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Abstract

Transcriptional regulation is mainly obtained by transcription factors that bind sequence-
specific binding sites, and control the expression of nearby genes. By modeling such sites
one can scan regulatory regions, searching for putative binding sites of a specific factor, thus
constructing a genome-wide regulatory network. Recently, several works demonstrated the
importance of rich probabilistic models that capture inner-dependencies within binding sites.
Here we present a general, accurate and efficient method for estimating the statistical signifi-
cance of putative binding sites, applicable to any probabilistic binding site model. Finally, we
demonstrate the accuracy of the method using synthetic and real-life data.

Keywords: Transcription Factor Binding Sites, Genome-wide Scans, � -value estimation, Im-
portance Sampling.

1 Introduction

Detecting cis-regulatory motifs in long DNA sequences is a central problem in modern biology, as
it offers a simple way for understanding the transcriptional regulation that control the expression of
genes. Much effort has been put in gathering known transcription factor binding sites (TFBSs), and
in finding probabilistic models for describing them [12]. Ideally, we would scan the genome using
these models, find putative BSs (and target genes) of each factor, and construct a global regulatory
network. This is usually done by scoring each sub-sequence in the promoter using the log of the
ratio between its probability according to the binding model, and its probability according to the
background model. These ratios (for a specific factors) are often refered to as a position specific
scoring matrix (PSSM).

To identify putative BSs, we wish to estimate the statistical significance of each score, so we can
eliminate all the subsequences whose scores are expected according to the null background model,�
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and consider only those with significant � -values. Yet, the task of in silico detecting BSs within
regulatory regions has not been fully answered, mainly due to complications arising in eukaryotic
genomes. Currently, the exact location of promoter regions is unknown for the vast majority of
higher organisms, so we resort to searching motifs in non-coding regions, whose length often
exceeds several thousands of bases. This results in a lower signal-to-noise ratio, and in many
putative sites, caused simply by the immense number of subsequences we evaluate. For this, we
need to correct the assigned � -values of each subsequence and account for multiple testing [5, 4, 9].
All these correction methods result in evaluating extremely small � -values, and so the need for
accurate estimation is further emphasized.

Recently, several works [2, 10, 8] demonstrated the importance of modeling TFBSs using rich
probabilistic models that allow for inner-dependencies within the positions of a binding site. Cur-
rent methods for evaluating � -values are either only applicable to motif models that assume position
independence (e.g. [1]) or rely on functional approximations of the scores’ distributions, whose
accuracy is somewhat arguable (e.g. [11]). In addition, due to the small magnitude of the � -values
we’re interested in, naïve approaches for � -value estimation, such as sampling sequences from the
background model, and calculating the empirical distribution of scores, become impractical.

In this paper, we present a general, accurate and efficient method for estimating the statistical
significance of putative binding sites, which is applicable to every choise of probabilistic bind-
ing model. Our Compound Importance Sampling (CIS) algorithm relies on the general concept
of Importance Sampling [7], allowing to approximate a desired distribution by drawing weighted
samples from another distribution. Thus, we are able to conceptually mimic the naïve sampling
approximation, while using a much smaller sample set. CIS does not make any simplifying as-
sumptions for either the motif or the background model, nor does it use a functional approximation
for the scores’ distribution. This enables us to apply it to any probabilistic form of the motif or the
background model.

2 Computing the Statistical Significance

In a genome wide scan, each candidate binding subsequence X is given a score S. Estimating the
statistical significance of the score amounts to estimating the probability of seeing a score that is
as good or better when scanning sequences generated from some background distribution. That is
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where
�3254�
)(*�

is the background distribution and  �" . is the indicator function. The well founded
log-odds score (e.g. [6]) of the probability of the subsequence the model

�768

(*�
vs. the probability

of the subsequence given the background
��254�
)(*�

is typically used in this scenario.
Analytic computation of the above p-value are often intractable despite the use of innovative

methods such as the branch and bound method of [3] due to exponential dependence on the number
of positions in the binding site model. When considering a general form of the motif and back-
ground the problem is even more complex. Analytic computations are usually not possible and
highly effective methods that assume position independence (e.g. [1]) are not applicable.

Thus, we need to resort to some other approximation. One possibility is to assume some func-
tional for the p-values distribution such as a normal distribution form (e.g. [11]). As we demon-
strate in Section 4 this approach suffers from significant inaccuracies in the region of small p-
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Figure 1: Illustration of the component of the proposal distribution ����
�� when 5 components are used. The
leftmost component is the background distribution, the rightmost component is the motif model distribution
and in between are different level of mixtures between the two extremes.

values. Another possibility is to generate samples from the background distribution and use an
empirical p-value estimation as a proxy to the true p-value. While in theory this approach is sound,
it cannot be applied in practice for the case of genome wide scans. In this scenario we need to
correct for multiple testing ([5, 4, 9]) and thus need to estimate in practice p-values in the order
of  ������ and lower. Even generating  ���� samples leads to noisy estimation in the region of interest
making the method impractical.

3 Compound Importance Sampling (CIS)

Our goal is to develop a general and effective method for estimating the statistical significance of
binding sites in a genome wide scan. The discussion in Section 2 hints that we might want to use
a sampling approach but somehow sample from more from the region of small p-values. In this
section we present a method for doing so based on importance sampling.

We start with a short introduction of the method of importance sampling. Assume that we want
to compute the expectation IE � ��������� 

(*� 0

of some function � 

(*�
with respect to a distribution� 
)(*�

and that we are unable to compute this using a closed form formula as in the case of p-value
computation of Eq. (1). In addition, assume we are unable to generate samples from

� 
)( �
directly

so that we cannot use naive sampling in order to evaluate the desired expectation. Importance
sampling (e.g. [7]) is a general method for evaluating the desired expectation in cases where we
cannot sample from

� 
)(*�
but can still evaluate

� 
�� �
for a particular sample

�
. The method

uses a seemingly unrelated proposal distribution
� 
)(*�

to generate samples and then evaluates
the desired expectation using these samples and a correction weight. While this might sound
surprising, it relies on the following simple equality

IE � � � � ��� 
�� � 0 ��� � � 
!� � � 
!� � � 
�� �� 
�� �#" �8�$� � � 
!� �&% � 
!� � � 
�� �� 
�� �(')" �8� IE * � � � ��� 
�� �,+ 
�� � 0
where

+ 
�� �
is defined as the ratio

� �
�
�* � � � . Thus, each sample from

� 

(*�
is re-weighted to account

for the fact that it is not generated from the distribution of interest
� 
)(*�

. 1

While primarily used in cases where we cannot sample from
� 
)(*�

, importance sampling is
also valid when we simply prefer to sample from

� 
)( �
rather then

� 

(*�
. This observation allows

1The only requirement of -/.1032 is that is does not eliminate the possibility (gives zero probability) of any event 4
that has positive probability 5/.1032 .
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us to adapt the method of importance sampling for our needs. Recall, that we wanted to generate
more samples from the region of interest in order to get precise estimation of low p-values. Thus,
all we have to do is to define

� 

(*�
that will put more emphasis on the region of statistically

significant scores and use + 
)(*��� � 254�
)(*�� 
)( �
when estimating the p-value of a putative binding site. To define an effective

� 
)( �
, we first need

to characterize the distribution that governs the region of interest. This can be done by considering
samples (K-mers) that are generated from the motif model at hand. Since these samples are gener-
ated from the motif itself, their probability given the model is typically high and thus they receive
significant scores. Accordingly, the region of low p-values is that of the distribution

� 68

(*�
of the

motif model.
The above discussion might lead to the conclusion that we should simply set

� 

(*� � �76 
)( �
.

However, recall that we want to compute p-values with respect to the background distribution� 
)(*� � � 2�4 
)(*�
. Sampling only from

�368
)(*�
completely ignores the distribution of interest.

This will typically results in assigning extremely small weight to the samples generated from
�

and will again result in a poor overall estimation of the p-value with respect to
�7254�

(*�

.
This suggest that we want to sample both from

��68

(*�
and from

�3254�
)(*�
, say � �

and � �
samples respectively. This is equivalent to defining

� 
)( � � 6��6���� 6�� �3254�
)(*�	� 6��6���� 6
� �36 

(*�
and

compute the appropriate weights for each of the � samples. This approach takes into account both
extreme distributions. One extreme will provide the general form of

��254�
)(*�
while the other will

concentrate on the region of interest characterized by
��6 
)(*�

.
A possible caveat of the above approach is that by taking into account only the two extreme

distributions, our p-value estimation of “middle-ground” scores will not be accurate. 2 Thus, we
want to refine the approach in order to consider a combination of distributions that are a smoothed
mixture of these two extremes. We define the Compund Importance Sampling (CIS) approach for
estimating p-values of putative binding sites as follows: We � distribution that are a smoothed
mixture between the background and the motif model. That is the proposal distribution is� 
�� ��
 � &���� �� �

� � 
*
 � � � � � 
�� ��
 � &��

where
���

is the background model,
� � is the motif model and


*
 � � �
is the fraction of samples

generated from the model. We can now use this mixture
� 
)(*�

and use importance sampling as is
to evaluate the desired p-values.

To illustrate the concept of CIS, Figure 1 shows an example of a proposal distribution with
5 component models. For each model we show the sequence-logo where for each position, the
height of a letter is proportional to the log-probability of seeing that letter in the specific position.
On the left is the distribution generated from the background model and on the right the one of the
motif model. It is important to emphasize that sampling from

��	
, for example, is not equivalent to

a weighted sum of samples from
� 254�
)(*�

and
�368

(*�

. In fact, a sample typically generated from��	
is very unlikely to be generated from either of the extremes.

2This was indeed confirmed in preliminary experiments not presented here for lack of space

4



 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

-60 -50 -40 -30 -20 -10  0 10 20 30

p
-v

al
u

e

Log-odds score

 Naive
 MIS
 MAST

 0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

10 11 12 13 14 15 16 17 18

p
-v

al
u

e

Log-odds score

 Naive
 MIS
 MAST

 0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

10 11 12 13 14 15 16 17 18

p
-v

al
u

e

Log-odds score

 Naive
 MIS
 MAST

 0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

10 11 12 13 14 15 16 17 18

p
-v

al
u

e

Log-odds score

 Naive
 MIS
 MAST

(a) (b) (c) (d)

Figure 2: Comparison of p-value estimation for the RAP1 motif model from the TRANSFAC database
[12] using a 3-order Markov model of S. cerevisiae. Shown is the Naive sampling approximation of the
true p-values using ��� � samples, the Normal approximation to the p-value distribution, the method used
by MAST and our CIS importance sampling method that use 40,822 samples. Shown is the cummulative
p-value (y-axis) vs. the log-odds (x-axis). (a) the case of a PSSM model where positions are independent (b)
zooms in on the area of p-values below ��� � 	 (c) the case of a Mixture of Trees of model where MAST is not
applicable (d) shows 10 repeats of the two sampling methods Naive and CIS FIX THIS WITH UPDATED
FIGURES

It is important to note that our Compund Importance Sampling (CIS) approach makes no as-
sumptions on the form of the distributions and can thus take into account any joint distribution of
the motif positions

� 68

(*�
or the background distribution

� 2�4�

(*�
. In fact, no assumption was

made also on the form of the score making the method applicable to very general settings of a
genome scan. As we demonstrate in Section 4 the CIS method evaluates accurate p-values and
requires an order of magnitude less samples then the naive sampling approach.

4 Experimental Validation

We want to demonstrate the effectiveness of our Compund Importance Sampling (CIS) method
described in Section 3 in computing the statistical significance p-value for putative binding sites in
a genome wide scan. As a sanity check, we start by comparing the different methods discussed in
Section 2 to CIS in the case of a simple Position Specific Scoring Matrix (PSSM) motif model that
assumes position independence and a 3-order Markov background model. For our CIS algorithm
we use a mixture of 10 motif models. We sample 10,000 samples from the

� � 
�� � 
 � &��
back-

ground model and span the range to 1,000 samples for the
� � 
 � � 
 � &��

motif model totalling
40,822 samples.

We use the 14-Mer model of the RAP1 transcription factor from the TRANSFAC [12] database.
We generate  �� � 14-Mers from the 3-order Markov background model of S. cerevisiae. This allows
us to evaluate reasonable empirical values in the order of  (� ��� . For each 14-Mer, we compute the
log-odds score of its probability given the RAP1 model and the background model. We then
use each of the following method to assign a statistical p-value for each of the  (��� scores: our
CIS algorithm, Normal functional approximation as in [11] and the method used by MAST [1].
Figure 2(a) shows the cummulative distribution of p-values of each method vs. the log-odds score
in the region of p-values lower then  (� � 	 . It is clear that both CIS and MAST are superior to
the Normal approximation method and follow the naive sampling method similarly with a slight
advantage for CIS.
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Figure 3: NEED TO
COMPLETE THIS

We now turn to the case where there are dependencies within the positions in the motif model
and the extremely effective MAST method can no longer be used. Specifically, we use a mixture
of trees model (see [2]). Figure 2(b) shows the evident superiority of CIS when compared to the
Normal approximation. While CIS follows the Naive sampling method reasonably, the deviation
between the two methods is still a cause for concern. Specifically, since the naive method uses
 �� � samples while CIS uses only 40,822 samples, one might suspect that the CIS suffers from
robustness problem to the sampling process.

To evaluate this explicitly, we repeated the experiment 10 times for both sampling methods.
Figure 2(c) compares the range of these runs. It is evident that CIS shows strong robustness when
compared with the naive method. In fact, this results shows that CIS can follow even a naive
sample of  �� �

effectively using 0.4% the number of samples.
We now want to demonstrate the importance of the CIS method in a true genome scan. A

crucial factor in such a scan is the amount of false positive signals that are considered for a given
level of true positive rate. To evaluate this, we estimate the signal-to-noise ratio (true positive to
false positive) when scanning the promoter regions of S. cerevisiae with the TRANSFAC motif
KAKA YPD (see http:www.OURSITE) for results for a range of TRANSFAC motifs). Figure 3
shows... COMPLETE THIS WHEN WE HAVE FIGURE

5 Discussion

In this work we introduced a general and efficient method for estimating the statistical significance
of putative binding site in a genome wide scan. We demonstrated the accuracy of the method when
using simple as well as models that allow complex dependencies within the binding positions on
real-life like synthetic experiments and actual scan of promoter regions.

To our knowledge, this is the first method for evaluating statistical significance of putative
binding sites that can be applied to general forms of the motif model, the background model and
the scoring function. Thus, the method can be extended to other setting beyond the scope of
transcription regulation such as splicing event mechanism and ??? (COMPLETE THIS) Another
interesting challenge is to extend our method for the case of motif complexes that include several
general motif models

6



References
[1] T. L. Bailey and M. Gribskov. Combining evidence using p-values: application to sequence homology searches.

Bioinformatics, 14:48–54, 1998.

[2] Y. Barash, G. Elidan, N. Friedman, and T. Kaplan. Modeling dependencies in Protein-DNA binding sites. Proc.
Seventh Inter. Conf. Res. in Comp. Mol. Bio. (RECOMB), 2003.

[3] G. Bejerano. Efficient exact value computation and applications to biosequence analysis. In Proceedings of the
seventh annual international conference on Computational molecular biology, pages 38–47. ACM Press, 2003.

[4] Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: a practical and powerful approach to
multiple testing. J. Royal Statistical Society B, 57:289–300, 1995.

[5] C. E. Bonferroni. Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore del Professore Salvatore Ortu
Carboni, pages 13–60, 1935.

[6] M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

[7] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman & Hall, London, 1995.

[8] H. Huang, M.J. Kao, X. Zhou, J.S. Liu, and W.H. Wong. Determination of local statistical significance of
patterns in markov sequences with application to promoter element identification. Journal of Computational
Biology, pages , to appear, 2004.

[9] Storey JD and Tibshirani R. Statistical significance for genome-wide studies. Proceedings of the National
Academy of Sciences, 100:9440–9445, 1995.

[10] O. D. King and F. P. Roth. A non-parametric model for transcription factor binding sites. Nucleic Acids Res,
31(19):e116, 2003.

[11] S. Sinha and M. Tompa. A statistical method for finding transcription factor binding sites. In Proc. Int. Conf.
Intell. Syst. Mol. Biol., volume 8, pages 344–54. 2000.

[12] E. Wingender, X. Chen, Fricke E., R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys, H. Michael, R. Ohnhauser,
M. Pruss, F. Schacherer, S. Thiele, and S. Urbach. The TRANSFAC system on gene expression regulation.
Nuc. Acids Res., 29:281–283, 2001.

7


