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Abstract

We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic align-
ment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image con-
trast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even
with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the
problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the
solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to
establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm,
called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual inter-
vention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert
user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our
method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several
plastic section and X-ray datasets.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction organelles and macromolecular assemblies, cryo-ET of
whole cells is a relatively new field (Koster and Klumper-
man, 2003; Baumeister, 2002; Medalia et al., 2002; Koster

et al., 1997; Jensen and Briegel, 2007). Two aspects of the

Cryo electron tomography (cryo-ET) is the primary
method for obtaining 3D reconstructions of intact bacteria,

viruses, and complex molecular machines. While electron
tomography of plastic sections of eukaryotic cells and tis-
sues is an established technique that has been used with
great success in the 3D reconstruction of sub-cellular
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study of whole cells by cryo-ET make it more challenging
than working with plastic sections. First, biological mate-
rial embedded in amorphous ice can tolerate much lower
doses than the same material embedded in plastic. Second,
the diameter of most bacteria of interest is considerably lar-
ger than the thickness of typical plastic sections. As a result
the SNR in cryo-ET is much lower than in ET of
plastic-embedded samples, and this directly leads to signif-
icant difficulty of precisely aligning the projections, with
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the potential for reducing the resolution of the resulting 3D
reconstruction.

Before reconstruction, a projection model which defines
the transformation from the 3D object space to the 2D
images must be estimated. This model corrects for mechan-
ical imperfections and distortions during data acquisition,
and solves for the alignment of the images. High accuracy
image alignment through the tracking of fiducial markers,
generally small gold beads, and projection model estima-
tion are key determinants for the quality of full-precision
reconstructions.

Currently, the step that fails first in challenging datasets
is finding corresponding markers through a series of
images. This failure leads to incorrect trajectories which
in turn throw off the projection model estimation, making
significant manual intervention inevitable. For a full-preci-
sion reconstruction, it is not unusual for an expert user to
spend up to a full day of manual feature identification and
refinement involving several iterations on a dataset, some-
times not knowing until the very end whether a reconstruc-
tion was biologically relevant.

This requirement for extensive manual intervention is
not only costly in terms of an expert user’s time, but also
is a bottleneck in high throughput generation of tomo-
graphic reconstructions. With better microscope stages
and new software for automatic data acquisition, data is
now more easily acquired than processed and analyzed,
and this trend is only going to accelerate in the future.
Full-precision automatic alignment software is needed to
enable tomographic reconstructions to reach the pace of
acquisition of automated datasets.

Extensive work has been published for automatic mar-
ker detection and correspondence (e.g. Kremer et al.,
1996; Mastronarde, 1997; Ress et al., 1999; Brandt et al.,
2001; Heymann, 2001; Brandt and Ziese, 2006; Frank,
2006; Zheng et al., 2007) which has performed well for
many datasets. However, correspondence for low SNR
cryo-ET images is still prone to error. For the most part,
these methods attempt to correspond individual markers
one at a time in adjacent images using assumptions about
the underlying projection geometry. This approach works
well when markers are well defined and sparsely located.
However, if markers are close together and inaccurately
localized, higher order projective distortions and other
uncertainties may cause the program to choose the wrong
correspondence for a given marker. Such a mistake might
affect the estimated projection model, which in turn can
affect the location of new trajectories. The result is a dom-
ino effect of errors from which recovery is difficult, and for
which manual intervention is inevitable.

Our goal is to remedy this problem, and thus eliminate a
major bottleneck in an otherwise automated flow of tomo-
gram generation for cryo-ET. Rather than model the
underlying projection geometry for corresponding one
marker at a time, we infer 2D geometric similarities
between groups of markers in neighboring images. For
example, in addition to searching for a single matching

marker in an adjacent image, we also search for a matching
group of markers that has a similar spatial arrangement in
an adjacent image.

While using this method increases the accuracy of result-
ing correspondence between markers, any system is likely
to still make errors. To build an alignment system that is
as automatic as possible also requires making the projec-
tion model estimation algorithm robust to any remaining
correspondence errors. We present a probabilistic frame-
work which combines all of the above goals in order to
automatically generate a full-precision aligned tilt series.

The alignment of images using RAPTOR involves the
steps presented in Fig. 1. The only user intervention is to
select 3 markers to have a template of what a marker looks
like in each particular dataset. Using the normalized cross-
correlation (NCC) between the template and an image we
find possible marker locations in each image of the tilt ser-

Create Template

Normalized
Cross-Correlation

Pairwise Correspondence

/

Build Trajectories

/

Projection Model
Estimation

Outlier Rejection

Align Stack

Fig. 1. Block diagram indicating the basic steps to align a tilt series. First,
we identify possible markers in the image by creating a template for the
markers, and then generating a cross-correlation map of the image and the
template. Peaks in that map are possible marker locations. Second, using
maximum likelihood estimation, we find correspondence between markers
in adjacent and nearby images and use this information to estimate the
trajectories of the markers. Finally, we fit a global projective model to
align the tilt series. This block diagram is common, in general terms, to all
the existing alignment software.
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ies. If the user selects to target M markers per image,
between 3M and 4M peaks are selected in each image.
Once we have candidates in each image we find pair-wise
correspondence between them. Combining pair-wise corre-
spondences we obtain full trajectories. Once we have trajec-
tories we try to fit a linear projection model using robust
optimization to automatically reject outliers and estimate
alignment parameters. Even though RAPTOR was initially
targeted for low dose cryo-ET images, we show in Section 4
that it also works well in other scenarios such as plastic-
embedded sections and X-ray tomography.

Section 3 describes the overall framework, and explains
in more detail our methodology for local correspondence,
global correspondence, and projection model estimation.
Having described our algorithm, Section 4 then presents
results using challenging datasets that previously required
manual intervention. Section 5 discusses our results in the
light of previous work; finally, we summarize the case for
this new algorithm in Section 6.

2. Materials and methods

The datasets used to test RAPTOR consisted of: 8 Cau-
lobacter crescentus cryo-ET tilt series acquired by hand; 2
C. crescentus cryo-ET tilt series acquired automatically
using the package UCSF Tomo, provided to us by Grant
Jensen from Caltech; 4 Deinoccocus grandis cryo-ET tilt
series acquired by hand; 2 bacteriophage Phi29 cryo-ET
tilt series acquired by hand; one automatically acquired tilt
series of a human Eukaryotic cell plastic section sample
(Golgi) labeled with quantum dots, provided to us by Mark
Ellisman from UCSD; two automatically acquired tilt ser-
ies of a human Eukaryotic cell plastic section sample with
high density of gold markers. Finally, we used 4 X-ray
datasets obtained from Carolyn Larabell at the National
Center for X-ray Tomography at Lawrence Berkeley
National Laboratory (LBNL). These datasets were chosen
from a much larger dataset acquired by one of the authors
(LRC), according to the specific challenges they posed.
Most datasets chosen are of worse quality or posed more
difficult challenges than standard tilt series, such as very
low SNR, jittery motion, incomplete images, or very thick
cells. The most meaningful results are reported in Table 1.

3. Probabilistic image correspondence and projection
estimation

We seek the most likely projection model given the
observed 2D image data. To find this model involves
detecting marker locations in each image, and then recov-
ering the marker trajectories across the tilt series, and
finally fitting a projection model to the estimated trajecto-
ries. The unknowns of the problem are therefore the 3D
marker locations, the 2D marker locations in each image,
and the projection model. Let R be a matrix containing
the 3D marker locations, and S be a matrix containing
the true 2D locations of the markers in each image. Finally,

let O to be the noisy measured values of S. The vector of
parameters @ is the projection model that relates R to S.
Finding the best projection model is now the same as find-
ing the arguments which maximize the probability of R, S,
and O given the observed data O. This probability can be
expressed as the product of two terms:

P(R,S,0]|0) = P(R,0]|S,0)P(S|0) (1)

The right-most term is basically the solution to the corre-
spondence problem, estimating the probabilities of the or-
dered marker positions given the image data. The
preceding term gives the probability of a projection model,
given the correspondence.’

We now describe our approach in more detail. Section
3.1 describes the first step, detecting markers. In Section
3.2 we discuss how all markers in two images are used to
find correspondence for that pair of images. Section 3.3
describes how we use multiple pair-wise correspondences
to estimate S, or the marker trajectories. Finally, Section
3.4 describes how we find the most likely projection model
once S is known.

3.1. Marker detection

The very first step is to detect markers in all the images,
and to provide a score for each detected marker. For this
step, a template is required. The user picks a small number
(we found 3 to be sufficient) of marker centers, and the pro-
gram then averages the corresponding marker patches.
This provides a preliminary template. We then cross-corre-
late this template with all the images at tilt angles between
—30° and +30°, do a peak search and select the first five
peaks from each of those images. The particles correspond-
ing to these peaks are then averaged to obtain a template
that is used for the final cross-correlation. The noise of
the new template is much reduced relative to the prelimin-
ary template. The selection of the first three markers for the
preliminary template is the only manual step required in
RAPTOR, and is much faster than a standard initial seed-
ing step used in many packages. Fig. 2(A) and (B) show a
comparison between an individual (of three) marker used
for the preliminary template and the final template gener-
ated by this approach.

In a last pass, we once again cross-correlate the final
template with all the images, do a peak search, obtain all
the peaks and apply a threshold. The resulting set of peaks
in each image is our list of candidates in that image. If the
number of target markers is M the number of peaks
selected as candidates per image ranges from 3M to 4M.

3.2. Probabilistic correspondence for one pair of images

Corresponding groups of markers in two images
amounts to assigning each of the markers in a group in

2 This model is described in more detail in the Supplementary materials.
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Fig. 2. A gold marker and the final template for one cryo-EM tilt series. Three initial markers as the one shown in (A) are chosen by the user. RAPTOR
uses them as references to create a final template, shown in (B). The template is refined automatically selecting the highest peaks of the normalized cross-

correlation procedure in each image at low tilt angle.

one image to one (or none) of the markers of the other
image. This is analogous to mapping stars in two images
of the night sky (Fig. 3). At one extreme, we could attempt
to solve the correspondence of all the stars simultaneously.
This approach is prohibitively complicated. Alternatively,
locating one star in isolation leaves much room for error
(Fig. 3(A)). A good compromise solution is to break the
sky up into constellations, locate each one for every image,
and then to build the global map based on these local map-
pings (Fig. 3(B)—it is difficult to mistakenly find another
“big dipper”). Intuitively, once given a star’s constellation,
there is little information to be gained about that star from
all the other stars in the sky. This intuition is captured
mathematically in the notion of conditional independence,
which is the underlying mechanism of our method.

To employ this intuition in a probabilistic framework,
we must encode our preferences for what constitutes a
likely solution into an overall joint distribution for all the
possible correspondences between markers. For example,
if we believe a group of markers should form the shape
of the big dipper, any group of candidate markers that
form such a shape would receive a higher weight.

In order to utilize information from more markers in
each decision, we define a distribution over the assignments
of the markers of one image to another. Specifically, let
A={A,,...,4;) be the set of markers in the first image
and let B= {By,..., Bx} be the set of markers in the second
image. Also, let /; and I, be the two images themselves. We
now treat each A4; as a random variable that can take a
value in the set B in addition to an ‘unassigned’ value.
The joint distribution

P(Ay,...,Aull,15)
assigns a probability value for each assignment of the

markers in 4. Our goal is to find the assignment that max-
imizes this distribution,

A" = argmax P(4,,...,Aull,1>) (2)

The complexity of this operation is in general exponen-
tial in the number of markers M. However, if the distribu-
tion P can be factorized, the complexity can be reduced
significantly (to polynomial). Factorized distributions arise
when the variables have conditional independence. This is
a reasonable assumption in our case, as explained above.

A set of conditionally independent random variables
(that is, they depend on each other only through subsets
of those variables) is called a Markov Random Field
(MRF).? In our formulation, we choose proximity between
two markers as a criterion for dependence. That is, we
define a pair of markers to depend on each directly if they
are within some distance of each other. A graphical exam-
ple of such a group of six markers is shown in Fig. 3(D).
An edge between two markers indicates direct dependency.
As mentioned previously, the joint distribution of an
MRF* factors into local terms, each of which encodes
our preferences for those localities. To further contain
computational complexity, we limit our factors to be over
at most two markers.

Even with the simplified distribution, exact inference of
marginal and conditional probabilities needed for corre-
spondence is not practical. Loopy belief propagation
(LBP) is an approximate inference method that has been
shown to converge to good results for MRF problems in
imaging applications (Murphy and Weiss, 1999). For a
detailed description of LBP the reader is referred to (Yedi-
dia et al., 2000, 2005; Kschiang et al., 2001; Bishop, 2006).

* The theory of MRFs is very rich and beyond the scope of this paper.
For a thorough treatment, the reader is referred to the many references on
the subject (e.g. Yedidia et al., 2005; Bishop, 2006). We provide a brief
discussion as part of the overall probabilistic framework in Supplementary
materials.

4 In RAPTOR, the threshold is one quarter of the image (e.g. two
markers closer than 512 pixels in a 2K x 2K image will be connected in the
graph). Therefore, each marker is connected to many other markers. In
addition, we impose that each marker has a minimum of 8 neighbors, even
if it is necessary to violate the threshold.

doi:10.1016/].jsb.2007.07.007
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Below we provide a brief example to illustrate its basic
idea. In RAPTOR we use a variant of LBP (Elidan et al.,
2006) that has fast convergence properties.

LBP attempts to infer the correspondence by combining
local information obtained from the factors of the distribu-
tion. It does this by propagating each piece of local infor-
mation through the MRF to achieve a globally consistent
assignment between markers and candidates. An artificially
constructed example of how this might work is shown in
Fig. 3(D-G). A reference image (Fig. 3(D)) has six markers
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(red, blue, green, purple, brown, and cyan) to be corre-
sponded in a candidate image (Fig. 3(E)). For each refer-
ence marker, our ‘“beliefs” on possible candidates are
taken from a region around the location of that marker
in the candidate image. Note that even for such a small
set (6 markers) the number of possible final solutions is
quite large (2430). Rather than examining all of these, we
infer a selection by considering smaller groups of pairs of
candidates at a time. A comparison of each marker and
its neighbors in the reference image shows the directions
along which corresponding candidates should lie. Applying
this constraint in the candidate image narrows down the
potential correspondence. In one first iteration, the blue
candidates are narrowed down by comparing orientations
with respect to the red and green candidates with corre-
sponding orientations of the respective markers. Simulta-
neously, all other candidates are similarly narrowed down
by comparing orientations with the candidates of neighbor-
ing markers (Fig. 3(F)). Continuing this procedure, one
more iteration completely narrows down the choices to
the correct solution (Fig. 3(G)). It should be noted that
all comparisons between neighbors happen simultaneously
in one iteration by looking at the narrowed-down candi-
dates of the previous iteration. In practical datasets such
obvious hints do not typically exist, and more iterations
are required for the solution to converge.

In the actual algorithm, we infer the probability from a
set of factors (also known as potentials) @5y and @pg. Py is
called the singleton potential, and encodes how likely the
candidate marker matches the current target using infor-
mation only about the target. @, the pair-wise potential,
encodes how likely it is that a pair of close candidate
markers match a pair of markers in the original image.

<

Fig. 3. Local correspondence for one pair of images. (A), Finding the
correspondence by looking at a single marker is difficult since it requires
identifying a marker in the reference image and choosing one of several
(quite similar) candidates in a nearby neighborhood in the candidate
image. (B) On the other hand, if a group of markers is considered at a
time, the contextual information (e.g. the “Big Dipper” pattern) can be
exploited to find a more reliable correspondence. (C) To represent this
context when finding correspondence, we represent local relationships as a
dependency graph for MRFs. One possible dependency graph is shown
here for the MRF formed by the 6 markers in panel (B). Panels (D-G)
illustrate qualitatively how candidates for a group of 6 markers are
selected in loopy belief propagation (LBP). The 6 markers are shown in
panel (D). Markers in two subsequent images are considered neighbors if
they are closer than a threshold distance to each other. Each marker has
several candidates shown in panel (E). In each iteration of LBP,
candidates for each marker compare their orientations relative to
candidates for the neighbors of that marker. The highest scoring
candidates are the ones that have the most consistent set of such
orientations. For example, from panel (E) to panel (F), it is clear that the
most likely blue marker candidate is the middle one, since it maintains a
consistent orientation with both the red and green marker candidates. A
similar set of winners emerges in the purple and cyan group when
comparing orientations with the brown group. Repeating this process for
the remaining groups of candidates gives us similar winners, which are
then compared in the next iteration of LBP. In this carefully constructed
case, LBP converged to the right correspondence in two iterations.

doi:10.1016/j.jsb.2007.07.007
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More formally, we assume in each pair of images that there
is a reference image (used for conditioning) and a candidate
image. There is a list of M corresponded markers A4;
(i=1...M) in the reference image, and another list of K
candidate markers B; (j=1...K) in the candidate image
(4 and B are in %#°). Typically, K is taken to be 3-4 times
larger than M. The markers 4,, can be either from raw or
prealigned images, and can also incorporate any coarse
projection model information if that is available.

The singleton potential is based on physical similarity
and proximity, and is calculated by cross-correlating a
square patch of fixed size centered at a marker extracted
from the reference image with the same size patch centered
at the candidate marker j. This score is then multiplied by
an exponential roll-off factor which is a function of dis-
tance from the center of marker 4; to candidate marker
B;. For unaligned images the roll-off is quite mild, with
decay constant of about 1/3 the image width.

We define f. as this exponential fall-off with distance:

fi@.B) = exp { - <';b”> )

This term is a weighting function which decays exponen-
tially with the distance between any pair of vectors (a
and b above).

The singleton potential becomes:

Yy (i, ji) = NCC(ir, jy) - fi, (X, X)) (4)

where NCC is the normalized cross-correlation of the two
markers, and x; is the position vector of the marker. The
pair-wise potential is based on relative orientation and prox-
imity. Let the vector v;= A4, — A, and the vector v,=
B;; — Bp. The difference vector, v; — v; is a measure of the
relative motion between marker il and marker i2 between
the reference image and the candidate image. The pair-wise
potential is the product of three exponentials: an exponential
roll-off for distance 4;, to Bj;, another exponential roll-off
for distance 4, to Bj, and finally another exponential
roll-off for the L, (Euclidean) norm of the difference vector:

WpO(ihi%jlajZ) :j{kz(ﬁi’ﬁj) fkl ()_51'172/'1) fkl ()_C'iwsz) (5)

Here the values of k are fairly large, while the value of k, is
much smaller.

It should be noted that the geometric constraints are
applicable to different scenarios, since they make no
assumptions about the projection model. They only assume
that the there are no big changes in relative marker posi-
tions between consecutive projections. This assumption is
valid for most projection models used in tomography. At
the same time, they include relative position and direction
between markers.

3.3. Global correspondence (multi-level approach)

While the pair-wise correspondence now makes use of
all the markers in the two images, it still only considers

two images at a time. To more robustly generate the mar-
ker trajectories across the tilt series, S, we compare each
image with several of its following images. We use the
redundant information both to allow trajectories to skip
over a missing marker in some images, and to reduce the
probability that a bad correspondence will affect the global
trajectories.

The first step of global correspondence is to build trajec-
tories. To do this we use a multi-level approach. The first
level contains correspondences between the jth image and
the j + 1th image. The second level contains the correspon-
dences between the jth and the j + 2th image. We use up to
3 levels in images spaced up to 2° apart because after that it
is difficult to find correspondences due to the tilt difference
between projections. We initialize the first trajectory as the
first point in image 1 and level 1. We call this point py; (in
general, we define p;; as the point in trajectory i and image
J)- Local correspondence gives us the location of this trajec-
tory in image 2, i.e. py». Next, we try to find p;, in the local
correspondence between image 2 and image 3. If we find it,
that returns p;; and we repeat the process for this new loca-
tion to find pi4.

We use the extra levels in two ways. First, if a local cor-
respondence for a track is missing, we look in the next level
of the global correspondence to complete the track. For
example, if we cannot find p;3 from p;, in the first level,
we try to find py4 from p;, in the second level, which con-
tains local correspondence between image 2 and image 4. If
we find p4, we continue the process for this new location to
try to extend the trajectory. If we do not find it, we try to
find p;s from p;, in the third level, which contains local
correspondence between image 2 and image 5. We iterate
this process until the first trajectory can not be extended
longer, either because we reach the last image (full trajec-
tory) or because one location can not be found in any level
(partial contour). To create new trajectories, we use points
in each level that have not been used in previous trajecto-
ries, since they are potential seeds of new trajectories.

Having multiple match levels allows trajectories to
recover from occlusion. Occlusion occurs if a marker pres-
ent in one image can not be found, even by a human eye, in
the next image. A variety of events can create occlusion.
For example, a fiducial marker in the edge in one image
can move out of the field of view in the next image. Or
some other feature in the sample can occlude the marker
in some views (two clouds of markers crossing each other,
as shown in Fig. 4(A-C)).

The second way of using a multi-level approach, and the
second step of global correspondence, is to add confidence
in the trajectories obtained in the first step. We do this
using the redundant information contained in the local cor-
respondences that have not been used in the first step. For
example, suppose we found py,, p;3, and py4 using the first
step. We can check this path against the local correspon-
dence for p;, in image 4, which is contained in the second
level. We count the number of times such comparisons fail
in each trajectory. If this occurs more than one fifth of the

doi:10.1016/j.jsb.2007.07.007
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Fig. 4. Robustness of the local and global correspondence. All images are magnified sections from images in the actual tilt series. (A-C) show the tracking
of a chosen marker whose trajectory in 2D projections passes through a group of similar markers throughout the tilt series. This situation is particularly
difficult for methods which track single markers at a time. The 2D projections (A-C) are spaced by angular increments of more than 6°, for better
visualization. In this figure, the red circles indicate the markers chosen by tracking, the green circles are the estimated marker positions using the Huber
penalty, and the yellow circles (when shown) are estimated marker positions using a least squares optimization. Panel (D) shows the position of a chosen
marker whose trajectory is lost in (E), and subsequently recovered in (F). Panel (E) shows that the least squares estimate is off when a tracking error occurs

while the use of the Huber penalty is able to tolerate this error.

length of this particular trajectory, we drop the trajectory.
Otherwise, we retain the consistent part of the trajectory.

Finally, only trajectories of certain length are kept to
estimate the projection model. The length is selected auto-
matically to assure that we have enough points in each

image to estimate the projection model. As explained in
the next section, the projection estimation is able to handle
partial trajectories of any length across the tilt series. This
is extremely useful at high tilt angle, where many markers
are present in only a few images before disappearing.

doi:10.1016/].jsb.2007.07.007
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3.4. Robust estimation

Once we have recovered trajectories across the whole tilt
series, a linear projection model can be estimated to repre-
sent the transformation between the 3D location of the
markers and their 2D projection in each image. The projec-
tion model finds a common origin of coordinates for all the
images in order to align them. Details about projection
models can be found in (Lawrence et al., 2006).

We use convex optimization techniques (Boyd and Van-
denberghe, 2004) to estimate a linear projection model. For
each jth image in the tilt series and ith marker trajectory we
have the following projection model:

Xjj Xi x;
[y';{ 6|, —[ ] ©)

[x; y,»j]T are the marker coordinates found by correspon-
dence; G; is a 2x 3 matrix defining an affine transform
which models projections of points from 3D to 2D; [x;
tyj]T is the translation in 2D of each image and [X; Y;
Z;]" are the marker coordinates in 3D. To estimate the
parameters from the microscope we solve the following
minimization problem:

T

min E

=1\ =1

+ 211G = Gy |13
iy

X;
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, ty

Z /
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The unknowns are the parameters of the microscope (G;,
tx;, ty;) and the 3D locations of the markers (X, Y;, Z,).
The equation is clearly nonlinear and nonconvex in those
unknowns. However, if we fix G, Eq. (7) is linear and con-
vex in the remaining unknowns, and vice versa. We can
thus use an iterative scheme to solve only linear equations.
First we solve for G, and then we solve for X, Y, Z, and rx,
ty. We iterate this process until we converge to a solution.
This method has been known for a long time in the optimi-
zation literature as alternate convex programming (Ke and
Kanade, 2005) and it gives similar performance as nonlin-
ear optimization methods with the advantage that this ap-
proach is computationally simpler to solve.

The term wy; in (7) contains the weights for each residual
of the reprojection model. This concept was previously
used in the work by Brandt and co-workers (2001) to allow
the incorporation of partial trajectories in the reprojection
model estimation. If a point is missing in the ith trajectory
for the jth image, it is assigned a weight w; = 0. Otherwise,
we set w; = 1.

The term 2||G; — GOI.||§ in (7) is known as a regulariza-
tion term. It indicates that the matrix G should not be very
different from a given matrix Gy; which is set by the geom-
etry of the microscope. The parameter A indicates how
much we penalize the fact that G; deviates from Gy, 4
has been tuned using cross-validation with different data-
sets and it is a fixed parameter.

The matrix Gy, that is used as a reference is:

~ [cos(a) —sin(oc)} {1 0 0 ®)

v sin(e) cos(a) | O cos(6;) sin(6;)

where o represents the 2D rotation to establish the y-axis as
the tilt axis and 0; is the measured tilt angle of the goniom-
eter. This is a good first order approximation of the micro-
scope’s projection model.

Regularization allows the alignment of images even in
tilt series where very few markers are present, since it
imposes constraints on the shape of G. These constraints
indicate that G should be close to a composition of rota-
tions (at least for an ideal microscope). However, it does
allow some flexibility to incorporate distortions or changes
of magnification between different projections.

Finally, a crucial part of Eq. (7) is the function L(*).
This function is known as a cost and/or penalty function.
It is a measure of the error between the trajectory given
by global correspondence and our reprojection model.
The definition of L(*) has a great effect in the estimation
of the reprojection model. To the best of our knowledge,
all the existing alignment methods use L(r) = r* (Lawrence
et al., 2006; Brandt et al., 2001; Kremer et al., 1996) except
for (Brandt and Ziese, 2006). This quadratic error measure
establishes that the solution to (7) is the well-known least-
squares problem. However, it is also well-known in the
optimization literature that least-squares methods are not
robust to outliers. Even a single error in a trajectory can
bias the entire reprojection model. Thus, a more robust
penalty function is used in this work. We use what is
known as Huber penalty function (Huber, 1981) in robust
statistics. This penalty function uses a combination of lin-
ear and quadratic penalties. For small residuals the penalty
is quadratic, and small residuals are thus fitted as least
squares. Big residuals, however, are penalized using a linear
function. This results in large deviations (outliers) not
affecting the reprojection estimation model. The fact that
large deviations are tolerated and isolated in the linear
region makes it easier to detect and correct them automat-
ically without manual intervention. Notice that Huber pen-
alty is still convex, so we avoid the problem of finding a
local minimum as a solution to our problem. More details
and references about the reprojection model estimation are
given in Supplementary information.’

4. Results

The algorithm presented in this work was tested using
cryo-ET datasets of the bacteria D. grandis and C. crescen-

> The Supplementary materials describe a new technique that combines
image segmentation with estimation of the number of segments (or
clusters) to refine the centering of the gold beads. This technique is used
once we have a good estimation of the marker location. It addresses the
problem of finding markers centers when two or more of them collide.
Current software identifies the middle point between two markers as the
center of each particle, which is clearly wrong.

doi:10.1016/j.jsb.2007.07.007
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tus. Each of these datasets poses unique and different chal-
lenges. Most of the datasets were acquired by hand, which
results in tilt series with more discontinuous trajectories, or
“jerky” movements across the angular range than in the
case of automated acquisition.

Deinoccocus grandis cryo grids are considerably thick,
with the large bacteria forming conspicuous meniscus in
the amorphous ice. As a result, projections from high
angles usually occlude many of the markers clearly visible
at the lower angles. The cryo-grids used with these bacteria
are also more irregular, uneven in shapes, contrast, and
transparency than for other bacteria more commonly stud-
ied by cryo-ET. For this reason, the usual marker selection
and tracking applications included in other programs tend
to fail. Most of C. crescentus and D. grandis datasets were
acquired with a total dose of at most 100 e /A?, resulting
in very noisy individual images. Caulobacter cryo-grids
are thick and form a meniscus although they are still trans-
parent to the beam. The surface of the grids is not as irreg-
ular as with Deinoccocus and the high angle occlusion
problem is thus less severe. However, in all cases there
are, in high tilt angle views, sets of very useful markers
towards the image boundaries which disappear at lower
angles.

Fig. 2(A) shows one of three markers selected by the
user to create a preliminary template. RAPTOR refines
the preliminary template automatically selecting the high-
est peaks of the normalized cross-correlation procedure
in each image at low tilt angle.® Fig. 2(B) shows the result
of the automatic template refinement.

The robustness of RAPTOR predicting marker trajecto-
ries is illustrated in Fig. 4. Panel (A) shows the position of a
marker that will intersect a whole group as the tilt series
proceeds. In panel (B) the projected positions of all mark-
ers are tightly clustered. At higher angles, the two groups
are again resolved, as shown in panel (C). The algorithm
successfully tracks the position of markers in difficult situ-
ations such as this one, which can occur quite frequently.
The robustness in these situations is a consequence of our
incorporation of contextual information in the correspon-
dence. As already pointed out, the number of markers in
each neighborhood, which markers and which neighbor-
hoods, do not require user input beyond the initial choice
of targeted number of markers per image. RAPTOR is also
tolerant to any remaining correspondence errors, and thus
successfully avoids propagating errors. Panels (D-F) illus-
trate the robustness built into RAPTOR using robust con-
vex optimization techniques. Panel (D) shows the position
of a chosen marker which is located to the wrong position
by global correspondence in a subsequent image, panel (E).
At a subsequent step, however, the trajectory is recovered,
as shown in panel (F). This example shows that the projec-

® Interestingly, RAPTOR performance does not change at all if we use
one or the other template because the normalized cross-correlation scores
obtained by one or the other are very similar.

tion model is not biased by the presence of outliers. This
feature allows the automatic removal of outliers and their
re-assignment of their correct location. Methods based on
least-squares fail in such cases.

We illustrate in Fig. 5 the overall performance of the
algorithm in the alignment of a difficult dataset of C. cres-
centus. This dataset was acquired with a helium-cooled
stage, and as a consequence the relative position of the
markers was significantly more variable than is normally
the case with liquid nitrogen-cooled stages (Comolli and
Downing, 2005). Panel (A) of Fig. 5 shows the projection
acquired at —58°. Panel (B) shows the set of trajectories
recovered by RAPTOR. There are complete trajectories
across the whole tilt series, there are trajectories that cover
the whole angular range of the tilt series but are missing the
marker in some images, and there are partial trajectories
starting from both ends of the tilt series, disappearing at
lower angles. The meniscus formed by the cell and bars
of the cry-grid may occlude, at high tilt angles, markers
chosen at low angles. At specific angles throughout the tilt
series, the overlapped projection of groups of markers
which belong to different planes within the cryo-grid may
cause gaps in their tracked trajectories. Many gaps also
represent locations where the probability of making a cor-
rect marker assignment is not sufficiently high.” Finally,
there are in the high angle projections, many markers with
ideal SNR which are left out of the view in the projections
at lower angles. All these events are represented in the dia-
gram plotted in Fig. 5(B).

The physical trajectories of all chosen markers in image
space (x—y coordinates in pixel number), in the raw data
and the aligned data, are shown in Fig. 5(C) and (D).
The inset in each panel shows one single trajectory. No
pre-alignment of the raw dataset was performed before
obtaining the automatically aligned one, as is readily obvi-
ous from the cloud shape of marker trajectories in the raw
data (Fig. 5(C)). A comparison with the results of manual
marker selection and tracking shows indistinguishable final
tomographic reconstructions, which is the ultimate perfor-
mance test.

Table 1 quantitatively compares RAPTOR’s perfor-
mance versus manual alignment by an expert IMOD user
in a great variety of datasets. These include cryo-EM data-
sets as well as plastic-embedded sections and X-ray tomog-
raphy. The datasets also use different angular steps between
projections, as well as different marker diameters and num-
ber of markers present in the image. More detail about
those datasets is given in Section 2. Quantitative compari-
son is performed using the noise-compensated leave-one-
out (NLOO) method of (Cardone et al., 2005) for both
for manual and the automatic reconstruction. RAPTOR
resolution is always comparable, or even better in some

7 We use a high threshold in order to avoid false matches. The ratio
between the probabilities of the two most likely assignments must be
greater than 2.7.
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Fig. 5. RAPTOR performance tracking markers in a Caulobacter crescentus dataset, and aligning the set. (A) The —58° 2D original projection from the
tilt series. The size of the image is 2048 pixels on edge. The cell forms a meniscus of considerable thickness. Both the cell and the grid bars may occlude
markers at high tilts. The wider area projected into the images at these angles contains many markers with appropriate SNR, far from the cell, which
disappear at lower angles. (B) Trajectories recovered from the tilt series. (C) Overlay of several marker locations in image space (x—y coordinates in pixel
number) throughout the raw datasets illustrates the trajectories in the raw dataset, (D) trajectories of same markers after RAPTOR automatic alignment.

The insets in (C and D) show the trajectory of a single marker.

datasets, than that obtained by an expert user with exten-
sive manual intervention, demonstrating that RAPTOR
obtains full-precision alignment in a variety of difficult
scenarios.

The SNR column of Table 1 provides an estimate of the
feature visibility in the raw datasets. We chose a signal to
noise measure that reflects the visibility of the gold particles
in the images as defined in (Frank, 1996):

_ 2
ZL]'mi/'

— 2

Zi,jZk‘mkU —

The measure of the SNR is based on the average of all the
gold images. The signal power is the variance of the aver-

SNR(gOIdbead) = (9)

age gold image, and the noise power is the variance of all
the gold images with respect to this average image. my; is
the value of the i,jth pixel in the kth image, and (m;) is
the value of the ijth pixel in the zero mean average
image.

For all datasets, we also compared visually the quality
of the tomographic reconstructions obtained after RAP-
TOR alignment with those obtained after alignment by
an independent standard method. Two such comparisons
are shown in Fig. 6. Panels (A) and (B) show, side by side,
a one-pixel-thick slice through a tomographic reconstruc-
tion of a dividing C. crescentus cell obtained after manual
alignment and after RAPTOR automatic alignment,
respectively. The quality of both is equivalent. Another

doi:10.1016/].jsb.2007.07.007
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Table 1
Summary of the datasets tested to asses RAPTOR’s performance (Resolution)

Dataset Tilt range Approx. number Bead diam. SNR Number NLOO3D(0.3) NLOO3D(0.3) NLOO3D(0.5) NLOO3D(0.5)
(deg) of markers (pixels) (hi tilt) of patches manual (nm) RAPTOR (nm) manual (nm) RAPTOR (nm)
Cryo-Caulol —58:2:54 15 10 0.038 200 14.26 13.81 30.16 24.48
Cryo-Caulo2 —34:1:36 10 10 0.026 196 11.02 8.63 15.11 14.25
Cryo-Caulo3 —62:2:58 15 10 0.007 199 18.01 16.35 24.82 26.78
Cryo-Caulo4 —61:2:54 10 10 0.009 184 25.21 32.54 36.59 41.14
Cryo-Caulo5 —60:1:60 70 10 0.294 200 10.35 10.34 13.32 13.18
Cryo-Caulo6 —68:2:68 20 10 0.005 190 17.27 18.68 24.09 27.96
Cryo-Caulo7-He —54:1.5:51 60 10 0.024 195 15.44 18.34 27.01 27.89
Cryo-Caulo8 —45:1:45 20 10 0.066 195 13.25 13.63 20.01 20.49
Cryo-Caulo9 —60:1:62 10 8 0.032 199 7.51 7.66 14.32 16.95
Cryo-Deinol —62:2:57 30 10 0.044 200 19.28 19.64 29.13 30.15
Cryo-Deino2 —60:1:57 20 7 0.008 190 14.75 10.56 20.55 15.18
Cryo-Deino3 —25:1:26 40 10 0.044 199 21.04 19.38 30.93 27.65
Cryo-Deino4 —62:2:62 15 10 0.001 196 -1 -1 -1 -1
Plasticl —58:2:60  >200 4,8 0.471 93 23.924 26.69 42.147 45.42
Plastic2-qdot —60:2:60  >200 8 1.653 36 19.55 25.45 28.07 32.51
X-ray-EColil —90:2:90 30 10 0.095 200 * * 53.21 52.35
X-ray-EColi2 —90:2:90 25 10 0.050 200 57.14 56.818 71.428 73.652

Columns two to six contain information to present the variety of scenarios where RAPTOR was tested: spacing between projections, approximate number
of gold beads to track in the dataset, bead diameter in pixels, SNR of the gold beads in high tilt angles, and number of patches obtained to calculate the
SNR. The last four columns show a quantitative comparison of the resolution obtained using human-directed alignment and the automatic full-precision
alignment presented in this paper. The method used for resolution assessment is noise-compensated leave-one-out (NLOO) by Cardone et al., using
threshold values 0.3 and 0.5. RAPTOR achieves better or equal resolution (lower numbers in the NLOO3D columns) in many of the datasets. The dataset
“Cryo-Caulo5” is courtesy of the Grant Jensen laboratory, Caltech. The plastic data sets “Plasticl” and ‘Plastic2-qdot” were provided by Mark
Ellisman’s group at UCSD. The group of Carolyn Larabell, LBNL, generously provided us with the X-ray tomographic tilt series listed as “X-ray-
EColil,2”.

(*) Curve did not reach that point; (—1) method fails to align.

example is shown in Fig. 6, panels (D) and (E). The fea-
tures observed in a one pixel-thick slice through a tomo-
graphic reconstruction are comparable in definition and
resolution, whether the dataset was aligned with human
intervention or automatically by RAPTOR. A better com-
parison is established by careful inspection of regular fea-
tures, as shown in the insets. These reconstructions were
binned by two, from an image size of 2048 pixels on edge
to 1024, and each box measures 84 pixels on edge.®
Fig. 6, panels (C) and (F) show the resolution plots for
each final reconstruction obtained using cross-validation
available in software Electra (Cardone et al., 2005). The
plots demonstrate that RAPTOR obtains the same resolu-
tion as the manual reconstruction.’

Fig. 7 shows similar comparisons of reconstruction
quality with X-ray images of a frozen-hydrated sample of
Escherichia coli cells and a tomogram of a conventional
stained plastic section. Several of the gold fiducials
(70 nm diam.) in the X-ray sample are visible in this
cross-section of the reconstruction. The high contrast from
the capillary initially caused a problem with the marker

8 Notice that it is impossible to obtain exactly equivalent slices from
these reconstructions because the orientation of the reconstructed volume
is not identical in data sets aligned by hand or automatically. The quality
comparison of the reconstructions seems clear and straightforward
nonetheless.

° Similar graphs were obtained for each of the datasets in Table 1, only
two datasets are shown due to space limitations.

identification, but this problem was easily solved by apply-
ing edge detection techniques and a filter to reduce the
sharpness of the capillary edge in the individual images.
We have found that RAPTOR has no difficulties with con-
ventional plastic section datasets. However, the total num-
ber of markers needs to be kept below an excessive number
(fewer than ~200) in order to make RAPTOR run effi-
ciently, as discussed below.

The next section analyzes RAPTOR’s performance in
more detail.

5. Discussion

We have shown our application’s ability to recover par-
tial marker trajectories from tilt series acquired with jittery
motions, low exposures and low SNR. In Fig. 5 we com-
pare the trajectories before and after alignment to show
that they form straight lines as if the sample was rotating
along the y-axis. Our algorithm, however, does not require
pre-alignment of the tilt series as a first step. In all examples
shown here we used the raw data as direct input. The tra-
jectories usually form a cloud, representing the jittery
motion usually found in a raw tilt series. Our algorithm
is robust enough to tolerate jumps between projections of
350 pixels in a 2K x 2K image, and also tolerates a rela-
tively high level of distortion. Nevertheless, if the images
are pre-aligned after acquisition, or acquired by efficient
automatic acquisition software such as shown in (Zheng
et al., 2007), our method runs faster.

doi:10.1016/j.jsb.2007.07.007
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Fig. 6. Tomographic reconstructions based on RAPTOR and manually aligned datasets. (A and B) One pixel-thick slices from tomographic
reconstructions of a Caulobacter crescentus polar mutant, obtained from a manually aligned dataset and from an automatically aligned dataset,
respectively. (D) One pixel-thick slice from a tomographic reconstruction of a dividing Caulobacter crescentus cell after manually aligning the tilt series and
(E) After RAPTOR automatic alignment. Reconstruction after marker tracking by hand and human-directed alignment (A and B), and after automatic
alignment (D and E), results in equivalent final quality. The images are sections, 900 pixels on edge, from tomographic reconstructions binned from 2048
to 1024 pixels on edge. The boxes shown in the insets measure 84 pixels on edge in the binned images. Panels (C and F) show quantitative resolution
comparisons for tomographic reconstructions of the two datasets above using noise-compensated leave-one-out method of Cardone et al. The resolution
curves obtained with RAPTOR, in red, and with human-directed alignment, in blue, are equivalent. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Tomographic reconstructions from a X-ray tomographic tilt series of intact, frozen-hydrated E. coli cells in a glass capillary (A-C), and from a
stained plastic section of a eukaryotic cell (D-F). Comparison of results obtained with RAPTOR alignment (A and D), and manual alignment (B and E)
show no detectable differences. (A and B) One pixel-thick slices from the X-ray tomographic reconstruction viewed along the tilt axis, showing strong
contrast for the capillary with several cells. (D and E) Normal slices through the cellular tomogram. Panels (C and F) show quantitative resolution
comparisons for tomographic reconstructions of the two datasets above using noise-compensated leave-one-out method of Cardone et al. The resolution
curves obtained with RAPTOR, red, and with human-directed alignment, blue, are equivalent. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

The use of contextual information and simple geometric
constraints to establish reliable correspondence has been
shown here to be a powerful tool in achieving fully auto-
matic alignment. This was possible due to the random

placement of the gold beads, which form unique spatial
arrangements between markers. In this way it was possible
to build a robust global correspondence that was consistent
from image to image even in very noisy datasets. Intuitively
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pair-wise potentials should be adequate because constrain-
ing the relative position between pairs of features also con-
strains the neighborhood as a whole. This allows alignment
in various geometry settings as long as the difference
between adjacent projections preserves relative distances
between markers.

The results summarized in Table 1 show quantitatively
how the achieved automatic alignment is comparable to
the alignment done using IMOD and manual interven-
tion by an expert user in a very diverse group of datasets.
For most datasets the difference in resolution obtained
with RAPTOR or manual intervention is within a 3 nm
interval. In many cases, RAPTOR obtains a better reso-
lution score. Gold beads of diameter as small as 4 pixels
were successfully tracked. The algorithm also adapts
automatically to a wide range of marker density in the
image.

However, there are three datasets in the table that pres-
ent some of RAPTOR’s limitations. The first one is Cryo-
Caulo4. The SNR for the gold beads in the range from
—61° to —55° was 0.004 and the NCC was not able to
detect the markers. As a consequence a few images were
left without being aligned and degraded the resolution of
the tomograms as reflected in Table 1. Therefore, our
SNR measure for markers tries to show a lower limit for
the NCC to find markers. Without identification of possi-
ble markers from NCC the rest of the system can not pro-
ceed and the alignment fails. This limit seems to be around
0.004 although is not a precise threshold.

In order to further characterize the limits of RAP-
TOR, we chose from plastic sections datasets with a very
high density of gold markers (more than 200 per image).
One might think that the high contrast of stained mate-
rial in those datasets might cause more false matches and
break down the pair-wise correspondence step. However,
that is not the case. The trajectories obtained with RAP-
TOR correctly follow the beads as in cryo-EM datasets.
The problem in the plastic sections datasets in Table 1 is
that the total number of markers per image is very high.
It takes too long for RAPTOR to track over 200 mark-
ers, so we target 120 markers. With so many markers it
is difficult to always have the same markers from image
to image in the list of candidates selected using NCC.
Therefore, most of the recovered trajectories are far from
full trajectories. Partial trajectories make it more difficult
to create a precise global alignment which is reflected in
a lower resolution score. In plastic, local distortions play
an important role and full trajectories are crucial to cor-
rect them in the aligned stack. RAPTOR will have an
optimal performance with 120 or fewer markers per
image.

We have only found one specific case where false
matches caused by high contrast areas that are not markers
can limit RAPTOR’s performance. NCC assigned rela-
tively high score to the boundaries of the cylindrical holder
in the X-ray datasets (Fig. 7), which are imaged as straight
lines. They create a regular pattern in the peaks across the

whole image that affects the inference in the MRF. This
problem is easily overcome using standard edge detection
techniques followed by a Hough transform to find straight
lines. Any peak in that line is erased. RAPTOR can handle
a high percentage of false matches in marker detection as
long as those false matches have random location in several
consecutive images or the structure creating false matches
is small enough to not confuse the inference. This is true
in most datasets.

One assumption in RAPTOR’s local correspondence is
that there is a small incremental angle between images in
the tilt series. We have successfully tried datasets with
incremental angles ranging from 0.5° to 4°. This accommo-
dates most common tomographic tilt series. However, for
bigger angular increments, two problems will arise. First,
adjacent images will be less similar. This might cause a
decrease in the number of correspondences found between
images. Second, it becomes more difficult to have many lev-
els in the multi-level scheme, which might affect the robust-
ness of the method. Although we can address this problem
by modifying the global correspondence scheme it has
not been necessary for any datasets that were available to
us.

While an expert user needed up to a full a day to com-
pletely align some of our datasets to sub-pixel accuracy,
our method is able to align the images automatically. RAP-
TOR takes 45 min to align a set of 65 2K x 2K images with
20 markers, and roughly 4 h to align a set of 80 images,
(2K x 2K in size), targeting 70 markers per image in a
2.4 GHz Pentium 4 PC with 2 GB of RAM. It takes
roughly 7 h for 240 images (2K x 2K in size) targeting 30
markers per image. The algorithm is highly parallelizable,
so the time can be greatly reduced even using a small clus-
ter available in most cryo-EM labs. It is worth mentioning
that the execution time strongly depends on the number of
markers present in each image.

The goal of this initial version of the program was to
keep it as simple and automated as possible, and make
its data files compatible with IMOD. In this way the user
can use IMOD to manipulate the data before or after the
alignment. While having a turn-key solution to image
alignment is useful, it should be possible to extend this
tool to make it more flexible, and provide a little more
user control. For example, RAPTOR already allows the
user to seed specific markers, or to provide multiple tem-
plates to track different kinds of features in each dataset.
This is very helpful in plastic sections where two sizes of
markers are used to distinguished top from bottom. These
enable its use on a wider class of images. However, more
extensions (e.g. dual axis support) can be easily added in
the future.

6. Conclusions
A new probabilistic framework for automated full-preci-

sion alignment of EM tilt series images has been presented.
We tested our algorithm on datasets where we had manual
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full-precision alignment and reconstructions available, and
the results had the same resolution, using visual and quan-
titative metrics (Cardone et al., 2005). The underlying
probabilistic framework allows RAPTOR to align these
difficult datasets.

RAPTOR has two main advantages. First, the frame-
work of Markov Random Fields enables a more reliable
correspondence through the use of contextual information.
The correspondence can be established for any geometry as
long as the tilt difference between projections is small
enough to preserve relative distances between markers. Sec-
ond, the use of robust optimization and redundancy in the
global correspondence enable automatic recovery from
errors, which are difficult to avoid in such noisy environ-
ments. By making use of these powerful, yet efficient tech-
niques, RAPTOR is able to successfully complete the task
on a relatively common desktop machine in a few hours,
enabling high throughput generation of full-precision
tomograms.

RAPTOR is freely available for academic use at http://
www-vlsi.stanford.edu/TEM/index.htm. Interested users
can contact Farshid Moussavi at farshidl@stanford.edu
and Fernando Amat at famat@stanford.edu for more
information.
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