho evaluation (e.g., Gen-

est and Favre [2007]). In this case, our method only
differs from the baseline in that we bypass the ex-
plicit computation of the log-likelihood function given
the maximum likelihood parameters. We also learn a
CBN with the Clayton copula, a representative of the
Archimedean family of copulas for which an explicit
relationship between Spearman’s rho and the copula
parameters is not known [Nelsen, 2007]. For this fam-
ily, we perform baseline parameter estimation using a
conjugate gradient procedure (this is faster in practice
than estimation using Kendall’s τ). For the univari-
ate marginals in both CBN models, we use the stan-
dard kernel-based approach [Parzen, 1962] with the
common Gaussian kernel (see, for example, [Bowman
and Azzalini, 1997] for details). For all models, the
network structure was learned using the same search
procedure. In all cases, the Bayesian Information Cri-
terion (BIC) of Schwarz [1978] was used to penalize
the log-likelihood for the complexity of the model.

We consider three datasets of a markedly different na-
ture and dimensionality:

• Wine Quality (UCI repository). 1599 measure-
ments of 11 physiochemical properties and a quality
variable of red ”Vinho Verde” [Cortez et al., 2009].

• Dow Jones. 1508 daily adjusted changes (2001-
2005) of the 30 index stocks. To avoid arbitrary
imputation, two stocks not traded in all of these
days were excluded (KFT,TRV).

• Crime (UCI repository). 100 observed variables re-
lating to crime ranging from household size to frac-
tion of children born outside of a marriage, for 1994
communities across the U.S.

Spearman’s Rho vs. The Log-likelihood

Our results of Section 3 only apply asymptotically and
when the data is generated from a copula. Thus,
we begin by examining the real-life relationship be-
tween the absolute value of Spearman’s rho and the
likelihood of the model for the Gaussian copula (re-
sults were essentially the same for the Clayton copula).
In Figure 3 (right) we empirically compare the two
measures for all pairs of variables in the 100 variable
Crime domain. We also show results for the standard
Pearson’s correlation coefficient (left).
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Figure 4: (left) The speedup of our approach (y-axis) as a function of the standard learning time in seconds of a
CBN (x-axis) for two copula families and structures with up to 1,2,3, and 4 parents (the tree structures with at
most one parent that are learned faster form the upper-left group for each domain). For each setting, shown are
results for 10 random test/train partitions. (right) comparison of test performance of the model learned using
our procedure (y-axis) vs. standard learning (x-axis), when allowing up to 4 parents for each variable.

It is clear that while the empirical relationship is not
perfectly monotonic, Spearman’s rho serves as a sur-
prisingly accurate proxy to the log-likelihood function,
and is thus extremely effective at correctly ranking two
competing edges. As we shall see in the evaluation be-
low, this translates nicely into accurate performance
when learning a full CBN model. One may suspect
that an effective proxy could also be found in the form
of Pearson’s correlation. However, as can be seen in
Figure 3(left), this is not the case: while generally rea-
sonable, Pearson’s correlation can be very high even
when the log-likelihood is quite small.

Standard vs. Lightning-speed Learning of Cop-
ula Bayesian Networks

We start by considering the speedup factor of our
method when learning CBNs of different complexities
for two different choices of the local copulas in the
model: the standard Gaussian copula and the Clayton
copula. Figure 4 (left) shows the the speedup factor
of our method as a function of the standard learn-
ing time for 10 random train/test partitions for the
three domains described above. For each domain and
random repetitions, we learned networks with at most
1,2,3 and 4 parents so as to cover a range of network
complexities. The upper left “cluster” for each domain
corresponds to tree structured networks where learn-
ing can be carried out most efficiently. It is easy to see
that the speedup of our method is substantial and, as

expected, is greatest when learning trees. Importantly,
the advantage grows with the number of variables in
the domain. For the more complex Crime domain,
our model offers a speedup of close to two orders of
magnitude when learning trees, and a speedup factor
of over 30 when learning more complex structures.

To ensure that the speedup of our method does not
come with a degradation in performance, Figure 4
(right) compares the test performance our lightning-
speed procedure to that of the standard baseline for
the Gaussian CBN with up to 4 parents (results were
similar for the Clayton copula, and even more accurate
for simpler structures). As is clearly evident, we suffer
no degradation in performance for the two smaller do-
mains, and only a negligible one for the crime domain.
Put together, the runtime and performance results
show that our approach offers an appealing lightning-
speed alternative to standard learning of CBNs.

Comparison to Learning of Regular BNs

We now compare the performance of our approach to
learning a simple linear Gaussian BN, where each vari-
able is normally distributed around a linear combi-
nation of its parents Xi ∼ N(β0 + βTpai, σi). We
also considered a nonlinear sigmoid BN where Xi ∼
N(α0 +α1

1

1+eβ0+βT pai
, σi). Learning this latter model

was substantially slower than learning CBNs (2-3 or-
ders of magnitude) and it performed worse. Thus, for
clarity of exposition, we do not report its results.
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Figure 5: Comparison of our approach to learning a standard linear Gaussian BN with up to 4 parents for
each variable. (left) our speedup as a function of the baseline running time. (right) the average (bar) and 10
repetitions (black ’x’) test set improvement over the baseline in bits/instances. Results for the sigmoid BN were
substantially worse than ours and took 2-3 orders of magnitude longer to learn, and are omitted for clarity.

Figure 5 (left) shows the relative running time of our
lightning-speed procedure when learning the structure
of a CBN (y-axis) as a function of the learning time
of a linear Gaussian BN. For clarity, the result shown
is only for the more complex structures where up to
four parents for each variable are allowed during struc-
ture search (for simpler structures our speedup advan-
tage is greater). While our procedure is still somewhat
slower than the baseline BN in the smaller domains,
we are able to learn the structure of a complex CBN
model for the 100 variable crime domain in about half
the time that it takes to learn the simple linear Gaus-
sian BN model. Figure 5 (right) shows the average
log-loss improvement of the CBN model on test data
relative to the BN baseline. Note that the scale of
improvement is in bits/instances so that the perfor-
mance gains are quite dramatic, particularly for the
more complex Crime domain. Thus, for sufficiently
complex domains, we are able to substantially improve
on the performance of the simple BN model, while re-
markably requiring less computational resources.

6 Conclusions and Future Work

In this work we tackled the computationally intensive
task of learning the structure of high-dimensional con-
tinuous densities using the Copula Bayesian Network
(CBN) model. We proved that the expected likeli-
hood of an edge in the model is monotonic in the
magnitude of Spearman’s rho for two important cop-
ula families, and showed numerically that this rela-
tionship also holds for many other popular copulas.
Motivated by this result, we proposed using the em-
pirical Spearman’s rho as a model selection measure.

Using our approach for learning the structure of three
varied continuous real-life domains, we demonstrated
dramatic running time improvements.

Our contribution is twofold. Theoretically, we shed
light on the relationship between Spearman’s rho cor-
relation measure and the predictive quality of a distri-
bution defined via a copula function. Practically, the
highlight of our result is that we are able to learn a
complex density that generalizes well without taking
any longer to learn than the simplest continuous BN
model. This opens the door for effective scaling-up of
structure learning in complex continuous domains.

Liu et al. [2010] proposed an approach for learning a
high-dimensional nonlinear model that is undirected
and is restricted to the Gaussian copula. Technically,
they do not define a concrete density so that direct
performance comparison to our work requires some
adaptation. At a higher level, their work does not
aim to use an efficient proxy for estimation but rather
focuses on provably consistent estimation and is thus,
by construction, slower. Even more broadly, as in the
case of Bayesian vs. Markov networks, the undirected
and directed representations complement each other
theoretically, and are likely to do so in practice.

In future work we plan to tackle two challenges. First,
building on the discussion at the end of Section 3.3,
we aim to theoretically identify the general necessary
and/or sufficient conditions needed to ensure mono-
tonicity of the entropy in the magnitude of Spearman’s
rho. Second, it would be both interesting and useful to
replace the heuristic used when allowing for multiple
parents in G with a theoretically founded approach.
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