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Gal Elidan

Abstract Despite overlapping goals of multivariate modeling and dependence iden-
tification, until recently the fields of machine learning in general and probabilistic
graphical models in particular have been ignorant of the framework of copulas. At
the same time, complementing strengths of the two fields suggest the great fruit-
fulness of a synergy. The purpose of this paper is to survey recent copula-based
constructions in the field of machine learning, so as to provide a stepping stone for
those interested in further exploring this emerging symbiotic research.

1 Introduction

Multivariate modeling is of fundamental interest in diverse complex domains rang-
ing from computational biology to computer vision to astronomy. Unfortunately,
high-dimensional modeling in the context of finite data and limited computational
resources can be quite challenging, and susceptible to the curse of dimensionality.
Probabilistic graphical models [33], a marriage between probability and graph the-
ory, is a general purpose framework aimed at coping with this task. These models
are used to represent multivariate densities via a combination of a qualitative graph
structure that encodes independencies and local quantitative parameters. The joint
density has a decomposable form that corresponds to the intuitive graph structure.
This, in turn, allows for relatively efficient methods for marginal and posterior com-
putations (a task called inference in the field), estimation (parameter learning), and
model selection (structure learning). Probabilistic graphical models have become a
central axis of the field of machine learning, have made substantial impact in related
fields such as machine vision, natural language processing and bioinformatics, and
have become prevalent in uncountable applications.
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It is somewhat remarkable that, until recently, researchers in the field of proba-
bilistic graphical models were largely unaware of the multivariate modeling frame-
work of copulas. This ignorance is even more perplexing when considering the limi-
tations of graphical models in the context of real-valued measurements: while prob-
abilistic graphical models are conceptually general, practical considerations almost
always force the local quantitative part of the model to be of a simple form. In fact,
when faced with data that cannot be captured well with multivariate Gaussians or
mixtures thereof, the vast majority of works first discretize the data, and then take
advantage of the impressive progress that has been made in the discrete case.

Much of the copula community has also been ignorant of the potential of a sym-
biosis with the field of machine learning. A decade ago, Kurowicka and Cooke [23]
identified a relationship between vine models and Bayesian networks (a directed
graphical model), and this was later generalized [24, 16] to yield high-dimensional
copula constructions. However, no algorithmic innovation was borrowed from or
inspired by machine learning, with the goal of, for example, automatically inferring
the structure of such models from partially observed data.

There are fundamental reasons as to why a symbiosis between the two fields
should be pursued. Graphical models are inherently aimed at high-dimensional do-
mains, and substantial advances have been made in learning such models from data.
Unfortunately, in real-valued scenarios the field is still largely handicapped. In con-
trast, copulas offer a flexible mechanism for modeling real-valued distributions. Yet,
much of the field is still focused on the bivariate case or is limited in practice to few
variables (exceptions are discussed later). The two frameworks thus complement
each other in a way that offers opportunities for fruitful synergic innovations.

The need for a synergy between the copula framework and the field of machine
learning goes further than probabilistic graphical models. Dependence measures,
most notably Shannon’s mutual information, are fundamental to numerous machine
learning algorithms such as clustering, features selection, structure learning, causal-
ity detection and more. As is well known, copulas are closely tied to such depen-
dence concepts and the meeting of the two fields can give rise to new techniques for
measuring dependance in high dimension.

It was only recently that the ignorance barrier between the two fields was broken
by Kirshner’s work [21] that generalizes Darsow’s Markovian operator [7] for tree
structured models. Since then, interest in copulas has been steadily growing and the
last years have seen a range of innovative copula-based constructions in machine
learning. The purpose of this paper is to survey these works. Rather than aiming
at a complete coverage, the focus is on multivariate constructions as well as in-
formation estimation. For lack of space, additional works that, generally speaking,
use copulas in a more plug-in manner, are not discussed. For the interested reader,
these include copula-based independent component analysis [35], component analy-
sis [27, 2], mixture models (e.g., [14, 51]), dependency seeking clustering [40]. Also
of great interest but not presented here is the use of copulas as a particular instance
within the cumulative distribution network model [17, 45]. Finally, this survey does
not cover application papers or works that appeared in the computational statistics
community, and that are more likely to be familiar to copula researchers.
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2 Background

To allow for reasonable accessibility to both copula and machine learning re-
searchers, in this section we briefly review the necessary background material from
both fields and set a common notation. We use capital letters X ,Y to denote random
variables, lower case letters x,y to denote realisations of these variables, bold-faced
letters to refer to set of variables X and their assignments x.

2.1 Copulas

A copula function [48] links univariate marginal distributions to form a joint multi-
variate one. Formally,

Definition 2.1. Let U1, . . . ,Un be real random variables marginally uniformly dis-
tributed on [0,1]. A copula function C : [0,1]n→ [0,1] is a joint distribution

C(u1, . . . ,un) = P(U1 ≤ u1, . . . ,Un ≤ un).

We will use Cθ (·) to denote a parameterized copula function where needed.

Sklar’s seminal theorem [48] states that any joint distribution FX(x) can be rep-
resented as a copula function C(·) of its univariate marginal distributions

FX(x1, . . . ,xn) =C(F1(x1), . . . ,Fn(xn)).

When the marginals are continuous, C(·) is uniquely defined. The constructive con-
verse, which is of interest from a modeling perspective, is also true: any copula func-
tion taking any univariate marginal distributions {Fi(xi)} as its arguments, defines a
valid joint distribution with marginals {Fi(xi)}. Thus, copulas are “distribution gen-
erating” functions that allow us to separate the choice of the univariate marginals
and that of the dependence structure, encoded in the copula function C(·). Impor-
tantly, this flexibility often results in a construction that is beneficial in practice.

Assuming C(·) has n’th order partial derivatives, the joint density can be derived
from the copula function using the derivative chain rule

fX(x) =
∂ nC(F1(x1), . . . ,Fn(xn))

∂F1(x1) . . .∂Fn(xn)
∏

i
fi(xi)≡ c(F1(x1), . . . ,Fn(xn))∏

i
fi(xi), (1)

where cθ (·) is called the copula density.

Example 2.1. Perhaps the most commonly used is the Gaussian copula [11]:

CΣ ({Fi(xi)}) = ΦΣ

(
Φ
−1(F1(x1)), . . . ,Φ

−1(Fn(xn))
)
, (2)

where Φ is the standard normal distribution, and ΦΣ is a zero mean normal distri-
bution with correlation matrix Σ .
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Fig. 1 Samples from
the bivariate Gaussian
copula with correlation
θ = 0.25. (left) with
unit variance Gaussian
and Gamma marginals;
(right) with a mix-
ture of Gaussian and
exponential marginals.

Figure 1 shows samples from the bivariate Gaussian copula using two differ-
ent marginal settings. As can be seen, even in this simple case, markedly different
and multi-modal distributions can be constructed. More generally, and without any
added computational difficulty, we can use different marginals for each variable, and
can also mix and match marginals of different forms with any copula function.

2.2 Probabilistic Graphical Models

In this section we briefly review probabilistic graphical models [33], a widely pop-
ular framework for representing and reasoning about high-dimensional densities.

A directed graph is a set of nodes connected by directed edges. A directed acyclic
graph (DAG) G is a directed graph with no directed cycle. The parents of a node V
in a directed graph is the set of all nodes U such that there exists a direct edge from
U to V . A node U is an ancestor V in the graph if there is a directed path from U to
V . Children and descendant are similarly defined.

Directed graphical models or Bayesian networks (BNs), use a DAG G whose
nodes correspond to the random variables of interest X1, . . . ,Xn to encode the in-
dependencies I(G ) = {(Xi ⊥ NDi | Pai)}, where ⊥ denotes the independence re-
lationship, and NDi are nodes that are not descendants of Xi in G (independencies
that follow from I(G ) are easily identifiable via an efficient algorithm). If the inde-
pendencies encoded by G hold in fX, then it is easy to show that the joint density
decomposes into a product of local conditional densities

fX(x) =
n

∏
i=1

fXi|Pai(xi | pai),

where Pai are the parents of node Xi in G . The converse composition theorem states
that a product of any local conditional densities defines a valid joint density, and
that the independencies encoded by G hold in this density.

As an example, Figure 2 shows a plausible model that involves relocation of hu-
man population into Mars. Human pollution is unfortunately assumed independent
of Solar activity. Yet, these two factors are dependent given evidence of livability
conditions on earth. Similar deductions all follows from the independencies encoded
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Fig. 2 An toy Bayesian network
of a Mars relocation scenario where
f (·) = f (H) f (S) f (E|S,H) f (M|S) f (R|E,M).

in the graph. Note that inferences can be made in any direction, regardless of the di-
rection of the edges, hence the name Bayesian networks.

Undirected graphical models, or Markov Networks (MNs), use an undirected
graph H that encodes the independencies I(H ) = {(Xi ⊥ X\{Xi}∪Nei | Nei)},
where Nei are the neighbors of Xi in H . That is, each node is independent of all
others given its neighbors in H . Let C be the set of cliques in H (a clique is set
of nodes such that each node is connected to all others in the set). As for directed
models, the Hammersley-Clifford theorem [15] states that, for positive densities, if
the independence statements encoded by H hold in fX(x), then the joint density
decomposes according to the graph structure:

fX(x) = 1
Z ∏c∈C φc(xc), (3)

where Xc are the set of nodes in the clique c, and φc :R|c|→R+ is any positive func-
tion over the values of these nodes. Z is a normalizing constant called the partition
function. The converse composition theorem also holds.

There are various generalization of the Bayesian and Markov network representa-
tions (which overlap only for tree structured models) including temporal, relational
and mixed directionality models (chain graphs). The common theme is that of de-
composition into local terms which, in additional to facilitating compact representa-
tion, gives rises to relatively efficient marginal and conditional computations (a task
called inference in the ML community), estimation (parameter learning), and high-
dimensional model selection (structure learning). See [33, 22] for a comprehensive
presentation of probabilistic graphical models.

3 Multivariate Copula-based Construction

In this section we present several high-dimensional copula-based models recently
developed in the machine learning community. As is common in the copula com-
munity [20], these works generally start with univariate estimation, and then plug
in the “given” marginals into the copula function. Thus, except where essential, our
exposition below does not cover the relatively straightforward and standard univari-
ate estimation step. Instead, we focus on the multivariate construction. We end with
a comparative summary in Section 3.5, which can also be read first.
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3.1 Tree Structured Models

The first work in the machine learning community to combine ideas from the graph-
ical models framework and copulas is that of Kirshner [21] (the earlier work of [24]
independently developed in the copula community is discussed in Section 3.3). We
start by describing the basic tree-structured copula construction, and then present
the tree-averaged density model. We conclude this section with a flexible Bayesian
approach to a mixture of copula trees suggested by Silva and Gramacy [47].

Tree-structured Copulas

Let T be an undirected tree structured graph (i.e., a graph with no cycles) and let
E denote the set of edges in T that connect two vertices. From the Hammersley-
Clifford decomposition of (3), it easily follows that, if the independencies I(T ) hold
in fX(x), then it can be written as

fX(x) =

[
∏

i
fi(xi)

]
∏

(i, j)∈E

fi j(xi,x j)

fi(xi) f j(x j)
.

Using (1), a decomposition of the joint copula also follows

cT (·) =
fX(x)

∏i fi(xi)
= ∏

(i, j)∈E

fi j(xi,x j)

fi(xi) f j(x j)
= ∏

(i, j)∈E
ci j(Fi(xi),Fj(x j)), (4)

where cT (·) is used to denote a copula density that corresponds to the structure T ,
and ci j(·) is used to denote the bivariate copula corresponding to the edge (i, j). The
converse composition also holds: a product of local bivariate copula densities, each
associated with an edge of T , defines a valid copula density. This result generalizes
Darsow’s operator [7] to the case of Markov trees. Indeed, it can be proved directly
or by an inductive application of Darsow’s product operator starting from the leaves
of the trees and progressing inwards.

The main appeal of the above decomposition, as is the case for graphical models
in general, is that estimation or learning also benefits from the compact representa-
tion. Given univariate marginals, (4) leads to a decomposition of the log-likelihood
into independent terms, and estimation can be carried out by only considering bivari-
ate statistics. This is in contrast to vine copula models [3] that also involve bivariate
copulas but where (conditional) statistics over large sets of variables are required
(see Section 3.5 for further discussion).

Tree-averaged Copulas

As noted, the main appeal of the tree-structured copula is that it relies solely on
bivariate estimation. However, this comes at the cost of firm independence assump-
tions. To relax these, Kirshner suggests the construction of a mixture of all copula
trees model. On the surface, such a model may appear to be computationally pro-
hibitive as the number of possible trees with n variables is nn−2.
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This difficulty is overcome by defining an appropriate decomposable prior over
all spanning trees suggested by Meila and Jaakkola [28]. Let β be a symmetric n×n
matrix with non-negative entries and zero on the diagonal. Let T be the set of all
spanning trees over X1, . . . ,Xn. The probability of a spanning tree T is defined as

P(T ∈T | β ) = 1
Z ∏(u,v)∈ET βuv,

where Z is a normalization constant. Using a generalization of the Laplacian matrix:

Luv(β ) =

{
−βuv u 6= v
∑w βuw u = v,

it can be shown that the normalization constant Z is equal to the determinant |L∗(β )|,
where L∗(β ) represents the first (n−1) rows and columns of L(β ). This result can
then be used to efficiently compute the density of the average of all copula spanning
trees, which itself is also a copula density:

∑
T∈T

P(T | β )cT (·) =
1
Z ∑

T∈T

[
∏

(u,v)∈ET

βuvcuv(Fu(xu),Fv(xv))

]
=
|L∗(β ◦ cT (·))|
|L∗(β )|

,

where ◦ denotes an element-wise product. The reader is referred to Kirshner [21]
for additional details on the efficient EM method used for parameter estimation of
the model, and for appealing results of modeling multi-site precipitation data using
an HMM-based construction.

Bayesian Mixtures of Copula Trees

The all tree mixture model described in the previous section overcomes some of
the limitations imposed by a single tree model. However, to facilitate computational
efficiency, the prior used involves heavy parameter sharing. Specifically, the set of
all nn−2 trees is parameterized by only n(n− 1) parameters. Further, the approach
relies on the assumption that there are no missing observations.

To offer more flexibility, Silva and Gramacy [46] suggest a Bayesian approach
that allows for a mixture of some trees with flexible priors on all components of the
model. The construction is based on the Bayesian nonparametric Dirichlet process
infinite mixture model. This model, first formalized by Ferguson [12], is a distribu-
tion over discrete mixtures such that for every finite set of mixtures, its parameters
have a Dirichlet prior. Following Silva and Gramacy, we present the model here as
the limit as K→ ∞ of a finite mixture model with K components.

Let X be a set of random variables, z be an index of the set of all trees T over
these variables, and Θ be the set of copula parameters, one for each pair of variables.
The following model is a standard Bayesian mixture model, with the novelty that
the parameters of the univariate marginals Λ are shared by all mixture components:

Λ ∼ fΛ Tz ∼ T0(z)
π ∼ Dirichlet(α/K, . . . ,α/K) Θz ∼ fΘ

z | π ∼ Discrete(π1, . . . ,πK) X|z,T ,Θ ,Λ ∼ f (X | Tz,Θz,Λ).
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The first two lines on the left correspond to any general generating mechanisms for
the univariate marginal parameters Λ and the mixture prior parameters π . Given
these, a specific tree is selected by sampling z from any discrete distribution of
the appropriate dimension parameterized by π . The parameters corresponding to
the tree edges Θz are then sampled from a prior on the copula parameters. Finally,
given a specific tree and previously sampled parameters, the density for a sample
f (X | Tz,Θz,Λ) is constructed using a copula tree, as described in previous section.

Obviously, the above model offers great flexibility and using a Dirichlet process
formulation where K→ ∞, allows for a variable number of components. The flexi-
bility comes with a computational burden which is the central challenge addressed
by Silva and Gramacy using a Markov chain Monte Carlo approach. The central
difficulty is in the sampling of trees since, given a specific tree, most parameters
are redundant and sampling these naively will lead to useless computations in later
iterations. The solution is a novel proposal distribution from which trees and pa-
rameters are sampled in a sensible way. The reader is referred to Silva and Gramacy
[46] for the precise details. Experiments are carried out on several datasets from the
UCI repository [31], as well as missing data scenarios using financial data.

3.2 Undirected Structure Learning

The lasso method of Tibshirani [52] extends linear regression to the high-dimensional
case by including in the objective function an L1 norm sparsity constraint on the
feature coefficients, and proposing an efficient method for optimizing this objective.
A nonparametric extension, called sparse additive models was recently developed
by Ravikumar et al. [38]. Orthogonally, the graphical lasso (glasso) [13] employs
similar sparsity constraints to facilitate high-dimensional estimation of undirected
Gaussian graphical models. In this section we present the work of Liu et al. [26] that
fills the void of high-dimensional nonparametric structure estimation. Specifically,
a theoretically founded structure estimator is developed based on the combination
of the Gaussian copula and a specific form of nonparametric univariate marginals.

Parametric Undirected Graph Estimation

Let H be an undirected graph whose nodes correspond to real-valued random vari-
ables X1, . . . ,Xn. For multivariate Gaussian distributions, the independencies be-
tween the random variables as encoded by the graph’s structure are characterized
by the inverse covariance matrix Ω = Σ−1. Specifically, Xi is independent of X j

given all other variables, denoted by Xi ⊥ X j | X\{i, j} if and only if Σ
−1
i j = 0. Given

m samples of the random vector X, estimation of Σ when n > m cannot be carried
out using a maximum likelihood estimator since the empirical covariance matrix is
not full rank. Inspired by the success of L1 sparsity regularization for linear models,
several authors suggested that Σ be estimated by finding the solution to the follow-
ing regularized likelihood objective:
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Ω̂ = min
Ω
−1

2
(
log |Ω |− tr(Ω Ŝ)

)
+λ ∑

j 6=k
|Ω jk|, (5)

where Ŝ is the sample covariance matrix. The estimator Ω̂ can be computed effi-
ciently by the glasso algorithm, which is simply a block coordinate descent that
applies the standard lasso to a single row and column of Ω at each iteration. The
resulting estimator has been shown to have appealing theoretical properties [41, 39].

Nonparanormal Estimation

A real-valued random vector X is said to have a nonparanormal distribution, X ∼
NPN(µ,Σ ,g), if there exist functions {gi}n

i=1 such that (g1(X1), . . . ,gn(Xn)) ∼
N(µ,Σ). When gi are monotone and differentiable, this is simply the Gaussian cop-
ula. Now, define

hi(x) = Φ
−1(Fi(xi)),

and let Λ be the covariance matrix of h(X). The independence properties discussed
above for the multivariate Gaussian hold so that Xi ⊥ X j | X\{i, j} if and only if
Λ
−1
i j = 0. Thus, to estimate the graph’s structure, it is sufficient to identify Λ−1.

Consider the obvious rank based estimator for Λ that relies on the empirical
marginal distribution function F̂i(t)≡ 1

m ∑
m
l=1 1{xi[l]≤t}, where xi[l] is used to denote

the assignment to Xi in the l’th sample. Unfortunately, using this estimator as a plug-
in to covariance estimation does not work well in high dimension since the variance
of F̂i can be large. Instead, the following Winsorized estimator is suggested

F̃i(x) =


δm if F̂i(x)< δm
F̂i(x) if δm ≤ F̂i(x)≤ 1−δm
(1−δm) if F̂i(x)> 1−δm,

where δm is a truncation parameter. Using δm ≡ 1
4m1/4√π logm

strikes the right bias-
variance tradeoff that leads to the desirable theoretical properties discussed below.
Given this estimate for the distribution of Xi, and using h̃i(x) = Φ−1

(
F̃i(x)

)
, define

the transformation functions by

g̃i(x)≡ µ̂i + σ̂ih̃i(x), (6)

where µ̂i and σ̂i are sample mean and standard deviation of Xi, respectively. The
sample covariance matrix Sm(g̃) can now be plugged in (5) in place of Ŝ, defining a
two-step estimation procedure for the estimator Ω̂m:

1. Replace the observations with Winsorized normalized scores as defined in (6).
2. Use the graphical lasso to estimate the undirected graph.

Appealingly, the procedure is both easy to compute and makes little assumptions
regarding the distribution of X. The only tuning parameter is the regularization pa-
rameter λ that defines the objective minimized by the glasso algorithm. Next, we
summarize the theoretical and empirical merits of this estimator.
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Properties of the Estimator

Building on the analysis of Rothman et al. [41] and Ravikumar et al. [39], Liu et
al. are able to show that their estimator has favorable persistency, norm consistency
and model selection consistency properties. The main technical result is an anal-
ysis of the covariance of the Winsorized estimator. Specifically, under appropriate
conditions,

max
i, j

∣∣Sm(g̃)i j−Sm(g)i j
∣∣= OP

(
m−1/4

)
.

Using this result, norm consistency of Ω̂ with respect to the Frobenius and L2 norm
follows, with a similar dependence on m. Using additional technical assumptions,
a model selection consistency result (so that the true structure is recovered) is also
provided. Further, Liu et al. also show that their estimator is consistent in risk, that
is when the true distribution is not assumed to be nonparanormal.

Liu et al. demonstrate the ability of their method to accurately recover known
structure in simulation experiments under different transformations that are applied
to the univariate marginals, and various training sample sizes. The also apply their
method to biological and financial data, leading to structures that are different than
those learned with a purely Gaussian model, potentially revealing novel insights.
The interested reader is referred to Liu et al. [26] for details.

3.3 Copula Bayesian Networks

Elidan [8] tackles the task of flexibly representing a multivariate real-valued distri-
bution based on a directed graph representation.

The CBN Model

As discussed in Section 2, a joint distribution that relies on a directed acyclic graph
to encode independencies is quantified by local conditional densities. Accordingly,
the construction starts with the following building block:

Lemma 3.1. Let f (x | y), with y = {y1, . . . ,yk}, be a conditional density function.
There exists a copula density function c(F(x),F1(y1), . . . ,FK(yK)) such that

f (x | y) = Rc(F(x),F1(y1), . . . ,FK(yK)) fX (x),

where Rc is the copula ratio

Rc(F(x),F1(y1), . . . ,FK(yK))≡
c(F(x),F1(y1), . . . ,FK(yK))

∂ KC(1,F1(y1),...,FK(yK))
∂F1(y1)...∂FK(yK)

,

and Rc is defined to be 1 when Y = /0. The converse is also true: for any copula,
Rc(F(x),F1(y1), . . . ,FK(yK)) fX (x) defines a valid conditional density.
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Note that the denominator of Rc is only seeming complex and is in fact a deriva-
tive of a lower order than the numerator copula density. Thus, whenever the copula
density has a convenient form, so does Rc, and the conditional normalization does
not involve any costly integration. With this building block in hand, the multivariate
density model can be defined:

Definition 3.1. A Copula Bayesian Network (CBN) is a triplet C = (G ,ΘC,Θ f ) that
defines fX(x). G encodes the independencies {(Xi ⊥ NDi | Pai)}, assumed to hold
in fX(x). ΘC is a set of local copula functions {Ci(F(xi),F(pai1), . . . ,F(paiki

))} that
are associated with the nodes of G that have at least one parent. In addition, Θ f
is the set of parameters representing the marginal densities fi(xi) (and distributions
Fi(xi)). The joint density fX(x) then takes the form

fX(x) =
n

∏
i=1

Rci

(
F(xi),F(pai1), . . . ,F(paiki

)
)

fi(xi).

Elidan showed that if the independencies encoded in G hold in fX(x), then the joint
copula decomposes into a product of local copula ratio terms Rci . However, the con-
verse is only partially true. The above product ∏i Rci(·) fi(xi) always defines a valid
joint density. However, the product ∏i Rci , when each copula ratio is constructed
independently, does not always define a valid copula. In this case, the marginals of
the valid joint distribution do not necessarily equal to Fi(xi).

While this may seem unacceptable from a copula perspective, the model offers
greater flexibility at the cost of marginal skewness, which in practice is not substan-
tial. Moreover, when the structure of the graph G is a tree, the model collapses to
the tree model described in Section 3.1, and the univariate marginals are preserved.
Further, when using the Gaussian copula, the correct marginals can be maintained
using an appropriate specification scheme, in which case the model is equivalent to
a nonparametric BN model [24]. See Section 3.5 for further discussion.

Importantly, the above flexibility allows for the use of efficient algorithmic tools.
Straightforwardly, assuming the marginals are estimated first, estimation of the en-
tire CBN model decomposes into independent estimation of local copulas. Build-
ing on the same decomposability, standard greedy methods for structure learning
can also be employed. More interestingly, the representation gives rise to approxi-
mate inference and structure learning innovations that are specifically tailored to the
model. The latter is briefly described next while the interested reader is referred to
Elidan [9] for details of the former.

Lightning-speed Structure Learning

Elidan [10] tackles the challenge of automated structure learning of CBNs in a high-
dimensional settings. When the graph G is constrained to be a tree, the optimal struc-
ture can be learned using a maximum spanning tree procedure [6]. More generally,
as the number of possible graphs is super-exponential in the number of variables,
the common approach for structure learning is a greedy procedure that involves lo-
cal structure modifications (e.g., single edge addition, delete and reversal) and is
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guided by a model selection score. Typical scores, such as the Bayesian Information
Criterion (BIC) [43], balance the likelihood of the model and its complexity. See,
for example, Koller and Friedman [22] for details and variants.

The building block of essentially all score-based structure learning methods for
graphical models is the evaluation of the merit of an edge in the network. This
involves computing the likelihood gain that would result from adding an edge to
the network, which in turn involves estimation of the bivariate maximum likelihood
parameters. In the case of the CBN model, this involves computation of

∑
m
l=1 logc

θ̂
(FX (x[l]),FY (y[l])),

where θ̂ are the estimated parameters, x[l] is the value of X in the l’th instance, and
the sum is over samples. Unfortunately, estimating θ̂ , as well as the actual com-
putation of the log-likelihood function can be difficult. In fact, for non-Gaussian
real-valued models, even the learning of a tree structure can be prohibitive. Elidan
[10] proposes an alternative that builds on the fact that as m grows, the above ex-
pression approaches the negative (differential) entropy:

−H(Cθ (U,V )) =
∫

cθ (u,v) logcθ (u,v)dudv, (7)

with U ≡ FX ,V ≡ FY . However, computation of the copula entropy can also be dif-
ficult since for most copula families the above integral does not have a closed form.
Instead, an efficient to compute proxy is proposed.

The relationship between Spearman’s rho rank correlation measure of association
ρs(X ,Y ) ≡ cov(U,V )

σ(U)σ(V ) and the copula function is well known: it can be easily shown
(e.g., [30]) that for a distribution fX ,Y (x,y) and its corresponding copula

ρs(X ,Y ) = ρs(Cθ )≡ 12
∫∫

Cθ (U,V )dudv−3. (8)

Further, the vast majority of copula families define a concordance ordering where
θ2 > θ1 implies Cθ2(u,v) > Cθ1(u,v) for all u,v. Thus, for most copula families,
Spearman’s rho is monotonic in the dependence parameter θ .

Elidan identifies a further intriguing relationship: it is conjectured that Spear-
man’s rho is monotonic in the copula entropy, possibly given some weak necessary
conditions. The result is proved for elliptical copulas and for the Farlie-Gumbel-
Morgenstern family. In addition, the conjecture is demonstrated via simulation for
varied families whose only known commonality is concordance ordering.

Thus, in many cases, the easy to compute Spearman’s rho can be used as a proxy
to the expected log-likelihood, and asymptotically consistent model selection can
be carried out for tree models. For several real-life datasets, where the underlying
distribution in unknown, a near monotonic relationship is demonstrated in practice
between the log-likelihood function and the empirical Spearman’s rho. For more
complex structures, Spearman’s rho can be used to heuristically guide the learning
procedure. The result is a lightning-speed procedure that learns structures that are as



Copulas in Machine Learning 13

effective in terms of generalization to unseen test data as those learned by a costly
exact procedure, with orders of magnitude improvement in running time. Appeal-
ingly, the running time improvement grows with the domain’s complexity. A 100
variable structure, for example, is learned in essentially the same time that it takes
to learn the structure of a naive Gaussian BN (less than a minute on a single CPU).

3.4 Copula Processes

Consider the problem of measuring the dependencies between real-valued measure-
ments of a continuous process. For example, the dependence between a rocket’s
velocity at different times as it leaves earth, and how it relates to the dependence be-
tween the rocket’s distances. As Wilson and Ghahramani [53] observe, these quanti-
ties are naturally on different scales and have different marginal distributions. Thus,
it is desirable to separate the univariate effect from the dependence structure. Toward
this goal, they define a copula process which can describe the dependence between
arbitrarily many random variables.

Definition 3.2. Let {Xt} be a collection of random variables indexed by t with
marginal distributions Ut ≡ Ft(Xt). Let Gt be the marginal distributions of a base
process, and let H be the base joint distribution. Xt is a copula process with Gt ,H,
denoted Xt ∼ CP(Gt ,H), if for every finite set of indices I = {t1, . . . , tn}

P
(
∩n

i=1{G−1
ti (Uti)≤ ai}

)
= Ht1,...,tn(a1, . . . ,an),

where G−1
t is the quasi-inverse of Gt . That is, for all ti ∈ I , H defines the joint

distribution over {G−1
ti }ti∈I .

As an example, consider the case where the base measure is a Gaussian pro-
cess (GP). Xt is a GP if for every finite subset of indices I , the set {Xti}ti∈I has
a multivariate Gaussian distribution. To allow for a variable size set I , a GP is
parameterized by a mean function m(t) that determines the expectation of the ran-
dom variable Xt , and a kernel function k(t, t ′) that determines the covariance of Xt
and X ′t . GPs are widely used in machine learning to define distributions over an arbi-
trary number of random variables or functions (see Rasmussen [37]). When the base
measure is chosen to be a GP, we say that Xt has a Gaussian copula process (GCP)
distribution. This is equivalent to the existence of a mapping Ψ such that Ψ(Xt) is a
GP. We denote this by Xt ∼ GCP(Ψ ,m(t),k(t, t ′)).

In principle, given complete samples and a known mapping, one can estimate a
GCP by simply transforming the data and using black box procedures for GP estima-
tion, such as that of Snelson et al. [49]. Wilson and Ghahramani, however, consider
a more challenging application setting that requires further algorithmic innovation.
Concretely, they introduce a volatility model where the unobserved standard devia-
tions of the data follow a GCP distribution

σt ∼ GCP(g−1,0,k(t, t ′)).
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Model References variables Structure Copula Comments
Vines [3, 1, 25] < 10 conditional any bivariate well understood

in practice dependence general purpose framework
Nonparametric [24, 16] 100s BN + Gaussian mature application
BBN vines in practice
Tree-averaged [21, 46] 10s Mixture any bivariate requires only

Section 3.1 of trees bivariate estimation
Nonparanormal [26] 100-1000s MN Gaussian high-dimensional estimation

Section 3.2 with theoretical guarantees
Copula networks [8, 10] 100s BN any flexible at the cost of

Section 3.3 partial control over marginals
Copula processes [53, 18] ∞ - multivariate nonparametric generalization

Section 3.4 (replications) of Gaussian processes

Table 1 Summary of the different copula-based multivariate models

The observations Xt ∼N(0,σ2
t ) are assumed to follow a normal distribution, though

this assumption can easily be relaxed. The difficulty is rooted in the fact that the σt ’s
are never observed, and that the so called warping function g is unknown.

Let θ be the parameters that define both the GP covariance function and the
warping function. Further, using a different notation from Wilson and Ghahramani
to maintain consistency, let zt = g−1(σt) be the latent function values that have a GP
distribution. The central components involved in estimating θ from samples xt and
making prediction at some unrealized time t? are:

• A Laplace approximation for the posterior f ( fZ(zt?) | y,θ).
• A Markov Chain Monte Carlo technique to sample from this posterior, specifi-

cally the elliptical slice sampling method [29].
• A flexible parametric as well as nonparametric warping functions to transform

the samples into standard deviation space.

We refer the interested reader to Wilson and Ghahramani [53] for the details, as well
as favorable results relative to a GARCH model when applied to financial data.

3.5 Comparative Summary

In this section we summarize the relative merits of the different multivariate ap-
proaches presented in the previous sections. Also discussed is the relationships to
vine models and a related BN-based construction. Table 3.5 summarizes the prop-
erties of each of the models discussed.

Vine models [19, 3] have become the dominant tool in the copula community
for the construction of flexible multivariate copulas. The widely studied formalism
builds on successive conditioning and the use of bivariate copulas to construct mul-
tivariate distributions. While the framework is quite general, the seemingly bivariate
estimation relies on conditional terms of greater dimension that can be hard to es-
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timate. In practice, most applications are computationally limited to less then 10
variables, with recent innovations (e.g., [5]) somewhat pushing this boundary.

The tree-average distribution model of Kirshner [21] described in Section 3.1
generalizes Darsow’s Markovian operator and allows for the construction of high-
dimensional copulas via a composition of (unconditional) bivariate copulas. Ap-
pealingly this requires only bivariate estimation but is hampered by the indepen-
dence assumptions implied by the tree structure. These assumptions are relaxed by
allowing for a mixture of all trees construction which is efficiently learned using a
compactly represented prior. A Bayesian refinement of the work was later suggested
by Silva and Gramacy [46]. The construction is practical for 10s of variables.

Distribution-free or nonparametric belief Bayesian networks (NPBBNs) [24, 16],
are aimed at overcoming the limitations of simple vines by using a BN structure
to encode a decomposition of the joint distribution, and employing local vines to
encode fXi|Pai . In principle, the construction can be used with any copula for which
the specified conditional rank correlations can be realized. In practice, this can be
carried out easily only when using an elliptical copula. That said, NPBBNs have led
to the most mature and large-scale copula constructions to date.

Copula Bayesian networks (CBNs) [8], developed in the machine learning com-
munity also use on a BN structure to encode independencies that are assumed to
hold in the distribution. The local conditional density, however, is parameterized
differently via a proper normalization of a joint local copula over a variable and its
parents in the graph. For tree structured models, a CBN reduces to the tree construc-
tion suggested by Kirshner [21]. When using a Gaussian copula, as discussed, it is
also possible to estimate the parameters of the entire model so to ensure preserva-
tion of the univariate marginals. Thus specified, the model is equivalent to NPBBNs
using local Gaussian copulas. However, CBNs also allow for greater flexibility at
the cost of “skewed” marginals. Intuitively, this results from overlapping influences
of multiple parents of a variable. Practically, since each local density is parameter-
ized via an estimated joint copula with the same marginals, the overall univariate
marginals are quite accurate. From a given marginals viewpoint this may be unac-
ceptable. However, from a broader modeling perspective, in the face of finite data
and an unknown joint distribution, the goals of maximum likelihood and full con-
trol over the univariate marginals are competing ones. In this light, a balance be-
tween flexible modeling and univariate control may be beneficial. Importantly, if
one is willing to strike this balance, then the CBN construction opens the door for
algorithmic advances from the field of probabilistic graphical models. Indeed, the
experiments presented in Elidan [8] are the largest where the structure of the model
was automatically learned. The construction also subsequently led to specifically
tailored efficient inference [9] and structure learning methods [10].

The nonparanormal method of Liu et al. [26] tackles the problem of structure
learning in the complementing representation of undirected graphs. While it is
specifically focused on an Gaussian copula, it provides appealing theoretical guaran-
tees of consistency when the data is generated from the model, as well as risk con-
sistency guarantees when samples arise from a different distribution. Importantly,
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the method applies to the previously unstudied regime of nonparametric estimation
in high-dimensions when the number of parameters exceeds that of the samples.

Finally, the copula process model of Wilson and Ghahramani [53] defines a dis-
tribution over an infinite number of random variables while allowing for the explicit
control over the marginals, thus generalizing Gaussian processes. We note, that “in-
finite” here may be misleading since a “variable” is a replication, and Gaussian pro-
cesses can also suffer from computational limitations. An obvious but challenging
future prospect is the combination of this construction with local decomposability.

4 Information Estimation

Estimation of the mutual information of a set of variables is a fundamental challenge
in machine learning that underlies numerous tasks ranging from learning the struc-
ture of graphical models to independent component analysis to image registration.
However, for real-valued non-Gaussian random variables, estimation of different
information measures can be difficult. In particular, the plug-in approach of com-
puting the information based on an estimated density is often ineffective due to the
difficulty of constructing complex joint distributions. Fortunately, just as copulas
are opening new frontiers for modeling high-dimensional complex densities, so do
they offer new opportunities for estimation of information measures. In this section
we describe a series of recent works that build on such opportunities.

For all works discussed below, let X [1 : m] =X[1], . . . ,X[m] be m i.i.d. samples of
X. The first (obvious in the context of copulas) step of all works is a rank based trans-
form Zi[l] = 1

m ∑
m
k=1 1Xi[l]≤Xi[k]. Asymptotically, Zi will be uniformly distributed on

[0,1]. However, the random samples Z[1], . . . ,Z[m] are no longer independent. The
works below take advantage of the former property and overcome the limitations of
the latter consequence to produce appealing information estimators.

4.1 Information Estimation Based on Graph Optimization

The goal of both Póczos et al. [36] and Pal et al. [32] is to effectively estimate the
Rényi information defined as

Iα(X) = 1
α

log
∫

f α
X (x)

(
∏i fi(xi)

)1−α

dx.

Note that when α → 1, Rényi information converges to the well known Shannon’s
mutual information measure. Rather then attempt to estimate fX(x) which is a nui-
sance parameter, both works perform direct nonparametric estimation of Iα(X) by
combining copula-based tools and graph-based estimators for the Rényi entropy

Hα(X) = 1
α

log
∫

f α
X (x)dx.
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Although both works contain interesting contributions, for clarity of exposition we
focus on the former and encourage the interested reader to explore the latter.

Let G be a graph with m nodes. Note that this is not a probabilistic graphical
model over X but rather a graph whose nodes will index the training samples. Let
E(G) be the set of edges in G and let G be a family of such graphs. For example,
GST will correspond to the family of all spanning trees over m nodes. Now define

Lm(X[1 : m]) = min
G∈G ∑

l,k∈E(G)

‖X[l]−X[k]‖p.

In words, Lm(·) is the minimum p-power weighted edge length of graphs in G . For
example, for GST and p = 1, Lm(·) is simply the length of the minimal spanning
tree, a quantity readily found using efficient graph optimization. Remarkably, Lm(·)
is also useful for entropy estimation:

Theorem 4.1. (Steele [50]) Let n ≥ 2,0 < α < 1, and let X[1 : m] be i.i.d. random
vectors supported on [0,1]n with density fX. Define the estimator

Hm(X[1 : m]) =
1

1−α
log

Lm(X[1 : m])

γn,α mα
,

where γn,α is a constant that does not depend on fX. Then, Hm(X[1 : m])→ Hα(X)
almost surely as m→ ∞ (similar theorems exist for other graph families G , see
Póczos et al. [36] for details and references).

The first obstacle in using the above theorem is that it applies to variables
that are supported on [0,1]n. This is easily overcome by the rank-based transform
that results in Z[1], . . . ,Z[m]. Now, since Zi is defined via a measurable invertible
mapping, Iα(Z) = Iα(X). Further, since the marginals of Z are uniform, we have
Iα(Z) =−Hα(Z) so that an entropy estimator can used to estimate information (this
generalizes the known fact that Shannon’s information is equal to the negative cop-
ula entropy). The transform, however, introduces a new difficulty since the samples
Z[m] are now dependent. Poczos et al [36] shows that despite this the estimator has
favorable strong consistency and robustness properties. They also demonstrate the
advantage of their rank based approach in practice, for an image registration task.

4.2 Kernel-based Dependency Measures

Like the above works, Póczos et al. [34] also start with an empirical rank trans-
formation of the data followed by the application of an existing distance measure
between distributions. The combination, however, is quite different than the graph
optimization based approaches described above. Omitting most of the technical de-
tails, we briefly present the high level idea and the merits of the resulting estimator.
We start with the definition of the maximum mean discrepancy (MMD) measure of
distributions similarity, which can be efficiently estimated from i.i.d. samples:
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Definition 4.1. Let F be a class of functions, P and Q be probability distributions.
The MMD between P and Q on the function class F is defined as follows:

M [F ,P,Q]≡ sup f∈F (EX∼P[ f (x)]−EY∼Q[ f (y)]) .

We will focus on functional spaces that are a reproducing kernel Hilbert Space
(RKHS), a fundamental tool in machine learning [42]. Without going into the tech-
nical definition, the notion of RKHS is important since, assuming that F is a unit
ball of RKHS H , measures such as M (F ,P,Q) and related quantities can be es-
timated efficiently [4]. Building on this fact, consider the following dependence
measure

Ik(X1, . . . ,Xn)≡M (F ,FX,FU)

where we use FU to denote the n-dimensional uniform distribution. Póczos et al.
[34] show that if ones chooses F properly (a RKHS with an additional denseness
requirement), then Ik is a proper dependence measure that follows Schweizer and
Wolffs’s intuitive axioms [44]. They suggest an empirical estimator for Ik that is
based on an empirical MMD estimation of the rank transformed samples Z[m], and
prove that their easy to compute estimator is almost surely consistent. Further, they
provide upper bound convergence rates. Finally, they demonstrate the merit of the
estimator in practice in the context of a feature selection task.

5 Summary

In the introduction it was argued that, in the context of multivariate modeling and
information estimation, the complementing strengths and weaknesses of the fields of
machine learning and that of copulas offer opportunities for symbiotic constructions.
This paper surveyed the main such synergic works that recently emerged in the
machine learning community.

While discrete high-dimensional modeling has been studied extensively, real-
valued modeling for more than a few dimensions is still in its infancy. There exists
no framework that is as general and as flexible as copulas for multivariate modeling.
Thus, it is inevitable that machine learning researchers who aim to stop discretiz-
ing data, will have to pay serious attention to the power of copulas. Conversely, if
researchers in the copula community aim to cope with truly high-dimensional chal-
lenges, algorithmic prowess, a focus of the machine learning community, will have
to be used. True, impressive large-scale models have been built using NPBBNs.
However, the multi-year endeavor supported by human expertise cannot be scaled
up or easily applied to a broad range of problems. Automated learning of models
that takes into account the difficulties presented by the high-dimensional and par-
tially observed setting is clearly needed. The goal of this survey is to provide an
entry point for those aiming to tackle this far from realized challenge.
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