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Abstract

Inference for probabilistic graphical models is
still very much a practical challenge in large do-
mains. The commonly used and effective belief
propagation (BP) algorithm and its generaliza-
tions often do not converge when applied to hard,
real-life inference tasks. While it is widely rec-
ognized that the scheduling of messages in these
algorithms may have significant consequences,
this issue remains largely unexplored. In this
work, we address the question of how to sched-
ule messages for asynchronous propagation so
that a fixed point is reached faster and more of-
ten. We first show that any reasonable asyn-
chronous BP converges to a unique fixed point
under conditions similar to those that guarantee
convergence of synchronous BP. In addition, we
show that the convergence rate of a simple round-
robin schedule is at least as good as that of syn-
chronous propagation. We then propaossid-

ual belief propagation (RBR) novel, easy-to-
implement, asynchronous propagation algorithm
that schedules messages in an informed way, that
pushes down a bound on the distance from the
fixed point. Finally, we demonstrate the superior-
ity of RBP over state-of-the-art methods for a va-
riety of challenging synthetic and real-life prob-
lems: RBP converges significantly more often
than other methods; and it significantly reduces
running time until convergence, even when other
methods converge.
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an explosion in the development of new methods for ap-
proximate inference in graphical models.

One of the most popular class of methods usedres-
sage passing algorithmsvhich pass messages over the
graph (or a related cluster graph) until convergence. These
methods, which originated with the simpleopy belief
propagation (BPalgorithm of Pearl (1988), have been the
focus of much research; multiple extensions have been pro-
posed, and have been applied successfully to a variety of
domains (e.g., (McEliece et al., 1998; Freeman and Pasz-
tor, 2000; Taskar et al., 2004)).

Nevertheless, the application of message passing algo-
rithms to complex, real-world networks remains problem-
atic: BP and its extensions simply do not converge for chal-
lenging models and convergent alternatives (e.g., (Yuille
2001; Welling and Teh, 2001)) have not been widely
adopted in practice (see Section 6). Moreover, in large net-
works, even if convergence is possible, this may be at a
significant computational cost. In practice, researchérs o
ten abandon a non-convergent model in favor of a simpler
one, or simply stop the algorithm at an arbitrary point.

In this paper, we propose a very simple yet surprisingly
effective method for improving the convergence proper-
ties of any message passing algorithm. Our method de-
rives from the well-known empirical observation tlaatyn-
chronousmessage passing algorithms, where messages are
updated sequentially, generally converge faster and more
often than the synchronous variant, where all messages are
updated in parallel. Yet, many practitioners continue ® us
the synchronous variant, due perhaps to ease of implemen-
tation, and to the lack of clear guidelines on scheduling
the messages in asynchronous propagation. When sequen-
tial updating is used, the “standard” naive schedule is one
where a message is propagated as soon as one of its in-

Probabilistic graphical models for representing and reaso puts has changed. Somewhat surprisingly, there has been
ing about complex distributions have gained wide spreadirtually no attempt to study the question of determining a
popularity, and are playing a role in a broad range of ap-good order for propagation. While several scheduling vari-
plications. As these models are applied to a greater variants have been considered for the special case of decoding
ety of real-world problems, practitioners are encountgrin (e.g., Wang et al. (2005)), to our knowledge, only the tree
more and more networks for which inference poses a sigreparameterization (TRP) algorithm of Wainwright et al.
nificant challenge. Consequently, the past decade has seé2002) proposes an asynchronous message scheduling ap-



proach for the general case, and even TRP still leaves margenote an assignment to a subset of variaXlesA prob-
degrees of freedom in the message scheduling order (the sabilistic graphical models a factored representation of a
lection of trees and the order in which they are calibrated)joint distribution overX. The distribution is defined using
In this paper, we address the task of constructing an efa set offactors{¢. : ¢ € C}, where each: is associated
fective message scheduling scheme for asynchronous propth the variablesX,. C X, and¢, is a function from the
agation so that convergence is achieved more often anget of possible assignmentsXa. to IR™. The joint distri-
faster. We begin by showing that any reasonable asynbution is defined asP(X = x) = [I.cc ¢c(xc) where
chronous BP converges to a unique fixed point under simZ is a normalization constant known as hertition func-
ilar (but not the weakest) sufficient conditions to that of tion.
synchronous BP. Under these conditions, we also derive an Message passing algorithms in a probabilistic graphi-
upper bound on the convergence rate of round-robin asyrsal model can be defined over a special structure called a
chronous BP, showing that its provable convergence rate isluster graph Each nodes in this graph corresponds to
guaranteed to be at least as good as that of synchronous BPset of cluster variableX,, and is associated with a fac-
Motivated by the bounds obtained in this analysis, wetor over these variables. Clusters are connected by edges
propose a very simple and practicakidual propagation along which messages can be propagated. A message be-
approach for scheduling messages in a message passing tveen two clusters andt is a factor over the variables in
gorithm. The intuition behind residual propagation is thattheir sepseX ; C X, N X;. In sum-product belief propa-
not all messages are equally useful towards achieving corgation, this message is computed via the update equation:
vergence. Sending a message whose current value is quite
similar to its value in the previous iteration is almostredu ~ ms—i(xs1) == ¢s(Xs) [ mres(xrs), (D)
dant, while sending a message that is very different from X=Xt reN,—{t}
its previous value is likely to be more informative, and lead
to more rapid transfer of information throughout the net-
work. We define thenessage residuals the magnitude of
difference between two consecutive values of the messag

where N are all of the clusters adjacent o In princi-
ple, messages may be passed in any order. Convergence is
gchieved when both sides of the update equations for each

and schedule messages in order of the largest residual. uster in the cluster graph are calibrated (equal). Indeed

show that this scheduling approach is a greedy algorithmed'd'a e_t al. (2.001) provide a derivation .Of the conver-
for pushing down an upper bound on the distance betweegence p_omts defined by the belief propggatlon equations as
the current set of messages and the fixed point messag éed points of the3ethe free energfymcuon. .

that we aim to reach; thus, the message scheduling algo- From a more f”‘t_’s”a?t perspective, we can view each
rithm is designed so as to try and speed up convergence. message as residing in sommessage spac&k C

+\d i i ;
Residual propagation is a general approach that can JR™)*.Thus, we can view an entire st of messages in

applied to any problem that requires solving a set of fixect;t e cluster graph as a subsetRof'l. We usem to index
bp yp d 9 Individual messages,,, € R to denote then’th message,

point equations. We focus aesidual belief propagation andv € R to denote an entire joint assignment of mes-

(RBP)— its application to belief propagation. We presentsagesl_ Note that in a cluster graph, we have one ingex
results for both the sum-product and max-product algo- . . .
. : . . for every pair of adjacent clustesst. We can now view
rithms, applied both to challenging grid networks, and on at . T . .
: . . he update rule in Eqg. (1) as defining a mapping function
set of large real-life networks on which previous methods M| . : ,
. ! . m R — R, which defines the value of the'th mes-
have failed. We compare both to BP with smoothing andf :
L ; sage as a function of (some subset of) the other messages.
to the TRP method (Wainwright et al., 2002), showing that . : : . . .
SN Our goal is to find dixed pointz* of this set of functions
RBP converges significantly more often than other meth- ]
L — one where, for each:
ods, and in virtually all of the real-world networks. We also
show that, even in convergent cases, RBP achieves con- fm(z*) =27,
vergence using far fewer messages, and significantly lower "
computational cost. We can use these individual update functighs to
) define a single globasynchronous update functiof? :
2 Propagation Based I nference RMI s RIMI as follows:

We b_egin by briefly reviewing_the basic belief propaga?ion v vm) = (f1(V), oo flMl(V)) (2)
algorithm. We then present it in the broader context of find-
ing a solution to a set of fixed point equations. The remain-This function updates all of the coordinates simultanegusl
der of our technical presentation will be formulated in thisusing their previous values. We can also define a set of
broader setting, which also encompasses a range of other7————— o .

In general, different messages reside in spaces of differen

inference algorithms, as well as many other problems. dimensions, corresponding to the number of assignmentsein t

LetX = {Xi,..., X,} be afinite set of random vari- scope of the message; for simplicity of notation, we assurag t
ables. We us& to denote an assignment £ andx, to all messages have the same dimension



individualasynchronous update functioas follows: mappingf : V. — V is a||-||-contractionif

a — < _
fnL(Vla---aV\M\): (Vlvvf’rn(v)7av\/\/l\) (3) Hf(v) f(W)H 7O[||V WH
i ) i for some0 < a < 1, forall v,w € V. Whenf is
Synchronous propagation appligsrepeatedly, until con- 5 ¢oniraction under some norm, we are guaranteed that
vergence; asynchronous propagation typically applies thg 15 4 unique fixed point*. Moreover, the sequence

different £ 's one at a time, in some order. F(vo), f(f(v)), ..., where the mapping is applied re-

We note that, although we presented this abstraction ifeatedly, is guaranteed to convergestaregardless of the
the context of the BP algorithm, it actually characterizes Bstarting pointvo.

very broad _class of problems. Most closely related are t_he In order to apply this type of analysis to belief prop-
various variants of BP, such as max-product propagatioggation, we first need to define a distance metric on the
(e.g, (Weiss and Freeman, 200¢neralized belief prop- space of messages. Recall that the message $pdée
agation (GBP)(Yedidia et al., 2001) oexpectation prop- s the set of messages in the network, each of which is it-
agation (EP)(Minka, 2001); many of these variants, like geif 5 vector inR. Thus, the overall distance metric be-
sum-product BP, can actually be derived as fixed point Sofyeen two messages is an aggregate of a set of distances
lutions to some constrained optimization problem (as firsty, individual messages. We therefore havenassage
shown by Yedidia et al. (2001)). This characterization alsg,qrm [ Vin — Wil that measures distances between indi-
captures many other algorithms. For example, variationa;iqal messagesr,nandglobal norm that aggregates these

approximation methods (Jordan etal., 1998) also define thg,essage distances into an overall distance metric between
solution in terms of a set of fixed point equations, each Ofpoints inRIMI. Our analysis is based on the use of the

which defines one coordinate in terms of the others, a”%ax-norm||-|\ for the external norm, but we take no po-

achieve convergence by iterated application of these €quajtion on the choice of the message norm. We thus define
tions. There are also numerous applications far outside thﬁv — Wl = maxmen |[Vin — Wl
o0 tliim*

scope of inference in graphical models (see Section 6). Our analysis in this section assumes that the syn-
) ) chronous mapping® (Eq. (2)) is a contraction in max-
3 Asynchronous Belief Propagation norm (L..). Although this assumption is a fairly strong

The availability of workstations that can perform billiosfs one, there are interesting conditions under which it holds.

operations per second has made large scale computatio particular, fort_he case .Of belief p_ropagation, Mooij and
practical even on a single CPU. Indeed, many fixed poin appen (2005) give sufficient conditions 6T to be a con-

computations, and practically all belief propagation r,unsU\‘;’lCt'o? ut:dte:\/ldﬁf_(_eren(; rllorms, m::ludmg _tge maxk—normf.
are carried out on a single CPU with no parallelization. In € note that Mooy and Rappen aiso provide weaker sut-

this setting, it is common wisdom that asynchronous propfICIent :c:c;;ldnmnts.f(.)r convetTgence, baT,eq on Ii_slpectralth
agation is superior to its synchronous counterpart. norm ot the matrix, currently, our analysis refies on the
) : . ._assumption thaf® is a max-norm contraction. However,
Despite this, much of the theoretical work on analysis

.even when the assumption fails to hold (as it often does),
of convergence focuses on the synchronous case. In pamﬁﬁe analysis for the contractive case can shed light on cases
ular, to our knowledge, all theoretical guarantees regardi y 9

the convergence of belief propagation for general graph ving rise to Ioc.al convergence to a fixed point. Thus.,
(e.g.. (Ihler et al., 2005; Mooij and Kappen, 2005)) apply or thg rest Of.thIS section, we assu‘r?/ﬁ that, for any pair
only to the fully synchronous variant. In this section, we of spomtsmsw n the<message spad? h, er ”have tr?at
study the convergence properties of asynchronous propaz, h(V) —/ .(W)H];?O d aH-Ymk_WUjD?H ttt en follows that
gation. We show that, under similar (but not the weakest asaunique fixed poat, and tha

sufficient conditions to those that guarantee convergence 1f(v) —z*] <alv—2z*. 4)

of synchronous propagation, any reasonable asynchronous ) _ _
propagation is also convergent. We also analyze the conver- Ve now use results developed in the fieldbaotic re-
gence rate of a round-robin asynchronous algorithm, an#fxation or distributed asynchronous computation of fixed
provide bounds that are at least as good as can be provid@@ints, to show that this assumption implies convergence

for its asynchronous counterpart. of any reasonable asynchronous update schedule. Follow-
ing the seminal paper of Chazan and Miranker (1969), we
3.1 Convergence of Asynchronous Propagation make only the following trivial assumption about the order

Our analysis focuses on the extent to which each applicaQ]c the updates:

tion of an operator (e.g., a message passing step) reduc8§sumption 3.1: For every message:, there is a finite
the distance between the current set of messages and tH&e T so that for any time > 0, the updater := f7, (v)
fixed point of the process. The basic tool used in this analis executed at least once in the time interval + 7'y,]. i

ysis is that of acontraction Let V be a real, finite dimen- In other words, every message is updated infinitely often
sional vector space, and lgt]| denote a vector norm. A (until convergence).



Theorem 3.2: If f* is a max-norm contraction, then any v(0) € RI™! be some arbitrary starting point, asg, (¢)
asynchronous propagation schedule that satisfies Assumpe defined via:

tion 3.1 will converge to a unique fixed point. . .
. - vin(t) = [ ({vi(t) i € bg'} {vi(t=1) : i € bg'}), (7)
This result is a direct consequence of the central theorem

of Bertsekas (1983) (Section 4) and its application to theso that some of its inputs (#f*) are more up-to-date. De-

case of max-norm contractions. The intuition beyond thenoting byp,. the message dependent convergence rate, we
proof is straightforward. The key idea is that, after ap-have that:

plying coordinate-wise operations a sufficient number of

times, a point will be reached where, just as in the case [Vin (t) — 2z, |, < pmpz_lﬂv(o) -z, (8)
of synchronous iterations, the current message will be in < phlv(0) - 7| ., (9)
an L., sphere that is strictly confined within the sphere of

previous iterations (see Bertsekas (1983, 1997) for morgherep,, is chosen to satisfy

details). ‘ ‘
pm > max{max al, p;, maxal, }, (10)
3.2 Comparing the Convergence Rate of 1€bg by

Synchronous and Asynchronous Propagation andpa = maxo, pm.

Bertsekas (1997), in Section 6.3.5, compares the convep -
gence rate of synchronous and asynchronous propagatiqnm

in the setting of multiple CPUs anfj communication delaysig oy inference proceeds simultaneously over iterations
Our setting is somewhat different: rather than (possibly ar 5 the individual message updates within each iteration,

bitrary) communication delays, it is our choice of the up- 54 per Eq. (7). For all of the messages &t 0, the desired
date schedule that determines the “update time” of the in-

X result holds trivially. Now, consider an update for some
puts of messages. In synchronous propagation we are, Wessagen at iterationt. We can now write:

choice, using the input values of the previous iteratiorllof a

messages. Intuitively, we should expect to do better if more|v,  (¢) —
up-to-date values are used when updating a message. This ; . ; .
intuition has wide empirical support both in applicatiofis o = Max { hax dm lvi(®) =2 idbm U |vi(t-1) ~2; Hm}
belief propagation and of parallel and distributed comput- { ? ?

We use induction on the individual messages
(t), in the global order in which they are generated; that

*
Zin

ing (see (Bertsekas, 1997) and references therein). We nowt max { max o/, p;p’; *, max a:'npgl} [v(0) —z*|

show that the same methods of analysis used by Bertsekas iebg! i

(1997) can be used to provide a formal foundation for this _ ;1 i i *
N = pj  max | maxap,p;,maxa, o ||v(0) - z"||
intuition. icbm igbm

To make our analysis concrete, we consider a round- t—1
. _ < pa pmllv(0)
robin asynchronous message schedule; thus, at each itera-
tion we update all messages using some predefined order The second line follows from Eq. (5), and the update oper-
and the computation of a message uses the most up-to-daieor defined in Eq. (7). In the third line, the first term in the
values of its inputs. brackets follows from Eq. (8) of the induction hypothesis,
The global max-norm contraction of (Eq. (4)) also im- and the second term follows from Eq. (9). The last line fol-
plies a form of local contraction. For alt € M, we have:  lows from Eq. (10). This proves the inductive hypothesis
of Eq. (8); Eq. (9) follows from the definition ¢f*. I

—7..

[fin(v) = 23, l,, < maxay,[lvi — 27, (5) . . .
¢ Note that Eq. (10) is, in fact, a set of inequalities, one

for the p,,, corresponding to each message To see that
there is at least one valid solution, we ggt = « for all

m; asal, < 1, the inequality follows trivially. Indeed, if
we selech 4 to be the lowest value for which Theorem 3.3
olds, it immediately follows that:

for all v. € RIMI. Here,a! < «is the local contrac-
tion factor for message: relative to message this refined
form allows different local contraction guarantees to hold
for different messages. Using to denote the synchronous

convergence rate, we then have the following upper boundh
Corollary 3.4: For a round-robin asynchronous iteration

v(t) —z*||,, < pkllv(0) —z*|| (6) insome ordeo we havepy < pg.

0!
, Thus, we have shown that, when max-norm contraction
whereps = maxy, i a;,. We now analyze the convergence s the guarantees on convergence rate for asynchronous
ratep 4 of asynchronous updates. updates are at least as good as those for the synchronous
Theorem 3.3: Let o be an ordering of the messages in case. But are they any better? Intuitively, it seems clear
a round-robin asynchronous iteration and 88t be the that, when some's are smaller than the global, the

set of messages that appear beforan that order. Let convergence rate may be better. In particular, we see that



pm is likely to be lower whenv!, is lower for messages  our updates on the less-stable regions. Thus, we want to

not in b7'; that is, we obtain greater improvements in the construct a dynamic message schedule that is based on the
convergence rate for messageif its coupling to less up- current state of messages rather than commit to a single

to-date messages is weaker. round-robin ordering of messages.

Nevertheless, the analysis of Section 3.2 provides sig-
nificant insight on the factors that are most important in
achieving rapid convergence. As shown in the proof of
Theorem 3.3, the actual bound on the distance between
v (t) and its fixed point value’, depends on the current
distanced|v;(t) — z||,, of its “neighboring” messages

95 95 1 05 15 Thus, one way to speed up convergence is to choose to up-
¢1: a¢27¢3: ;¢4:

Example 3.5 To illustrate the above analysis, we consider
a simple model withl binary variables and pairwise poten-
tials C1 = {Xl, XQ}, Cy= {XQ, Xg}, C3= {X3, X4}, and

Cy ={X4, X1} so that the cluster graph has a single loop
with |[M| = 8 messages in all. We assign the potentials

date the message so as to minimize the largest of these
5 .25 0.5 0.5 51 . .
distances. Unfortunately, we cannot directly measure the

The above model has a unique fixed point and using thdistance between a current message and its unknown fixed
analysis of Mooij and Kappen (2005) we have that the theoint value. However, can provide a b.o_und on this differ-
oretical rate of contraction is = 0.88. We use simulation ©nce that uses easy to measure quantities
to evaluate the local contraction facters,. We generated Proposition 4.1 Let'V be a real, finite dimensional vector
500,000 random message vectors in th2-dimensional space and|-|| some vector norm oveéY. Letg be some
message space (4 values for each of the 8 messages). Foapping overV such thatz is a fixed point ofg. Then
each of these random vectorsve then computed,,,(v)  foranyv € V anda < 1 such that||g(v) — z||,, <
for each message:. We then evaluated the distance of afv — z||__, we have that:
these messages to the fixed point message vettand

. . . . (1-a)
compared it to the distance of the input messages. Using  |g(v) —z| < ||v —z| — v —g(v)].
these distances, we estimateg [n] for each random sam- (1+a)
ple n using Eq. (5). Finally, we set!, to be the maxi- Proof: We begin by deriving, using the triangle inequality,
mum value across all random vectors in the message space.
This simulation resulted in an estimated synchronous con- v =gVl
vergence rate ofs = 0.714 which, as expected, is some-
what lower than the theoretical contraction factor. When v —z|| +a|v -z
we now solve for the individual,,, andp 4 using Eq. (10), (1+a)|lv — 2], (11)
for some ordeo, we get an asynchronous convergence rate
p4 that is often smaller than the synchronous convergencehere the third line follows from the contraction property.
rate. Concretely, foi 00 random orderings of messages, We use contraction again to write
we have a meap, = 0.678 with a standard deviation of
0.038, demonstrating our intuition that many different mes-
sage orders can provide a guaranteed convergence rate that = [[v-z]|-(1-aqa)|v—z
is strictly smaller than the synchronous olle. (1-a)
1+ a)

= [v-z+z-g)l

< lv—zll+llgv) — 2l
<

lg(v) —zl| < allv -z

A

v -zl -

4 Residual Propagation .

We now address the question of constructing a concrete The above result shows that the reduction in distance
message update schedule that achieves better CONVergence aen them'th message and its fixed point can be
properties than standard synchronous or asynchronous UB5unded by some fraction (less than 1) of the difference

date. Unfortunately, the analysis of the previous sectior?n values of then'th message before and after the update.

does not immediately give rise to such a schedule. On th?mportantly, we note that this analysis applies at any point
one hand, we do not, in general, know the local contrac:

tion factorsa’ - indeed. we want our roach t | in the algorithm at which the update equations are a con-

3 n?r? 0 So‘m\’Nh reef[h’ me 6} ioun a:]pp ?ﬁ‘f tis aPPY traction mapping; there is no requirement that there be a
eve cases e,e € mappifigis on-contractive, so global contraction factody, or even a unique fixed point to
that appropriatey,’s may not even exist. On the other the system

hand, we do not necessarily wish to restrict our attentionto o= 4 11 this analysis, we define thsidualfor a mes-

a round-robin schedule. Empirically, when running BP, we .
" “sagem at the pointv to ber,, = ||fm — vl . We
see that some parts of the network converge very quickly g pol T (V) = [[fm(V) = Vin},

an now propose a simple, greedy algorithm, that aims to
whereas others take much longer to reach reasonable vaﬁ] prop pe, g yag

1aximize the residual at each iteration. That is, at each
ues. As messages sent along edges where the two clust Et%p it chooses to update the message:
are almost calibrated have little impact on the overall net- ' '
work parameterization, we are better off focusing more of m' = argmax,, 7, (v(t)). (12)



We note that this scheme focuses solely on the componenisagreement. Higher values 6f impose stronger con-
|vi(t) — z7]|,, in the bound used in the proof of Theo- straints, leading to a harder inference task.
rem 3.3, completely ignoring;,. As we discussed, these  Figure 1(a) shows the cumulative percentage of con-
contraction rates are rarely known, but if one can bound,ergence of the different algorithms as a function of actual
them, a more refined algorithm that took them into accounttpy time, including the time required for computing the
would probably be better. residuals and selecting the edge/tree in the RBP and TRP
We also note that in sparse systems, where one mesgjgorithms, respectively. By about 20 seconds, all methods
sage depends only on few others, the method can be implgeach a plateau, with minor improvements afterward (runs
mented very efficiently: the residuals can be maintained inwere allowed to continue up to 500 seconds with minor
crementally, as the residual for a messagehanges only  changes to the curves). Notably, RBP converges more often
when we update a messagen whichm depends. Infact, than all other methods and is able to converge on roughly
even when the system is not sparse, the residuals are typiy3 of the runs for which TRP did not converge. It is also
cally maintained in any case in order to check the converinteresting to note that while TRP converges marginally
gence of the algorithm. We can thus maintain a priorityfaster on the relatively easy girds where convergence is
queue of messages to update, based on their residuals; r@bid, RBP converges significantly faster for those grids fo
each step, we extract the message of highest residual frofghich TRP is slow to converge. The importance of asyn-
the queue, update it, and recompute the residuals of théhronous propagation in general is also evident as the syn-
messages that depend on it. In practice, as shown in ohronous variant is significantly inferior to to even the sim

experiments, there is little computational cost (per ugHat ple asynchronous method which is in turn inferior to both
to maintaining this data structure. TRP and RBP.

Figure 1(b) shows the same results for harder random
graphs where the difficulty parametér was increased.

We set out to evaluate the effectiveness of our residual béVhile all methods, as expected, converge less often, the
lief propagation (RBP) method along three axes: ability'elative benefit of RBP is greater. This phenomenon where
to converge, rate of convergence, and the quality of thdXBP is more effective when the problem is harder was
marginals obtained. We compare our RBP approach to se\ronsistent across a range of grid sizes and difficulties (not
eral method: Synchronous BP (SBP); Asynchronous geshown for lack of space). It is also interesting to note that
(ABP) where messages are scheduled for propagation aftéy this harder scenario TRP is only marginally superior to
their input has changed; The TRP method of WainwrightABP-

et al. (2002). For TRP, as the choice of spanning trees is We take a more global view of our results in Figure 1(c)
not made concrete, we tried several variants that seem ap? which we examine the number of messages propagated
propriate for grids including random trees, criss-crosedr  until convergence by TRP and RBP as a function of the
comb-like trees, and snake shaped trees. All variants perumber of messages propagated by ABP, a good practical
formed similarly and we report results here for the snakeneasure for the difficulty of the inference task. The supe-
trees (both horizontal and vertical) that were marginallyriority of RBP is evident, and its advantage grows with the
better than the other TRP variants. We use standard megifficulty of the inference task.

sage damping df.2 for all methods (arange of valuesupto  Next, we want to address the issue of the quality of our
0.5 produced similar results). All algorithms use the sameapproximation. We consider random grids of sldex 11
code base and differ only in the way messages are schedith C' = 11, where exact inference was tractable, and use
uled for propagation. Runs were performed on a Pentium 4s our error metric the average KL-divergence between the
with 3.4GHz processor and 2GB of memory. approximate and exact node marginals. Figure 1(d) com-
Ising Grids pares the quality of the fixed point of RBP vs. that of ABP
We begin by considering random grids, parameterized b)ﬁfESU“S for TRP were qualitatively the same and are not
the Ising model. These networks provide a systematic waghown for clarity). For runs where both algorithm con-
for evaluating an algorithm, as we can easily control bothverged, both algorithms achieve a fixed point of the same
the size and difficulty of the inference task; they are alsoduality. For runs where only RBP converged, the results
the standard benchmark for evaluating message propagat€ mixed, but RBP provides a better approximation over-
tion a|g0rithms_ We generate random grids withx N all. Note that, even in the cases where ABP has lower error
binary variables as follows: A uniformly sampled univari- than RBP, the error of RBP is low and is very close to that
ate potential in thé0, 1] range is assigned to each variable. of ABP. For challenging networks, where the error of ABP
For pairwise potentials, we use the Ising model where alis large, RBP is always equal to or superior to ABP. In-
edge potentialsy; ;(X;, X;) aree’® whenz; = z; and  terestingly, the results of convergent runs of RBP are not
e~*C otherwise. To make the inference problem challengmarkedly worse in the cases where BP does not converge.
ing, we sample\ in the range[—0.5,0.5] so that some To demonstrate the applicability of our residual prop-
factors reward agreement of marginal beliefs and otheragation scheme to other message propagation algorithms,

5 Experimental Evaluation
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Figure 1: (a) cumulative percentage of converged
runs (y-axis) as a function of actual running time
(x-axis). Shown are results for SBP, ABP, TRP,
and RBP for 50 random grids of sizd x 11
andC = 11. Runs were allowed to continue
0 for 500 seconds with marginal changes to the plot
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time in seconds time in seconds (not shown). (b) same as (a) for more difficult
graphs withC' = 13. (c) fraction of messages
@ (b) sent by TRP and RBP relative to the messages
sent by ABP (y-axis), as a function of the number
of messages sent by ABP (x-axis). Shown are a
O Only RBP converged range of grids where ABP converged with sizes
7x7,9%9 andll x 11 with C = 7,9,11,13
(235 grids in all). The lines show an exponential
fit to the points. (d) scatter plot of the average KL
divergence of node beliefs from the exact node
marginals of RBP (y-axis) vs. ABP (x-axis) for
50 randoml1x 11 grids withC' = 11. Shown are
- o © grids where both methods converged (black '+)
06 0g o1 o2 o3 and grids where only RBP converged (red '0’).
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we applied it to the max-product (MP) algorithm. Fig- 2003). In these networks, exact inference is intractable,
ure 2(a) shows the cumulative convergence percentage @it BP has been shown to produce good results for smaller
the different methods as a function of actual CPU time fornetworks within the same general family. Thus, we can
50 randont x 7 grids withC' = 7. As in the case of stan- hope that BP algorithms also provide reasonable answers
dard BP, our residual based scheme RMP converges sider larger networks.
nificantly more often than all other methods. Interestingly  The first domain we consider is that of predicting
for this task which is typically recognized as more chal-protein-protein interaction network from noisy genomic
lenging than standard belief propagation (hence the use Qfata. These networks, generated by Jaimovich et al. (2005),
smaller grids), the differences between the TRP based apgntain approximately30, 000 binary hidden variables,
proach (TRMP) and the asynchronous (AMP) variant ar&:grresponding to interaction relationships between irs
not as pronounced. Thus, consistent with our previous reproteins, and to cellular localizations of these protefise
sults we see that the uninformed schedule of TRP is nogetwork is induced by a relational Markov network (Taskar
sufficiently effective for more challenging inference prob gt al., 2004), which defines a set of template potentials.
lems. Figure 2(b) shows the same results for larger randorRode potentials represent noisy observations of these vari
9x9grids. As before, while the convergence of all methodsgpes, such as a biological assay where an interaction be-
deteriorates, the superiority of RMP over the other methodgyeen two proteins was observed. There are also “triad”
is more significant as the problem gets harder. potentials over triples of variables, reflecting (for exaep
Finally, we also apply our method to generalized be-a soft constraint that two interacting proteins should be lo
lief propagation (GBP) which is known to converge sig- calized in the same region of the cell. These triad potential
nificantly more often than standard BP. We therefore focugreate a large number of small loops, inducing a very dif-
on harder grids and compare our residual variant RGBP téicult inference task. There are ov&®, 000 potentials in
GBP 0n20x20 gl’idS. Figure 2 shows that while both meth- the cluster graph and a similar number of loops. We con-
ods converge on all grids, our RGBP algorithm convergessiiders different networks with the same structure but dif-
significantly faster. This phenomenon was consistent foferent parameterizations (based on different learningpset
30 x 30 and40 x 40 grids of varying difficulties (not shown  in Jaimovich et al. (2005)) for which neither SBP, ABP nor
for lack of space), with the advantage of RGBP growing, onTRP converged even when allowed to run for an order of
average, with the difficulty of the inference task. maghnitude longer than RBP. In contrast, RBP converged on
Real Networks 7/8 networks, takingt — 7 minutes to do so.

We now proceed to evaluating our algorithm on complex The second domain we consider is that of protein fold-
networks arising in real-world applications. We considering. Proteins have a 3D structure made up of intercon-
examples from two markedly different models in computa-nected amino acids and side-chains. Inferring this stractu

tional biology (Jaimovich et al., 2005; Yanover and Weiss,from the protein sequence is an important problem in com-
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Figure 2: cumulative percentage of converged runs (y-a8s) function of time (x-axis) for 50 random grids. (a) congaar of our
RMP to the synchronous (SMP), asynchronous (AMP), and TREMR) variants of the max-product algorithm forx 7 grids with
C = 7. (b) same as (a) for larg&rx 9 grids. (c) comparison of GBP and our RGBP method2ioix 20 grids withC' = 7.

putational biology. Yanover and Weiss (2003) show that in-tions made by Wainwright et al. (2002). We conjecture that
ferring structure via energy minimization can be posed asvhen using more oblivious update schemes (including both
an inference problem in a graphical model. The networksynchronous and asynchronous), contradictory signals are
for each protein is an independent inference task with abtained from different parts of the network, causing the
unigue structure and parameterization, containing betweeoscillations commonly observed in practice. In contrast,
hundreds and thousands of variables of cardinalities 2—-8 RBP transmits information in a more “purposeful” way, po-
and is highly irregular. We applied the different methods totentially propagating it to other parts of the network befor

all networks (fromwww.cs.huji.ac.il/€heny/proteinsMRFE.h)ml  they have the opportunity to transmit a contradictory signa
Our implementation of ABP did not converge 6mprotein  that causes oscillations.

networks even when allowed to run f& minutes (we note Propagation methods that are guaranteed to converge
that this is far fewer than the number of networks reportedyaye heen proposed by Yuille (2001) and Welling and Teh
not to converge by Yanover and Weiss (2003)). In contrast(2001). These methods are fairly complex to implement;
our RBP algorithm converged on all networks. In partic- they also provide limited improvements over BP in terms of
ular, it took an average; minutes (with a maximum of accyracy, and no improvement in convergence rate. While
4 minutes) to converge on those networks for which ABPq - methods have no convergence guarantees for general
did not converge. Inall these models, both the synchronou&raphsy they are easy to implement, and appear to converge
SBP variant and TRP did not converge on many more nety aimost all but very hard synthetic problems. Further-
works than even ABP, again demonstrating the importancgnor& our method converges much more quickly than stan-

of an informed message schedule. dard BP or state-of-the-art TRP.
. . A number of sequential message schedules have been
6 Discussion and Future Work proposed for message decoding using belief propagation;

In this work we addressed the task of message schedulbese schedules have been shown to converge faster than

ing of propagation methods for approximate inference. WeSynchronous updates. Some works, notably that of Wang
showed that any reasonable asynchronous algorithm cod al. (2005), have formally analyzed convergence rates
verges under similar conditions to that of synchronoudor different update schemes for low-density parity-check
propagation and proved that the Convergence rate Of g_OdeS, Under Certain idealized aSSUmptionS, ShOWing, fOI’
round-robin asynchronous algorithm is at least as goo@*ample, that a simple asynchronous propagation approach
as that of its synchronous counterpart. Motivated by thidS twice as fast as the fully synchronous variant. Both the
analysis, we then presented an extremely simple and effglgorithms proposed in this literature and the methods used
cient message scheduling approach that minimizes an up? the analysis are highly specialized to coding networks,
per bound on the distance of the current messages from tf1d it is not clear how they can be applied to general infer-
fixed point. We demonstrated that our algorithm is signif-€nce problems outside of the field of decoding.
icantly superior to state-of-the-art methods on a variéty o Our approach defines a whole family of algorithms and
challenging synthetic and real-life problems. can be applied to practically any message propagation al-
Interestingly, our choice of message schedule had a siggorithm. We demonstrated that, in addition to improving
nificant effect not only on the rate of convergence but alsdBP, our method is effective in improving the performance
on the convergence success. While this phenomenon is nof the max-product algorithm as well as that of generalized
typically observed in the field of decoding (see for examplebelief propagation. Importantly, our approach can in fact b
Kfir and Kanter (2003)), it is consistent with the observa-applied to a wide variety of methods that iteratively apply a
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9 H. Kfir and I. Kanter. Parallel versus sequential updating
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systems generalizing the celebrated Stein-Rosenberg the-'EEE J. on Selected Areas in Comib6:140-152, 1998.
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