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Abstract. Protein-protein interactions play a major role in most cellular pro-
cesses. Thus, the challenge of identifying the full repertoire of interacting proteins
in the cell is of great importance, and has been addressed both experimentally
and computationally. Today, large scale experimental studies of interacting pro-
teins, while partial and noisy, allow us to characterize properties of interacting
proteins and develop predictive algorithms. Most existing algorithms, however,
ignore possible dependencies between interacting pairs, and predict them inde-
pendently of one another. In this study, we present a computational approach that
overcomes this drawback by predicting protein-protein interactions simultane-
ously. In addition, our approach allows us to integrate various protein attributes
and explicitly account for uncertainty of assay measurements. Using the language
of relational Markov Random Fields, we build a unified probabilistic model that
includes all of these elements. We show how we can learn our model properties
efficiently and then use it to predict all unobserved interactions simultaneously.
Our results show that by modeling dependencies between interactions, as well
as by taking into account protein attributes and measurement noise, we achieve
a more accurate description of the protein interaction network. Furthermore, our
approach allows us to gain new insights into the properties of interacting proteins.

1 Introduction

One of the main goals of molecular biology is to reveal the cellular networks underlying
the functioning of a living cell. Proteins play a central role in these networks, mostly by
interacting with other proteins. Deciphering the protein-protein interaction network is a
crucial step in understanding the structure, function, and dynamics of cellular networks.
The challenge of charting these protein-protein interactions is complicated by several
factors. Foremost is the sheer number of interactions that have to be considered. In the
budding yeast, for example, there are approximately 18,000,000 potential interactions
between the roughly 6,000 proteins encoded in its genome. Of these, only a relatively
small fraction occur in the cell [32, 27]. Another complication is due to the large va-
riety of interaction types. These range from stable complexes that are present in most
cellular states, to transient interactions that occur only under specific conditions (e.g.
phosphorylation in response to an external stimulus).

Many studies in recent years address the challenge of constructing protein-protein
interaction networks. Several experimental assays, such asyeast two-hybrid[31, 13]
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Fig. 1. Dependencies between interactions can be used to improve predictions. (a) Shows a pos-
sible interaction of two proteins (Pre7 and Pre9). Pre9 is localized in the cytoplasm and in the
nucleus (dark blue) and Pre7 is not annotated to be in either one of those. This interaction was
predicted by a computational assay ([26], shown by a dashed red line). When looking only at this
evidence, we might assign to this interaction a low probability. (b) Introduces two new proteins
which were also found to interact with Pre9 and Pre7 either by a computational assay [26] (shown
again by a dashed red line ) or experimental assays [20] (shown by a solid green line). By looking
at this expanded picture, we can both hypothesize about the localization of Pre7 and increase the
reliability of the interaction between Pre9 and Pre7.

andtandem affinity purification[24] have facilitated high-throughput studies of protein-
protein interactions on a genomic scale. Some computational approaches aim to detect
functional relations between proteins, based on various data sources such as phyloge-
netic profiles [23] or mRNA expression [6]. Other computational assays try to detect
physical protein-protein interactions by, for example, evaluating different combinations
of specific domains in the sequences of the interacting proteins [26].

The various experimental and computational screens described above have different
sources of error, and often identify markedly different subsets of the full interaction net-
work. The small overlap between the interacting pairs identified by the different meth-
ods raises serious concerns about their robustness. Recently, in two separate works, von
Mering et al [32] and Sprinzaket al [27] conducted a detailed analysis of the reliabil-
ity of existing methods, only to discover that no single method provides a reasonable
combination of sensitivity and recall. However, both studies suggest that interactions
detected by two (or more) methods are much more reliable. These observations moti-
vated later “meta” approaches that hypothesize about interactions by combining the pre-
dictions of computational methods, the observations of experimental assays, and other
correlating information sources such as that of localization assays. These approaches
use a variety of machine learning methods to provide a combined prediction, including
support vector machines [1], naive Bayesian classifiers [14] and decision trees [36].

These methods, while offering a combined hypothesis, still ignore possible depen-
dencies between different protein-protein interactions. In this paper, we argue that by
explicitly modeling such dependencies in the model, we can leverage observations from
varied sources to produce betterjoint predictions of the protein interaction network as a
whole. As a concrete example, consider the budding yeast proteins Pre7 and Pre9. These
proteins were predicted to be interacting by a computational assay [26]. However, ac-
cording to a large-scale localization assay [11], the two proteins arenot co-localized;
Pre9 is observed in the cytoplasm and in the nucleus, while Pre7 is not observed in
either of those compartments. Thus, a naive examination of this interaction alone (as in
Figure 1a), might assign it a low probability. However, we can gain more confidence
by looking at related interactions. For example, interactions of Pre5 and Pup3 with



both Pre9 and Pre7 were reported by large scale assays [20, 26]; see Figure 1b. These
observations suggest that these proteins might form a complex. Moreover, both Pre5
and Pup3 were found both in the nucleus and in the cytoplasm, implying that Pre7 can
possibly be localized in these two compartments, thus increasing our belief in the ex-
istence of an interaction between Pre9 and Pre7. Indeed, this intuition is confirmed by
other interaction [9] and localization [17] assays. This example illustrates two types of
inferences that our model can offer. First, certain patterns of interactions (e.g., within
complexes) might be more probable than others. Second, an observation on one inter-
action can provide information about the attributes of a protein (cellular localization in
this example), which in turn can influence the likelihood of other interactions.

We present a unified probabilistic model for learning an integrated protein-protein
interaction network. We build on the language of relational probabilistic models [8, 28]
to explicitly define probabilistic dependencies between related protein-protein interac-
tions, protein attributes, and observations regarding these entities. The use of proba-
bilistic models also allows us to explicitly account for measurement noise of different
assays. Propagation of evidence in our model allows interactions to influence one an-
other as well as related protein attributes in complex ways. This in turn leads to better
and more confident overall predictions. Using various proteomic data sources for the
yeastSaccharomyces cerevisiaewe show how our method can build on multiple weak
observations to better predict the protein-protein interaction network.

2 A Probabilistic Protein-protein Interaction Model

Our goal is to build a unified probabilistic model that can capture the integrative prop-
erties of the protein-protein interaction network that are demonstrated in the example
of Figure 1. We map protein-protein interactions, interaction assays, and other protein
attributes into random variables, and use the language ofMarkov Random Fieldsto rep-
resent the joint distribution over them. We now review Markov Random Field models,
and the specific models we construct for modeling protein-protein interaction networks.

Markov Random Fields
Let X = {X1, . . . , XN} be a finite set of random variables. A Markov Random Field
overX describes a joint distribution by a set of potentialsΨ . Each potentialψc ∈ Ψ
defines a measure over a set of variablesXc ⊆ X . We callXc thescopeof ψc. The po-
tentialψc quantifies local preferences aboutXc by assigning a numerical value to each
joint assignment ofXc. Intuitively, the larger the value the more likely the assignment.
The joint distribution is defined by combining the preferences of all potentials

P (X = x) =
1
Z

∏

c∈C
eψc(xc) (1)

wherexc refers to the projection ofx onto the subsetXc, andZ is a normalizing factor,
often called thepartition function, that ensures thatP is a valid probability distribution.
The above product form facilitates compact representation of the joint distribution, and
in some cases efficient probabilistic computations.

Using this language to describe protein-protein interaction networks requires defin-
ing relevant random variables. A distribution over protein-protein interaction networks



can be viewed as the joint distribution over binary random variables that denote inter-
actions. Given a set of proteinsP = {pi, . . . , pk}, an interaction network is described
by interaction random variablesIpi,pj

for each pair of proteins. The random variable
Ipi,pj

takes the value1 if there is an interaction between the proteinspi andpj and0
otherwise. Since this relationship is symmetric, we viewIpj ,pi

andIpi,pj
as two ways of

naming the same random variable. Clearly, a joint distribution over all these interaction
variables is equivalent to a distribution over possible interaction networks.

The simplest Markov Random Field model over the set of interaction variables has
a univariate potentialψi,j(Ipi,pj ) for each interaction variable. Each such potential cap-
tures the preference for the associated interaction. This model by itself is overly sim-
plistic as it views interactions as independent from one another.

We can extend the model by introducing variables that denote protein attributes that
can influence the probability of interactions. Here we consider cellular localization as
an example of such an attribute. The intuition is clear: if two proteins interact, they have
to be physically co-localized. As a protein may be present in multiple localizations, we
model cellular localization by several indicator variables,Ll,pi that denote whether the
proteinpi is present in cellular localizationl ∈ L. We can now relate the localization
variables for a pair of proteins with the corresponding interaction variable between them
by introducing a potentialψl,i,j(Ll,pi , Ll,pj , Ipi,pj ). Such a potential can capture pref-
erence for interactions between co-localized proteins. Note that in this case there is no
importance to the order ofpi andpj , and thus we require this potential to be symmet-
ric around the role ofpi andpj (we return to this issue in the context of learning). As
with interaction variables, we might also have univariate potentials on each localization
variableLl,pj that capture preferences over the localizations of specific proteins.

Assuming thatX contains variables{Ipi,pj} and{Ll,pi}, we now have a Markov
Random Field of the form:

P (X ) =
1
Z

∏

pi,pj∈P
eψi,j(Ipi,pj

)
∏

l∈L,pi∈P
eψl,i(Ll,pi

)
∏

l∈L,pi,pj∈P
eψl,i,j(Ipi,pj

,Ll,pi
,Ll,pj

)

(2)

Noisy Sensor Models as Directed Potentials
The models we discussed so far make use of undirected potentials between variables. In
many cases, however, a clear directional cause and effect relationship is known. In our
domain, we do not observe protein interactions directly, but rather through experimen-
tal assays. We can explicitly discuss the noisy relations between an interaction and its
assay readout within the model. For each interaction assaya ∈ A aimed towards evalu-
ating the existence of an interaction between the proteinspi andpj , we define a binary
random variableIAapi,pj

(defined with the same logic asIpi,pj ). 4 It is natural to view
the assay variableIAapi,pj

as a noisy sensor of the real interactionIpi,pj . In this case,
we can use aconditional distributionP (IAapi,pj

| Ipi,pj ) that captures the probability
of the observation given the underlying state of the system. Conditional probabilities
have several benefits. First, due to local normalization constraints, the number of free
parameters of a conditional distribution is smaller (2 instead of 3 in this example). Sec-
ond, sinceP (IAapi,pj

= 0 | Ipi,pj ) + P (IAapi,pj
= 1 | Ipi,pj ) = 1, such potentials

4 Note that this random variable is not necessarily symmetric, since for some assays (e.g., yeast
two hybrid)IAa

pi,pj
andIAa

pj ,pi
represent the results of two different experiments.



do not contribute to the global partition functionZ, which is typically hard to compute.
Finally, the specific use of directed models will allow us to prune unobserved assay vari-
ables. Namely, if we do not observeIAapi,pj

, we can remove it from the model without
changing the probability over interactions.

Probabilistic graphical models that combine directed and undirected relations are
calledChain Graphs[2]. Here we examine a simplified version of Chain Graphs where
a dependent variable associated with a conditional distribution (i.e.,IAapi,pj

) is not in-
volved with other potentials or conditional distributions. If we letY denote the assay
variables, then the joint distribution is factored as:

P (X ,Y) = P (X )
∏

pi,pj∈P,a∈A
P (IAapi,pj

|Ipi,pj
) (3)

whereP (X ) is the Markov Random Field of Equation 2.

Template Markov Random Fields
Our aim is to construct a Markov Random Field over large scale protein-protein inter-
action networks. Using the model described above for this task is problematic in several
respects. First, for the model with just univariate potentials over interaction variables,
there is a unique parameter for each possible assignment of each possible interaction of
protein pairs. The number of parameters is thus extremely large even for the simplest
possible model (in the order of60002 for the protein-protein interaction network of
the budding yeastS. cerevisiae). Robustly estimating such a model from finite data is
clearly impractical. Second, we want to apply the same “rules” (potentials) throughout
the interaction network, regardless of the specific subset of proteins we happen to con-
centrate on. For example, we want the probabilistic relation between interaction (Ipi,pj )
and localization (Ll,pi , Ll,pj ), to be the same for all values ofi andj.

We address these problems by usingtemplate models. These models are related to
relational probabilistic models [8, 28] in that they specify a recipe with which a concrete
Markov Random Field can be constructed for a specific set of proteins and localizations.
This recipe is specified viatemplate potentialsthat supply the numerical values to be
reused. For example, rather then using a different potentialψl,i,j for each protein pair
pi andpj , we use a single potentialψl. This potential is used to relate an interaction
variableIpi,pj with its corresponding localization variablesLl,pi andLl,pj , regardless
of the specific choice ofi andj. Thus, by reusing parameters, a template model facili-
tates a compact representation, and at the same time allows us to apply the same “rule”
for similar relations between random variables.

The design of the template model defines what set of potentials are shared. For ex-
ample, when considering the univariate potential over interactions, we can have a single
template potential for all interactionsψ(Ipi,pj ). On the other hand, when looking at the
relation between localization and interaction, we can decide that for each value ofl we
have a different template potential forψl(Ll,pi). Thus, by choosing which templates to
create we encapsulate the complexity of the model.

Protein-protein Interaction Models
The discussion so far defined the basis for a simple template Markov Random Field for
the protein-protein interaction network. The form given in Equation 3 relates protein
interactions with multiple interaction assays and protein localizations. In this model the
observed interaction assays are viewed as noisy sensors of the underlying interactions.



Thus, we explicitly model experiment noise and allow the measurement to stochasti-
cally differ from the ground truth. For each type of assay we have a different conditional
probability that reflects the particular noise characteristics of that assay. In addition, the
basic model contains univariate template potentialψ(Ipi,pj

) that is applied to each in-
teraction variable. This potential captures the prior preferences for interaction (before
we make any additional observations).

In this model, if we observe the interaction assay variables and the localization
variables, then the posterior over interactions can be reformulated as an independent
product of terms, each one involvingIpi,pj , its related assays, and the localization ofpi
andpj . Thus, the joint model can be viewed as a collection of independent models for
each interaction. Each of these models is equivalent to a naive Bayes model (see, e.g.,
[14]). We call this thebasicmodel (see Figure 2e).

We now consider two extensions to this basic model. The first extension relates to
the localization random variables. Instead of using the experimental localization results
to assign these variables, we can view these experimental results as noisy sensors of
the true localization. To do so, we introduce localization assay random variablesLAl,p,
which are observed, and relate each localization assay variable to its corresponding
hidden ground truth variable using a conditional probability (Figure 2c). The parame-
ters of this conditional probability depend on the type of assay and the specific cellular
localization. For example, some localizations, such as “bud”, are harder to detect as
they represent a transient part of the cell cycle, while other localizations, such as “cyto-
plasm”, are easier to detect since they are present in all stages of the cell’s life and many
proteins are permanently present in them. Allowing the model to infer the localization
of a protein provides a way to create dependencies between interaction variables. For
example, an observation of an interaction betweenpi andpj may change the belief
in the localization ofpi and thereby influence the belief about the interaction between
pi and another protein,pk. We use the nameNoisemodel to refer to the basic model
extended with localization assay variables (see Figure 2f).

The second extension to the basic model is to directly capture dependencies be-
tween interaction variables. We do so by introducing potentials over several interaction
variables. The challenge is to design a potential that captures relevant dependencies
in a concise manner. Here we consider dependencies between the three interactions
among a triplet of proteins. More formally, we introduce a three variables potential
ψ3(Ipi,pj , Ipi,pk

, Ipj ,pk
) (Figure 2d). This model is known in the social network lit-

erature as thetriad model[7]. Such a triplet potential can capture properties such as
preferences for (or against) adjacent edges, as well as transitive closure of adjacent
edges. GivenP, the induced Markov Random Field has

(|P|
3

)
potentials, all of which

replicate the same parameters of the template potential. Note that this requires the po-
tential to be ignorant of the order of its arguments (as we can “present” each triplet of
edges in any order). Thus, the actual number of parameters forψ3 is four – one when
all three edges are present, another for the case when two are present, and so on. We
use the nameTriplet model to refer to the basic model extended with these potentials
(see Figure 2g). Finally, we use the nameFull model to refer to the basic model with
both the extensions ofNoiseandTriplet (see Figure 2h).
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Fig. 2.Protein-protein interaction models. In all models, a plain box stands for a hidden variable,
and a shadowed box represents an observed variable. The model consists of four classes of vari-
ables and four template potentials that relate them. (a) conditional probability of an interaction
assay given the corresponding interaction; (b) potential between an interaction and the localiza-
tion of the two proteins; (c) conditional probability of a localization assay given a corresponding
localization; (d) potential between three related interacting pairs; (e)-(h) The four models we
build and how they hold the variable classes and global relations between them.

3 Inference and Learning

Inference
The task of inference is to compute queries about the joint distribution represented by
a model. Two queries that will be relevant for us are computing thelikelihood P (e)
of an assignmente to a set of variablesE, and computing theposterior probability
P (X | e) over a set of variablesX, given the evidencee. Specifically, in our model we
are interested in the likelihood of the observations (interaction assays and localization
assays) and the posterior probability of the hidden variables (interactions, localizations),
given these observations. When reasoning about the interaction map over thousands of
proteins, our method constructs models that involve tens or hundreds of thousands of
variables. Performing inference in these models is a serious challenge.

In general, although exact inference algorithms are known, these are tractable only
in networks with particular structures. The networks we construct here are not amenable
to exact inference. Thus, we must resort to approximate inference (e.g., [15]). In this
work we rely on the simple and efficientbelief propagation(BP) algorithm [21, 35] that
iterativelycalibratesbeliefs by propagation of local messages between potentials with
overlapping variables. Although this algorithm is not guaranteed to converge, empirical
evidence shows that it often converges in general networks and provides reasonable
estimates of marginal probabilities [21].



Learning
Our approach is data driven, meaning that we use real data to calibrate our model. Our
aim is to estimate the parameters of the model from observations. Namely, we are given
an observatione over some of the variables in the model and search for the parameters
that give the best “explanation” for this observation. To do so we use themaximum
likelihoodprinciple and find a parameterization so thatlogP (e) is maximized.

We start with the case ofcomplete datawhere the evidence assigns a value to all the
variables in the domain. Recall that our model contains both undirected potentials and
conditional probabilities. When learning from complete data, we can separately learn
each type of parameters.

For the conditional probabilities, finding the maximum likelihood parameters is a
relatively easy task. For example, to estimate the template parameter forP (IAapi,pj

=
1 | Ipi,pj

= 1) we simply count how many times we observed ine that bothIAapi,pj
and

Ipi,pj
equals one for somei andj, and normalize by the number of times we observe

Ipi,pj equals one.
Finding the maximum likelihood parameters for undirected potentials is a much

harder task. Although the likelihood function is concave, there is no closed form for-
mula that returns the optimal parameters. A common heuristic is a gradient ascent
search in the parameter space. To perform such a search we need to repeatedly eval-
uate both the likelihood and the partial derivatives of the likelihood with respect to
each of the parameters. For an entry in a specific potentialψc(xc), the gradient of the
log-likelihood can be written as:

∂ logP (e)
∂ψc(xc)

= P̂ (xc)− P (xc) (4)

That is, it is equal to the difference between the the empirical countP̂ (xc) of the event
xc and its probabilityP (xc) according to the model (before we make observations) [4].
The first quantity is directly observed, and the later one requires inference.

Recall that in template models many potentials share the same parameters. Using
the chain rule of partial derivatives, it is easy to see that ifψc(xc) = θ for all c ∈ C,
then the derivative of the shared parameterθ is ∂ logP (e)

∂θ =
∑
c∈C

∂ logP (e)
∂ψc(xc)

. Thus, the
derivatives with respect to the template parameters are aggregates of the derivatives of
the corresponding entries in the potentials of the model. We can compute these deriva-
tives by performing a single invocation of belief propagation to evaluate (an approxima-
tion to) all the terms that appear in the gradient of the likelihood. This invocation also
computes an approximation to the likelihood itself. The computational bottleneck for
learning is thus the multiple calls to the approximate inference procedure for estimating
the likelihood and its gradients for different values of the parameters.

In the context of our models, we introduce additional constraints on learned tem-
plate potentials. These constraints reduce the number of free parameters we need to
learn, and ensure that the model captures the semantics we attribute to it. First, as dis-
cussed in Section 2, we require potentials to be symmetric about protein arguments.
This implies that some entries in the template potential share a single parameter. We
learn the shared parameter using the methods discussed above. Second, in some cases
we force the potential to be indifferent to specific assignments. For example, when look-
ing at the relation betweenIpi,pj , Ll,pi andLl,pj , we require that ifLl,pi = Ll,pj = 0



(i.e., both proteins arenot in the cellular localizationl), then the potential has no effect
on Ipi,pj

. This is done by fixing the value of the relevant potential entries to0, and not
changing it during parameter optimization.

In practice, learning is further complicated by the fact that our observations are
incomplete — we do not observe all the variables in the model (i.e., we do not observe
the real localizations but only the assays). To deal with partial observations, we use the
standard method ofExpectation-Maximization(EM) [22]. The basic idea is that given
the current parameters of the model, we can “guess” the unobserved values. We can then
apply complete data techniques to the completed dataset to estimate new parameters. In
our case, this procedure proceeds by iterating two steps until convergence.

– E-stepInfer (using Loopy Belief Propagation) the marginal probabilities of the ran-
dom variables that are missing in the evidence given the evidence, and the current
set of parameters. Use the resulting probabilities to estimateexpectedempirical
counts for the relevant events.

– M-stepMaximize parameters using method for complete data, using the estimated
counts instead of actual counts. In our case, this implies direct estimation of the
conditional probabilities, and performing conjugate gradient search to find new pa-
rameters.

The theory of EM guarantees that in each iteration the likelihood increases until con-
vergence to a local maximum [22].

4 Experimental Evaluation

In Section 2 we discussed a general framework for modeling protein-protein interac-
tions and introduced four specific model variants that combine different aspects of the
data. In this section, we evaluate the utility of these models in the context of the bud-
ding yeastS. cerevisiae. For this purpose we choose to use four data sources, each
with different characteristics. The first is a large scale experimental assay for identify-
ing interacting proteins by the yeast two hybrid method [31, 13]. The second is a large
scale effort to curate direct experimental results from the literature about protein com-
plexes [20]. The third is a collection of computational predictions based on correlated
domain signatures learned from experimentally determined interacting pairs [26]. The
fourth is a large scale experimental assay examining protein localization in the cell using
GFP-tagged protein constructs [11]. Of the latter we regarded four cellular localizations
(nucleus, cytoplasm, mitochondria, and ER).

In our models we have a random variable for each possible interaction and a ran-
dom variable for each assay measuring such interaction. In addition, we have a random
variable for each of the four possible localizations of each protein, and yet again an-
other variable corresponding to each localization assay. A model for all6000 proteins
in the budding yeast includes close to20, 000, 000 random variables. Such a model is
too large to cope with using our current methods. Thus, we limit ourselves to a subset
of the protein pairs, retaining both positive and negative examples. We construct this
subset from the study of von Meringet al [32] who ranked 80, 000 protein-protein
interactions according to their reliability based on multiple sources of evidence (in-
cluding some that we do not examine here). From this ranking, we consider the2000
highest ranked protein pairs as “true” interactions. These 2000 interactions involve867
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Fig. 3. Test performance of four models in a 4-
fold cross validation experiment. Shown is the
true positive vs. the false positive rates trade-
off for four models: Basic with just interac-
tion, interaction assays, and localization vari-
ables;Noisethat adds the localization assay vari-
ables;Triplets that adds a potential over three
interactions toBasic; Full that combines both
extensions.

proteins. The selection of negative (non-interacting) pairs is more complex. There is
no clear documentation of failure to find interactions, and so we consider pairs that
do not appear in von Mering’s ranking as non-interacting. Since the number of such
non-interacting protein pairs is very large, we randomly selected pairs from the867
proteins, and collected2000 pairs that do not appear in von Mering’s ranking as “true”
non-interacting pairs. Thus, we have4000 interactions, of these, half interacting and
half non-interacting. For these entities, thefull model involves approximately17, 000
variables and38, 000 potentials that share37 parameters.

The main task is to learn the parameters of the model using the methods described
in Section 3. To get an unbiased estimate of the quality of the predictions with these
parameters, we want to test our predictions on interactions that were not used for learn-
ing the model parameters. We use a standard4-fold cross validation technique, where
in each iteration we learn the parameters using1500 positive and1500 negative inter-
actions, and then test on500 unseen interactions of each type. Cross validation in the
relational setting is more subtle than learning with standard i.i.d. instances. In particular,
when testing the predictions on the1000 unseen interactions, we use both the param-
eters we learned from the interactions in the training set, and also the observations on
these interactions. This simulates a real world scenario when we are given observations
on some set of interactions, and are interested in predicting the remaining interactions,
for which we have no direct observations.

To evaluate the performance of the different model elements, we compare the four
models described in Section 2 (see Figure 2). Figure 3 compares the test set performance
of these four models. The advantage of using an integrative model that allows propaga-
tion of influence between interactions and protein attributes is clear, as all three variants
improve significantly over the baseline model. Adding the dependency between differ-
ent interactions leads to a greater improvement than allowing noise in the localization
data. We hypothesize that this potential allows for complex propagation of beliefs be-
yond the local region of a single protein in the interaction network. When both elements
are combined, the full model reaches quite impressive results: above 85% true positive
rate with just a 10% false positive rate. This is in contrast to the baseline model that
achieves less than half of the true positive rate with the same amount of false positives.

To evaluate the robustness of the results to the specific setup we used, we applied
the learned parameters in additional settings. First, we chose a set of4000 positive ex-
amples and10000 negative examples and tested the quality of our predictions. Second,
to deal with the concern that in real life we might have fewer observed interactions, we



Basic Noise
model model

Interaction 0 −0.02
Nucleus −1.13 −0.91
Cytoplasm −1.34 −1.13
Mitochondria −1.96 −2.04
ER −2.52 −2.52

Basicmodel Noisemodel
localization Ll,pi = 1 Ll,pi = 1 Ll,pi = 1 Ll,pi = 1

Ll,pj = 0 Ll,pj = 1 Ll,pj = 0 Ll,pj = 1
Nucleus -0.47 0.66 -0.91 1.15
Cytoplasm -0.66 -0.02 -0.94 1.27
Mitochondria -0.71 1.26 -0.99 1.38
ER -0.82 1.18 -0.73 1.16

(a) Univariate potentials (b) Localization to interaction

Fig. 4.Examples of learned parameters in two of our models. (a) Univariate potential for interac-
tionsIpi,pj and localizationLl,pi . Shown is the difference between the potential values when the
variable is set to1 and when it is set to0. (b) The potential betweenIpi,pj andLl,pi , Ll,pj for
different localizations. Shown is the difference between the potential values when the interaction
variable is set to1 and when it is set to0. As we can see, co-localization typically increases
the probability of interaction, while disagreement on localization reduces it. In theNoisemodel,
co-localization provides more support for interaction, especially in the nucleus and cytoplasm.

repeated our evaluations, but without use the evidence of the training interactions when
making predictions on test interactions. In both cases the ROC curves are quite similar
to Figure 3 with a slight decrease in sensitivity (especially in the second setting).

As an additional test, we repeated the original cross validation experiments with
reshuffled localization data. As expected, the performance of the basic model decreased
significantly. The performance of the full model, however, did not alter much. A possi-
ble explanation is that the training “adapted” the hidden localization variables to capture
other dependencies between interactions. Indeed, the learned conditional probabilities
in the model capture a weak relationship between the localization variables and the
shuffled localization assays. This experiment demonstrates the expressive power of the
model in capturing dependencies. It also reinforces the caution needed in interpreting
what hidden variables represent.

We can gain better insight into the effect of adding a noisy sensor model for lo-
calization by examining the estimated parameters (Figure 4). As a concrete example,
consider the potentials relating an interaction variable with the localization of the two
relevant proteins in Figure 4b. In both models, when only one of the proteins is localized
in the compartment, non-interaction is preferred, and if both proteins are co-localized,
interaction is preferred. We see that smaller compartments, such as the mitochondria,
provide stronger support for interaction. Furthermore, we can see that our noise model,
allows us to be more confident in the localization attributes.

Another way of examining the effect of the noisy sensor is to compare the localiza-
tion predictions made by our model with the original experimental observations. For ex-
ample, out of867 proteins in our experiment,398 proteins are observed as nuclear [11].
Our model predicts that482 proteins are nuclear. Of these,389 proteins were observed
as nuclear,36 are nuclear according to YPD [3],45 have other cellular localizations,
and22 have no known localization. We get similar results for other localizations. These
numbers suggest that our model is able to correctly predict the localizations of many
proteins, even when the experimental assay misses them.

To get a better sense of the performance of the model, we consider specific ex-
amples where the predictions of the full model differ from those of the basic model.
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ERB1 RLP7

EBP2 NUG1

CIC1

ERB1 RLP7

EBP2 NUG1 MRPS9 RSM25

RSM24 MRPS28

MRPS9 RSM25

RSM24 MRPS28

(a) (b)

Fig. 5.Two examples demonstrating the difference between the predictions by our full model and
those of the basic model. Solid lines denote observed interactions and a dashed line corresponds
to an unknown one. Orange colored nodes represent proteins that are localized in the nucleus
and blue colored ones represent proteins that are localized in the mitochondria. Uncolored nodes
have no localization evidence. In (a), unlike the basic model, our full model correctly predicts
that EBP2 is localized in the nucleus and that it interacts with NUG1. Similarly, in (b) we are
able to correctly predict that MRPS9 is localized in the mitochondria and interacts with RSM25,
that also interacts with MRPS28.

Consider the unobserved interaction between the EBP2 and NUG1 proteins. These pro-
teins are part of a large group of proteins involved in rRNA biogenesis and transport.
Localization assays identify NUG1 in the nucleus, but do not report any localization for
EBP2. The interaction between these two proteins was not observed in any of the three
interaction assays included in our experiment, and thus considered unlikely by the ba-
sic model. In contrast, propagation of evidence in the full model effectively integrates
information about interactions of both proteins with other rRNA processing proteins.
We show a small fragment of this network in Figure 5a. In this example, the model is
able to make use of the fact that several nuclear proteins interact withbothEBP2 and
NUG1, and thus predicts that EBP2 is also nuclear, and indeed interacts with NUG1.
Importantly, these predictions are consistent with the cellular role of these proteins, and
are supported by independent experimental assays [3, 32].

Another, more complex example involves the interactions between RSM25, MRPS9,
and MRPS28. While there is no annotation of RSM25’s cellular role, the other two pro-
teins are known to be components of the mitochondrial ribosomal complex. Localiza-
tion assays identify RSM25 and MRPS28 in the mitochondria, but do not report any
observations about MRPS9. As in the previous example, neither of these interactions
was tested by the assays in our experiment. As expected, the baseline model predicts
that both interactions do not occur with a high probability. In contrast, by utilizing a
fragment of our network shown in Figure 5b, our model predicts that MRPS9 is mi-
tochondrial, and that both interactions occur. Importantly, these predictions are again
supported by independent results [3, 32]. These predictions suggest that RSM25 is re-
lated to the ribosomal machinery of the mitochondria. Such an important insight could
not be gained without using an integrated model such as the one presented here.

5 Discussion

In this paper we presented a general purpose framework for building integrative mod-
els of protein-protein interaction networks. Our main insight is that we should view
this problem as arelational learning problem, where observations about different en-
tities are not independent. We build on and extend tools from relational probabilistic



models to combine multiple types of observations about protein attributes and protein-
protein interactions in a unified model. We constructed a concrete model that takes
into account interactions, interaction assays, localization of proteins in several com-
partments, and localization assays, as well as the relations between these entities. Our
results demonstrate that modeling the dependencies between interactions leads to a sig-
nificant improvement in predictions. We have also shown that including observations of
protein properties, namely protein localization, and explicit modeling of noise in such
observations, leads to further improvement in prediction. Finally, we have shown how
evidence can propagate in the model in complex ways leading to novel hypothesis the
can be easily interpreted.

Our approach builds on relational graphical models. These models exploit a tem-
plate level description to induce a concrete model for a given set of entities and rela-
tions among these entities [8, 28]. In particular, our work is related to applications of
these models tolink prediction [10, 30]. In contrast to these works, the large number
of unobserved random variables in the training data poses significant challenges for the
learning algorithm. Our probabilistic model over network topology is also related to
models devised in the literature ofsocial networks[7]. Recently, other studies tried to
incorporate global views of the interaction network when predicting interactions. For
example, Iossifovet al [12] propose a method to describe properties of an interaction
network topology when combining predictions from literature search and yeast two-
hybrid data for a dataset of 83 proteins. Their model is similar to ourTriplet model
in that it combines a model of dependencies between interactions with the likelihood
of independent observations about interactions. Their model of dependencies, however,
focuses on the global distribution of node degrees in the network, rather than on local
patterns of interactions. Other recent studies employ variants of Markov random fields
to analyze protein interaction data. In these studies, however, the authors assumed that
the interaction network is given and use it for other tasks,e.g., predicting protein func-
tion [5, 18, 19] and clustering interacting co-expressed proteins [25]. In contrast to our
model, these works can exploit the relative sparseness of the given interaction network
to perform fast approximate inference.

Our emphasis here was on presenting the methodology and evaluating the utility of
integrative models. These models can facilitate incorporation of additional data sources,
potentially leading to improved predictions. The modeling framework allows us to
easily extend the models to include other properties of both the interactions and the
proteins, such as cellular processes or expression profiles, as well as different interac-
tion assays. Moreover, we can consider additional dependencies that impact the global
protein-protein interaction network. For example, a yeast two-hybrid experiment might
be more successful for nuclear proteins and less successful for mitochondrial proteins.
Thus, we would like to relate the cellular localization of a protein and the corresponding
observation of a specific type of interaction assay, This can be easily achieved by in-
corporating a suitable template potential in the model. An exciting challenge is to learn
which dependencies actually improve predictions. This can be done by methods offea-
ture induction[4]. Such methods can also allow us to discover high-order dependencies
between interactions and protein properties.

Extending our framework to more elaborate models and networks that consider a
larger number of proteins poses several technical challenges. Approximate inference
in larger networks is both computationally demanding and less accurate. Generaliza-



tions of the basic loopy belief propagation method (e.g., [34]) as well as other related
alternatives [16, 33], may improve both the accuracy and the convergence of the infer-
ence algorithm. Learning presents additional computational and statistical challenges.
In terms of computation, the main bottleneck lies in multiple invocations of the infer-
ence procedure. One alternative is to utilize information learned efficiently from few
samples to prune the search space when learning larger models. Recent results suggest
that large margin discriminative training of Markov random fields can lead to a signif-
icant boost in prediction accuracy [29]. These methods, however, apply exclusively to
fully observed training data. Extending these method to handle partially observable data
needed for constructing protein-protein interaction networks is an important challenge.

Finding computational solutions to the problems discussed above is a necessary
challenge on the way to a global and accurate protein-protein interaction model. Our
ultimate goal is to be able to capture the essential dependencies between interactions,
interaction attributes and protein attributes, and at the same time we want to be able to
infer hidden entities. Such a probabilistic integrative model can elucidate the intricate
details and general principals of protein-protein interaction networks.
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