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Abstract

We study the role of information exchange, leadership, and coordination in team and

partnership structures. For this purpose, we view individuals jointly engaging in produc-

tive processes—a “team”—as endowed with individual and privately held information on

the joint production process. Once each team member decides on whether or not to share

his private information truthfully, he chooses which effort to exert in the joint production

process. This effort, however, is not contractible: only the realized output (or profit) of

the team can be observed. Our central question is whether or not incentives can be pro-

vided to a team in this environment such that team members communicate their private

information and exert efficient productive efforts on the basis of this communication. Our

main result shows that there exists a simple ranking-based contract that implements both

desiderata in a wide set of situations.
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1 Introduction

This paper analyzes combined moral hazard and adverse selection problems in teams and,

synonymously throughout the paper, partnerships. Team members exert unobservable effort

and the generated output is entirely allocated among the members of the team. Created output

depends not only on the chosen efforts but also on an underlying productivity parameter. The

source of adverse selection is that the information about this parameter may be privately known

to some team members. Therefore, an efficient mechanism must generate the right incentives

for both information revelation and the appropriate effort exertion. We ask the following

question: is there a mechanism that can accomplish both goals if some additional information

on performance (e.g., a noisy ranking of the team members’ efforts) is available?1

The presence of asymmetric, private information enables informed team members to hide

potentially inefficient effort choices with their private information. Intuitively, a privately in-

formed player can pair a biased report of private information with a suitably chosen effort to

manipulate the outcome.2 In order for such behavior to be preventable, remuneration must be

based on both the realized output and all privately informed team members’ reports. Since

the extended model also allows players to be ex-ante asymmetric, an efficient incentive scheme

must be capable of personalizing incentives for every team member according to their role in

the team. This applies to both effort exertion and reporting incentives but, again, the main

problem is the added possibility of a concerted, combined deviation from efficiency along both

dimensions.

The principal elements of our model are private information, unobservable efforts, and

team structure.3 As organizations and teams can be seen to exist precisely in order to resolve

or process informational problems (Coase, 1937; Radner, 1962; Marschak & Radner, 1972), the

introduction of asymmetric information into what is otherwise a standard team production

problem seems to be natural. To fix ideas, consider a situation in which only one of the

otherwise identical team members—whom we call the “team leader”—receives a private signal

that affects the outcome of team production. This informed team member may not find it in

her best interest to reveal this information truthfully to others. Our main result—which may be

surprising given the classic inefficiency results of Holmström (1982) for moral hazard in teams

1 In the words of Groves (1973, p. 618), the problem is to induce players “to behave as a team, i.e., to send
optimal information and make optimal decisions from the point of view of the organization objective.” It
is well known that the answer to our research question in the absence of additional information on team
member efforts is negative. In particular, Holmström (1982) shows in a complete information framework
that moral hazard is incompatible with efficiency if efforts cannot be observed.

2 A privately informed player may, for example, be able to misrepresent her private information about joint
productivity in order to deceive other team members into providing inefficiently high (or low) efforts while
planning to capitalize on this response through a low (or high) effort herself.

3 In team or partnership structures, partners share the profit among themselves. Thus, any incentive mech-
anism is subject to the constraint to balance the team’s budget. Many other bilateral or multilateral
contractual situations are also subject to similar implicit budget restrictions (Spulber, 2009, p. 57, p. 97).
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and Hermalin (1998) for the adverse selection leadership case—shows that a team remuneration

scheme exists that can overcome this “communications dilemma” and implement both efficient

information sharing and subsequent efficient efforts even though efforts are not contractible.

Apart from observed output and the leader’s report, the derived sharing rule also depends on

some statistic of exerted efforts, for instance, a contractible noisy ranking of partners’ efforts

interpreted as a contest among team members. This statistic is the main element that our

analysis adds to the literature and it allows for a first-best solution.4 The profit-sharing rule

subdivides realized team output unevenly among all team members in symmetric equilibrium

and therefore balances its budget.

An example of the applicability of the model’s formal structure is a situation in which a

patient receives the attention of a medical team consisting of a doctor and several nurses. An

initial diagnosis yields private, asymmetric information to the doctor that can be shared before

a procedure is performed. During this treatment, the team members’ efforts are not necessarily

verifiable. Moreover, moral hazard arises if the doctor does not pay proper attention during

the medical procedure and then blames the outcome on the initial condition of the patient on

whom she is privately informed. Hence, incentives may exist to provide sub-optimal efforts,

especially if they are coordinated with an initially misstated opinion on the patient’s needs.5

Our proposed sharing rule can dissuade the leader from misreporting by ensuring that,

even for misrepresented private information, efficient effort provision given the leader’s report

remains a best reply of both the leader and the other team members. Since our profit-sharing

rule is explicitly constructed to guarantee this, a combination of a misleading report with a

subsequent inefficient effort is not profitable. Consequently, as the leader has incentives to

report her information truthfully, the other team members may base their reply on this report,

which allows for a jointly efficient set of efforts.

We generalize our efficiency result in several directions, including the cases of i) ex-ante

asymmetric players, ii) private information dispersed among several players, iii) an information

structure that generalizes over relative rankings, and iv) “leading by example” in such a way

that the leader can exert either contractible or non-contractible upfront efforts. In all four

extensions the precise formulation of the required sharing rule changes but our principal result

that full efficiency is implementable is robust to these model variations. The main additional

4 Such a noisy ranking of efforts seems to be regularly collected in the form of relative performance information
and is naturally available as part of incentive schemes in many organizations (Lazear & Shaw, 2007). More-
over, since the required effort information is not necessarily cardinal, collecting these statistics represents a
weaker informational requirement than what is usually embodied in standard piece-rate-based contracts.

5 Recent evaluations of (relative) performance pay in the medical professions include Bardach et al. (2013) and
Himmelstein & Woolhandler (2014). Other applications can be found in the professional services industries
in which partnership structures are the dominant organizational forms. Examples include law, accounting,
hedge funds, and, until recently, investment banking (Greenwood & Empson, 2003). Individual performance
evaluation is used by many partnerships for promotion decisions or the allocation of bonus payments. We
provide a discussion of further applications and examples in our concluding section.
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insight drawn from these generalizations is that, if agents are asymmetric with respect to their

impact on production, efficiency can be obtained only if private information is restricted to a

single agent. In the case of multiple informed partners, their asymmetry generally does not

allow them to simultaneously align their incentives.

The plan for the remainder of the paper is as follows. After a short overview of the two

literatures unified by our analysis, we define our model in Section 2. Section 3 presents our

symmetric efficiency result. Section 4 illustrates several extensions of the main model. In the

concluding section, we discuss of a further set of applications and examples of leadership and

coordination, including rival project selection and leading by example. A detailed analysis of

leading by example is provided in Appendix A. Proofs of all results in the main text can be

found in Appendix B. A proof ensuring the existence of the equilibrium that we derive under

a broad class of specifications is given in Appendix C, together with an example illustrating

equilibrium existence in further cases.

Related literature

The present paper combines two distinct literatures on team production and information-based

leadership into a unified contracting framework. The classic contributions to the literature on

moral hazard in teams are Alchian & Demsetz (1972) and Holmström (1982) who establish

the impossibility of efficiency in team production under a budget-balancing constraint.6 When

efforts are unobservable, players have an incentive to free ride because they share their marginal

contributions with other players but bear the marginal costs on their own. Following these

papers, Legros & Matthews (1993) analyze when approximate efficiency in team production

can be achieved if one player chooses inefficient effort with a small probability in order to

“monitor” other players. Strausz (1999) shows that efficiency can be achieved if sequential

instead of simultaneous effort exertion is considered and players can observe their predecessors’

input. Battaglini (2006) analyzes multi-dimensional team production problems and shows that

efficiency can be achieved if the dimensionality of team output is sufficiently large. These

contributions typically consider pure moral hazard problems and focus on how to mitigate

players’ free-riding incentives. We contribute to this literature by extending the standard

team production setup by the addition of asymmetric information on team productivity. This

extension is nontrivial because a mechanism that resolves free-riding incentives may very well

fail to ensure truthful information transmission, or create incentives for combined deviation in

both information revelation and effort exertion. For example, the solution in Legros &Matthews

(1993) that implements approximate efficiency in pure moral hazard environments leads to an

exaggeration of reported productivity if it is the private information of some player. The same

6 This team production literature is distinct from the principal-agent framework because of the absence of a
principal and the implied requirement for the budget to balance among team members.
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is true for the sequential mechanism proposed by Strausz (1999). We show that a ranking-

based sharing rule can be used to achieve efficiency in this nested problem of moral hazard and

adverse selection. Gershkov et al. (2009) introduce the idea of adding a verifiable ranking of

players’ efforts in order to overcome pure moral hazard in team problems. The present paper

improves on this analysis by allowing for the much more general setting of private information.

As a result, the ideas in this paper focus on issues of information transmission that were entirely

absent from previous analyzes. Consequently, we can show in which environments it is possible

(and impossible) to balance free riding with information transmission incentives in order to

obtain efficiency.

Interest in information-based leadership problems was initiated by Hermalin (1998) who

studies a privately informed player who communicates her information to others and partici-

pates in team production. Hermalin (1998) defines a leader as a team member who induces a

voluntary following by credibly transmitting private information. He shows that an observable

sacrifice or tangible upfront investment by the leader (“leading-by-example”) can mitigate the

adverse selection problem. Following this paper, Komai et al. (2007) analyze whether it is bet-

ter to concentrate information in a single player or make it transparent to all players. Komai

& Stegeman (2010) broaden the study of leading-by-example games to binary participation

choices and nonlinear utility functions. Zhou (2011) extends this information-based leader-

ship framework to the study of organizational hierarchies. Hermalin (2014) examines the pros

and cons of charismatic leadership. The contributions in this literature (on which recent and

comprehensive surveys have been provided by Ahlquist & Levi (2011) and Hermalin (2012))

typically focus on information transmission between the players and how to mitigate the impact

of adverse selection. These contributions show that the signalling incentives of the informed

players can partially resolve the moral hazard (or free-riding) problem. By contrast, we develop

a ranking-based compensation scheme in which the prize structure depends on the level of team

output and the leader’s announcement of the state of the world. This mechanism encourages

the leader to truthfully reveal her private information while at the same time eliminating the

free-riding incentives of all team members.

Both the psychology and management literatures contribute frequently to the study of infor-

mation sharing in teams.7 In a meta-study of “social loafing” (free-riding) experiments spanning

more than a decade of observation of team information sharing decisions, Mesmer-Magnus &

DeChurch (2009) report that information-sharing in teams is often problematic in the sense

that individuals who together possess all relevant information do not share that information

and thus keep the team sub-optimally informed. Similarly, Pearsall et al. (2010) report that

“the interdependent nature of these teams presents a unique challenge to organizations, as

7 The applied psychology literature takes Ringelmann’s rope-pulling experiments (1882–87) as a starting point
(Ringelmann, 1913; Ingham et al., 1974). This literature significantly predates and complements the eco-
nomics literature on free-riding.
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facilitating the effective performance of team members requires managers to find ways to moti-

vate both individual effort and the coordination of diverse expertise.” This paper provides an

incentive system for members of such teams to share their information efficiently and truthfully

and shows when such systems do not exist.

There has been intense interest in combined adverse selection and moral hazard problems in

principal-agent settings. See Guesnerie et al. (1989) for a comprehensive review of the early lit-

erature. In a repeated setting, Rahman (2012) characterizes an optimal contract if the monitor’s

observations are private and costly. Gershkov & Perry (2012) characterize optimal contracts

in a dynamic principal-agent setting with moral hazard and adverse selection (persistent as

well as repeated). In a more general dynamic environment, Garrett & Pavan (2012) allow for

the possibility of agent turnover and characterize the optimal retention policy. Garrett & Pa-

van (2015) analyze how the dynamic power of incentives optimally varies with the relationship

tenure in a dynamic environment with moral hazard and adverse selection.

2 The model

There is a set N of n ≥ 2 symmetric, risk-neutral players. Each player i ∈ N exerts an effort

ei ∈ [0,∞) that need not, in principle, be verifiable. Effort cost c(ei) is assumed to be strictly

convex with c(0) = 0 and c′(0) = 0. Efforts generate increasing and concave team output

of y(α; e1, . . . , en), which depends on the players’ efforts and the realization of some random

variable α, interpreted as a productivity parameter, that is distributed according to function

F on interval [a, b], with8 0 ≤ a < b ≤ ∞. We assume that y is symmetric with respect to its

last n arguments, i.e., output is invariant with respect to permutations of the last n arguments.

Denote
(1)e−i = (e1, . . . , ei−1, ei+1, . . . , en) and e = (ei, e−i).

Output y (α; ei, e−i) is twice continuously differentiable with y2(α; 0, e−i) > 0 for any α ∈ [a, b]

and any9 e−i. We assume that the team output or production function y(α; ei, e−i) exhibits

positive cross-derivatives between ei and α for any i and e−i. The signal α is privately observed

by player 1, the team leader, while all other team members know only the distribution of α.

Throughout, we denote the reported signal by α′ and the actual realization of output by y∗.

We assume that, in addition to the observation of realized output, there is a contest that

specifies a ranking of the agents according to their exerted efforts. The ranking is noisy and

8 Although our analysis assumes that the production function is deterministic, our main result extends to the
case of stochastic production, for instance, y(α; e1, . . . , en)+ε with ε ∼ G[

¯
ε, ε̄] and E (ε) = 0. The error term

washes out in expectation and exactly the same sharing rule as in Proposition 1 implements full efficiency.
9 Throughout the paper, hi, h ∈ {y, f, s} denotes the partial derivative of h with respect to the ith argument.
The second derivative with respect to the same ith argument is denoted hi,i and the second-order mixed
partial derivative with respect to the ith and jth arguments is written hi,j . As usual, h′ denotes the first
derivative of a function with a single argument.
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depends on the agents’ exerted efforts. The outcome of the contest is observable and verifiable.

We denote by fJ (ei, e−i) the probability that player i is ranked10 jth. Observe that for any

i ∈ N , ei and e−i,

(2)
n∑

J =1

fJ (ei, e−i) = 1.

We assume that these functions f are symmetric with respect to the identity of the players.

In addition to the differentiability of f(ei, e−i) with respect to all arguments we assume that,

for any e−i, f
1 (ei, e−i) increases with ei; that is, the probability of being ranked first increases

with own effort. A team contract specifies the shares of a team’s output for each player. Budget

balancing requires that these shares sum to one across players. We look for a team contract

that is budget-balanced and implements the socially efficient efforts as defined in the next

subsection.

2.1 Efficiency benchmark

Socially efficient team efforts are defined as the set of efforts that maximize social welfare as

chosen by a benevolent planner (who knows α and can dictate agents’ efforts), i.e.,

(3)max
e

y(α; e1, . . . , en)−
n∑

i =1

c(ei).

Hence, first-best efforts, which are symmetric under the given assumptions on output y(·) and
costs c(·), are denoted by e∗(α) = e∗1(α) = · · · = e∗n(α) and are defined as

(4)yk(α; e(α), . . . , e(α)) = c′(e(α))

for k ∈ {2, . . . , n + 1}. Positivity of the cross-derivatives of the output function implies that

e∗(α) is increasing in α. Note that the contest does not play any role in the efficient outcome

but can be used as an information device for implementing the efficient effort choice.

In our basic setup, the single leader has private information on the value of the group’s

productivity parameter α. This opens a door to strategic manipulations by the leader, because

although this information is valuable to everyone, a problem arises if the players share team

output in some fixed way because the leader may then have an incentive to lie: intuitively, the

leader may find it individually beneficial to claim that the group is in a “high-productivity”

state by some misreport α′ > α to induce all other team members to exert high efforts, even

10 A noisy ranking is neither fully informative nor fully uninformative about efforts. In the fully informative
case, the ranking technology is not differentiable (which violates our assumptions), resulting in an all-pay
auction environment. The polar case of a fully uninformative ranking (i.e., no additional information over
the standard case) brings us back to the Holmström environment in which it is well known that efficiency
cannot be implemented. Section 4.3 generalizes the available information on the contest structure assumed
here.
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if she plans to put in less. The other team members, anticipating this, may then disregard the

leader’s report. Thus, in this framework, an efficient team contract, while keeping the budget

balanced, has to solve a dual incentive problem: i) eliciting true information from the leader

and ii) encouraging efficient efforts from both the leader and the other team members.

3 Results

In this section we present the incentive mechanism and our results for the case in which players

are ex-ante symmetric and information is isolated in the sense that only the team leader, called

player 1, has private information. This setup is later generalized to dispersed information where

each player receives a private signal on team productivity and to ex-ante asymmetries among

team members.

The designer suggests the following mechanism consisting of both a ranking-based sharing

rule that divides the total generated output y∗ and a dynamic game structure. At the first stage,

after the leader learns her private information and all players observe the proposed sharing rule,

players either accept this proposal or disagree to participate in the mechanism. If the contract

is rejected by at least one agent the game ends. Conditional on acceptance of the contract by

all agents, the privately informed player reports her information publicly. At the second stage,

all players exert efforts and, after the realization of both the output and the contest ranking,

the generated team output is shared according to the proposed sharing rule.11

The efficient compensation scheme must deter the leader from any combined deviation

consisting of misreporting the productivity parameter and exerting inefficient efforts by aligning

her private utility with the social preferences. Therefore, the leader’s private information makes

off-equilibrium behavior (after a deviation by the leader at the reporting stage) crucial. Hence,

one of the implications of adding private information to pure free-riding models is that a separate

analysis of the effort exertion stage is not possible.

The efficient sharing rule depends on the report of the team leader α′ and the realized

output y∗. We denote by sℓ(y∗, α′) the share of the agent who is ranked ℓth according to the

contest, when the realized output is y∗ and the report of the leader is α′. Budget balancedness

implies that, for any y∗ and α′,

(5)

n∑

ℓ =1

sℓ(y∗, α′) = 1.

We now show that a leader’s report of α′ = α is part of an ex-post equilibrium strategy

of the game defined by the above mechanism and that, subsequently, exerting the efficient

11 This is not the only mechanism that implements efficient efforts. In particular, the direct mechanism, in which
the team leader reports her signal privately to the designer and the designer sends effort recommendations
to all agents using a similar sharing rule, implements efficiency as well.
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effort choices e∗(α) constitutes the counterpart strategies for all players. The expected utility

of player i ∈ N from choosing effort level ei after observing report α′ in the true state of the

world α, while the other players choose their equilibrium effort given the reported state e∗(α′),

is

(6)ui(ei, e
∗
−i(α

′), α) = Eα

[

y(α; ei, e
∗
−i(α

′))

(
n∑

ℓ=1

f ℓ(ei, e
∗
−i(α

′))sℓ(y∗, α′)

)∣
∣
∣
∣
α′

]

− c(ei),

where (s1 (·, ·) , . . . , sn (·, ·)) is the output- and report-dependent sharing rule. Competitors’

report-contingent efficient efforts are

(7)e
∗
−i(α

′) = (e∗(α′), . . . , e∗(α′)
︸ ︷︷ ︸

n−1 times

),

and expectations in (6) are over α conditional on the reported α′.

In Appendix C we derive sufficient conditions for a sizable class of symmetric model speci-

fications under which the solution obtained in the following Proposition implies a global maxi-

mum.12 This class consists of linear production, convex (monomial) effort cost, and generalized

Tullock ranking. Intuitively, the existence condition stated in Proposition 6 relies on the cost

function being sufficiently convex relative to the slope of the Tullock ranking in equilibrium.

Moreover, the set of admissible types needs to be strictly positive and bounded. These bounds

on possible types are needed because—especially for few players—an excessive under-report on

a high true type would otherwise induce overexertion of effort for the informed player in order

to secure the winner’s share. The main technical difficulty the proof encounters is that the gen-

eralized Tullock technology we employ is neither globally concave nor convex and, therefore,

the implied optimization problems are not generally well-behaved.

Our first result states that, subject to equilibrium existence, ex-post efficient efforts by

all players, e∗(α), can always be obtained from the first-order necessary conditions for an

equilibrium of the specified game.

Proposition 1. Efficient symmetric efforts for all players defined in (4) can be implemented

through the winner’s share

(8 )s1(y∗, α′) =
1

n
+

n− 1

ny∗f 1
1 (e

∗(α′), e∗
−i(α

′))

[

c′(e∗(α′))− y2(α(y
∗, α′); e∗(α′), e∗

−i(α
′)))

n

]

where α(y∗, α′) is the solution to y∗ = y(α; e∗(α′)) and the losers’ share sj(y∗, α′) = (1 −
s1(y∗, α′))/(n− 1) for all13 j 6= 1.

12 For the (asymmetric) model extensions analyzed in Section 4, we further provide specific examples illustrating
that the set of equilibria is nonempty.

13 All losers are treated equally under this sharing rule. Alternatively, due to risk-neutrality, a sharing rule
consisting of the winning share (8) and appropriately designed multiple losing shares would also implement
full efficiency.
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In Proposition 1 and the subsequent results of the main part of this paper we derive only first-

order necessary conditions for the existence of equilibria (which we verify to imply sufficiency

for a subclass in Appendix C). The idea of the proof of Proposition 1 is to construct a sharing

rule that encourages the team leader to exert the efficient effort e∗(α′) given her own report α′

even if the report does not correspond to the true state of the world α′ 6= α. This sharing rule, in

addition to solving the moral hazard problem between all agents, provides appropriate incentives

to the team leader to report the correct state of the world at the first stage. Given report-

contingent equilibrium effort choices by all players, the function α(y∗, α′) can be interpreted as

the productivity parameter that an outsider can deduce from observing realized output together

with the leader’s report.

Notice that a loser’s share (1− s1(y∗, α′))/(n− 1) is given by

(9)
1

n
− 1

ny∗f 1
1 (e

∗(α′), e∗
−i(α

′))

[

c′(e∗(α′))− y2(α(y
∗, α′); e∗(α′), e∗

−i(α
′))

n

]

.

Therefore, the difference between the winner’s and the loser’s compensations is

(10)

[

c′(e∗(α′))− y2(α(y
∗, α′); e∗(α′), e∗

−i(α
′))

n

]
1

f 1
1 (e

∗(α′), e∗
−i(α

′))

where the expression in square brackets is the private marginal disutility from effort exertion.

This element aligns agent incentives with the socially efficient objective, which, in turn, gen-

erates the correct incentives for the agents to report information and to exert socially efficient

efforts.14 To see this, note that we can rewrite the leader’s utility, given sharing rule (8) and a

report α′, as u1(e, e
∗
−1(α

′), α) =

y∗

n
− 1

nf 1
1 (e

∗(α′), e∗
−1(α

′))

[

c′(e∗(α′))− y2(α(y
∗, α′); e∗(α′), e∗

−1(α
′))

n

]

+

f 1(e, e∗
−1(α

′))

[

c′(e∗(α′))− y2(α(y
∗, α′); e∗(α′), e∗

−1(α
′))

n

]
1

f 1
1 (e

∗(α′), e∗
−1(α

′))
− c(e)

=
y∗

n
− c(e) +

[
y2(α(y

∗, α′); e∗(α′), e∗
−1(α

′))

n
− c′(e∗(α′))

]
1

f 1
1 (e

∗(α′), e∗
−1(α

′))

[
1

n
− f 1(e, e∗

−1(α
′))

]

.

The last line illustrates how the leader’s dual incentive problem is satisfied: in the third ele-

ment, only f 1(e, e∗
−1(α

′)) and y∗ depend on the leader’s effort. i) Even after a misreported

state of the world α′ 6= α, small deviations in the leader’s effort from symmetric efforts,

e∗(α′), are neutralized because these only first-order affect the derivative of the averaged

social surplus, y2(α(y
∗, α′); e∗(α′), e∗

−i(α
′))/n − c′(e∗(α′)), through f 1(e, e∗

−1(α
′)); recall that

f 1(e∗(α′), e∗
−1(α

′)) = 1/n. But this effect is exactly offset by the marginal change in the first

part of the utility y∗/n − c(e), even after a non-truthful report α′ 6= α. ii) This anticipated

14 This basic idea is similar to the construction of Vickrey–Clarke–Groves mechanisms in standard mechanism
design but, instead of monetary transfers, we use output shares to align incentives.
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symmetric effort at stage two aligns the leader’s first-stage incentives for reporting the state

of the world with those of the planner because she expects to get the averaged social surplus

y∗/n− c(e), and so, in effect, the leader seeks to maximize social surplus.

This illustration shows the effect of the leader’s private information. In the case of moral

hazard only there is no reporting stage and the symmetric sharing rule is not necessary. In

fact, in such a case an identity-dependent and asymmetric sharing rule will generate the cor-

rect incentives to exert the efficient efforts even in a symmetric environment. In the present

environment, the symmetry of the sharing rules is crucial as it is used to align the leader’s

preferences with the social preferences, since symmetric expected utility guarantees that at the

first stage the leader will face a fixed share of the social surplus and, hence, choose the truthful

report to maximize social surplus. Roughly speaking, given equilibrium behavior at stage two,

the designed mechanism ensures that the privately informed player 1 finds it disadvantageous

to choose a combination consisting of a misreport α′ at stage one and an inefficient, signal-

contingent effort choice at the second stage of the game. A pair consisting of a low misreport

(inducing low efforts e∗(α′) of the uninformed players in equilibrium) and a higher than efficient

effort is undesirable under reward structure (8) because the individual convex effort cost is too

high relative to the appropriately chosen winner’s share of (lower) total output. Similarly,

a high misreport (inducing high efforts e∗(α′) of the uninformed players in equilibrium) and

low own efforts (and costs) to win a larger prize is discouraged because a well-designed losing

prize decreases in realized output. Since the informed player 1 has appropriate incentives to

truthfully report her signal, the uninformed team members can rely on a truthful report in

equilibrium.

Remark 1. We can separate the effects of moral hazard and adverse selection on our sharing

rule. In Gershkov et al. (2009), for the case of a commonly known state of the world α, the

report-independent winner’s share that implements efficiency is

(11 )s1(y∗, α) =
1

n
+

(n− 1)2y2(α; e
∗(α), e∗

−i(α))

n2f 1
1 (e

∗(α), e∗
−i(α))y(α; e

∗(α))

with each of the losers receiving sj 6=1(y∗, α) = (1− s1(y∗, α))/(n− 1).

Our new sharing rule (8) provides efficient incentives to the uninformed agents when they

believe that the informed agent reported the correct state of the world. Inserting α′ = α into

sharing rule (8) and recalling that efficiency implies both y2(α; e
∗(α), e∗

−i(α)) = c′(e∗(α)) and

α(y∗, α) = α, we get s1(y∗, α) =

(12 )

1

n
+

n− 1

n

[
c′(e∗(α))

f 1
1 (e

∗(α), e∗
−i(α))y(α; e

∗(α))
− y2(α(y

∗, α); e∗(α), e∗
−i(α))

f 1
1 (e

∗(α), e∗
−i(α))y(α; e

∗(α))n

]

=
1

n
+

n− 1

ny(α; e∗(α))

[
y2(α; e

∗(α′), e∗
−i(α))

f 1
1 (e

∗(α), e∗
−i(α))

− y2(α; e
∗(α), e∗

−i(α))

f 1
1 (e

∗(α), e∗
−i(α))n

]

11



which immediately yields (11). Therefore, the agents’ shares along the equilibrium path are the

same as in Gershkov et al. (2009). Hence, the “correction” of the sharing rule to take care of

adverse selection can be expressed as

n− 1

n

[
c′(e∗(α′))

y∗f 1
1 (e

∗(α′), e∗
−i(α

′))
− y2(α(y

∗, α′); e∗(α′), e∗
−i(α

′))

ny∗f 1
1 (e

∗(α′), e∗
−i(α

′))
− (n− 1)y2(α; e

∗(α), e∗
−i(α))

nf 1
1 (e

∗(α), e∗
−i(α))y(α; e

∗(α))

]

(13 )

which we interpret as the (off-equilibrium) value of information to the winner.15

As discussed in remark 1, sharing rule (8) corresponds in equilibrium to Gershkov et al.

(2009) for the pure moral hazard case. As a result, the uninformed players’ incentives also

correspond to those in a pure moral hazard setting: by increasing own efforts, a player enlarges

team output and own winning probability while at the same time increasing effort cost. The

derived sharing rule exactly balances the positive and negative incentives so that the uninformed

players choose efficient efforts.

Note that the derivative of the success function f 1(e∗(α′), e∗
−i(α

′)) in equilibrium with re-

spect to ei can be interpreted as the responsiveness (or precision) of the ranking to a deviation

from equilibrium by player i. In other words, this derivative expresses the extent to which win-

ning probabilities change if player i changes efforts. From (8), we get an immediate comparative

statics result with respect to the precision of the success function f 1
1 (e

∗(α′), e∗
−i(α

′)).

Corollary 1. The share of the winner s1(y∗, α′) decreases on the equilibrium path with the

precision of the ranking f 1
1 (e

∗(α′), e∗
−i(α

′)).

This is intuitive (and proved in the Appendix), since higher ranking precision increases the

incentives to the agents. Therefore, if f 1
1 (e

∗(α′), e∗
−i(α

′)) increases, agents want to exert higher

efforts. To restore their incentives, the share of the winner is adjusted/decreased.

Example 1. We illustrate our efficiency result from Proposition 1 in a simple example with

n players, Tullock ranking technology16 f 1(ei, e−i) = eri/
∑

j e
r
j with r > 0, linear production

y(α; e) = α
∑

i ei, and quadratic effort cost e2i /2. Note that in this example the efficient effort

level is e∗(α) = α. This is implemented through the following ranking-based sharing rule:

(14)
s1(y∗, α′) =

1

n
− n− 1

n3f 1
1 (α

′,α′)α′
+

(n− 1)α′

ny∗f 1
1 (α

′,α′)
=

1

n
− 1

nr
+

nα′2

y∗r
,

sj 6=1(y∗, α′) =
1

n
+

1

n3f 1
1 (α

′,α′)α′
− α′

ny∗f 1
1 (α

′,α′)
=

1

n
+

1

n(n− 1)r
− nα′2

(n− 1)y∗r

15 This is different from the notion of value of information in Hermalin (1998, footnote 12) which shows that
second-best team welfare under the true signal exceeds team welfare under the expected signal. (The same
would be true in our model.)

16 For completeness, we define f1(0, . . . , 0) = 1/n; the implied discontinuity at point (0, . . . , 0) plays no role in
this example.
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where s1(·) of the final team output is awarded to the first-ranked player while sj 6=1(·) is given
to all other players.

In Gershkov et al. (2009), the ranking-based sharing rule needed to implement full efficiency

in a pure moral hazard setting for the same production function and cost function is given by

s1 = (r−1+n)/(nr) and sj 6=1 = (r−1)/(nr). To provide the leader with incentives to truthfully

report her private information, the new sharing rule has to depend upon the realized output y∗

and the report α′. Contrasting with (14), the sharing rule obtained for the pure moral hazard

case in Gershkov et al. (2009) for the same production function and costs does not depend on

realized output y∗ and the report.⊳

An advantage of the contest approach is that it requires only ordinal noisy information

on agents’ efforts, which is arguably easier to collect than information on the precise effort

realizations. Nevertheless, the fact that we are able to implement efficient efforts implies that a

noisy ordinal ranking of efforts is a sufficient statistic in the sense of Holmström (1982, Section

3) for the cardinal effort information employed in standard contracts.

Remark 2. In addition to efforts, the ranking we employ in the analysis can be based also on

state-dependent variables such as marginal contributions. For this purpose, we define player

i’s marginal contribution from effort ei as yi(α; ei, e−i) = y(α; ei, e−i) − y(α; 0, e−i). Suppose

that we can express the resulting ranking technology by f(α; e1, . . . , en) which is symmetric

with respect to the last n arguments and f 1(α; ei, e−i) is increasing in ei; for instance, the

probability f 1(α; e1, . . . , en) = yi(α; ei, e−i)/
∑

j∈N yj(α; ej, e−j). Then we can achieve efficiency

with exactly the same sharing rule as in (8), except that f 1
1 (e

∗(α′), e∗
−i(α

′)) is replaced by17

f 1
2 (α(y

∗, α′); e∗(α′), e∗
−i(α

′)).

4 Extensions and robustness

4.1 Dispersed information

In this section we consider the case in which information about team productivity is dispersed

among multiple, ex-ante symmetric players and thus information has to be revealed and aggre-

gated before the players choose production efforts. Suppose that each individual receives some

signal αi and the production function is given by y (α1, . . . , αn; e1, . . . , en), which is symmet-

ric with respect to both the first n arguments and the last n arguments.18 Examples of such

production functions are y (α1, . . . , αn; e1, . . . , en) = g (α1, . . . , αn) h (e1, . . . , en) with symmet-

ric functions g and h and, in particular, y (α1, . . . , αn; e1, . . . , en) = (
∑n

i=1 αi) (
∑n

i=1 ei). We

17 The proof for the case of f1(α; ei, e−i) is virtually identical to that of Proposition 1 and is therefore omitted.
18 That is, output is invariant under any permutation of the first n arguments and the last n arguments.
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consider a game in which each player reports his private signal publicly and simultaneously.

After observing all the reports, agents decide simultaneously on their efforts. We show that

first-best can be implemented using a sharing rule similar to (8).

Proposition 2. There exists a sharing rule that induces truthful reports by all the agents at

the first stage and implements efficient effort choices at the second stage.

In equilibrium, the players choose symmetric efforts at the second stage. At the reporting

stage, every player expects to get 1/n of the social surplus, which aligns the players’ preferences

with the social preferences, as in the main model. Consequently, and in contrast to our analysis

of ex-ante asymmetries in the following section, all players face an identical equal sharing

problem at the reporting stage and we do not have to deal with ex-ante asymmetric reporting

incentives.

One important question in organization theory is whether a team with information dispersed

among multiple players performs better than a team in which only a single team member has

private information and thus whether the optimal team structure should allow information to

be dispersed among more than one player. Our Propositions 1 and 2 suggest that the allocation

of information does not affect the optimal team structure if an appropriately-designed ranking-

based sharing rule is used to reward the players because the first-best outcome can be achieved

in both cases. However, as we will show next, the answer to this question changes if players

are ex-ante asymmetric.

4.2 Asymmetric players

In this subsection, we study cases in which players are ex-ante asymmetric.19 We first examine

the one-dimensional signal case in which a team consists of two heterogeneous groups of players

and only one player is informed about the productivity of the team. Second, we analyze the case

in which more than one player receives private signals that affect the team’s productivity. We

then explore the intuition when and under what circumstances efficiency is (not) implementable

in either case.

In contrast to the general specification we have analyzed so far for the symmetric case, we

have to resort to specific production functions, contest success functions, and cost functions

for the asymmetric case. The reason is that we could not otherwise express the efficient asym-

metric efforts, e∗i (α
′), based on the vector of the informed players’ reports α′, which enter the

players’ first-stage information revelation problem. If these efficient effort functions cannot be

19 There are two dimensions along which players can be ex-ante asymmetric in this section. First, we allow
for cost asymmetries using commonly known but idiosyncratic constants γi. Second, production itself may
be asymmetric, with the asymmetry potentially depending on both ex-ante technological differences and the
players’ private information.
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determined explicitly, we cannot solve the informed players’ first-stage problem. Hence we have

to resort to cases where the planner’s problem can be solved explicitly. Our solution strategy is

to first solve for asymmetric identity-dependent winning shares si that ensure report-contingent

efficient efforts e∗i (α
′) for every player i at the second stage.20 These shares have a degree of

freedom captured by the term C(α′), which depends only upon the reported α
′. We call this

term “constant” C(α′) because it is the result of the solution of differential equations in output

y(e) that determine the shares guaranteeing report-contingent efficient efforts e∗i (α
′) at the

second stage. We then insert the report-contingent efficient efforts e∗i (α
′) into the informed

players’ first-stage problems to pin down the term C(α′) in order to adjust the players’ incen-

tives to report truthfully.21 This last step of using C(α′) to adjust incentives is irrelevant in a

pure moral hazard problem. In the present setting with adverse selection, the new sharing rule

again needs to depend appropriately on α
′ in order to give the informed players the incentive

to report truthfully.

4.2.1 A single informed player

Suppose that there are two groups of agents in a team.22 In Group A, there are n1 agents, each

with cost function γe2/2, γ > 0, while in Group B there are n2 agents, each with cost function

e2/2. The team production function is y = α
∑n

i=1 ei, with n = n1 + n2, n1 ≥ 1 and n2 ≥ 1.

The efficient efforts are e∗A (α) = α/γ for players i ∈ A and e∗B (α) = α for i ∈ B. The ranking

technology is the standard Tullock contest success function with f 1(ei, e−i) = ei/
∑

j ej . Among

the n players, player 1 from group A is informed about the realization of α and she reports α

publicly before any of the players choose their efforts.

We show that a group-dependent sharing rule can be used to implement full efficiency: the

winning share of realized team output when a player from group A wins is different from the

winning share when a player from group B wins the contest.

Proposition 3. Efficiency is implementable using a group-dependent sharing rule.

We prove Proposition 3 by showing that the following sharing rule implements efficiency

if either set A or B has at least two members (a slightly simpler sharing rule is stated in the

20 As si(·) denotes player i’s winning share in the asymmetric mechanism this notation differs from the sym-
metric share sℓ(·) introduced previously.

21 We ignore the players’ participation incentives in our analysis. If participation is of concern, there is another
degree of freedom (i.e., another constant) in the solved term C(α′), which can be used to adjust the share
of the team’s output among the players to ascertain the players’ participation incentives.

22 Having a more heterogeneous team with a single informed agent merely complicates the notation without
adding further insights.
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proof of the case of n1 = n2 = 1):

(15)
sA(y∗, α′) =

α′2(n1 + γn2) (n
2
1 + γn1(n2 − 1)− γn2)

γn1y∗(n1 + γ(n2 − 1)− 1)
+ C(α′)((γ + 1)y∗)−

n1+γn2
γ+1 ,

sB(y∗, α′) =
α′2(n1 + γn2)(n1(n2 − 1) + n2(γn2 − 1))

γy∗(n1 + γ(n2 − 1)− 1)n2
− n1

n2
C(α′)((γ + 1)y∗)−

n1+γn2
γ+1

with

(16)C(α′) =
(γn2 − n1)

(
α′2(γ+1)(n1+γn2)

γ

)n1+γn2
γ+1

n1(n1 + γ(n2 − 1)− 1)

where sK(y∗, α′) is the winner’s share of the team’s output if the winner is from group K ∈
{A,B}, the losers in group K receive a zero share of the team’s output, and players in group

J 6= K ∈ {A,B} receive a share (1− sK(y∗, α′))/nJ of the team’s output.

The shares sA(y∗, α′) and sB(y∗, α′) that are necessary to ensure that e∗(α′) are the mutually

best replies of the players at the effort stage have a degree of freedom captured by the term

C(α′), which is independent of the realized output. Thus, one can choose C(α′) so as to provide

the correct incentive to the leader to report truthfully at the first stage. Put differently, C(α′)

can be used to transform the informed player’s first-stage objective into any desired shape.

Figure 1 shows an example of the maximization problems of the two-player case of n1 =

n2 = 1, γ = 4/5 and α = 2 with respect to e1, e2 in the left and center panels and the

choice of report α′ in the right panel in which player 2’s implied utility is the curve shown in

gold. The right panel illustrates the way the mechanism provides the leader’s incentives at

the first stage: the “local flattening” of the uninformed player’s expected utility (as a function

of the leader’s report) makes the leader the residual claimant and aligns her incentives with

those of the planner. That is, the mechanism makes the uninformed player’s utility, given the

equilibrium effort at the second stage, “locally independent” of the leader’s report, which in

turn “corrects” the leader’s incentives to report her signal truthfully.

4.2.2 More than one informed player

Consider now the case in which more than one player has private information that affects team

productivity and the players are asymmetric. In particular, we assume that there are two

players, each with a private signal αi, i ∈ {1, 2}. The team production function takes the form

y = (α1 + βα2) (e1 + e2) and the two players’ effort costs are c1(e) = γe2/2, c2 (e) = e2/2, in

which β and γ are some commonly known parameters.23 Player i’s probability of winning the

23 Efficiency can also be achieved if production is not a function of the aggregate effort. Examples include
y = (α1/α2)e1 + βe2, y = α1α2

√
e1e2, and y = (α1 + α2 + β1α1α2)(e1 + e2 − β2e1e2), in which β, β1, and

β2 are commonly known exogenous parameters. Likewise, allowing for cost functions of different curvatures
is possible.
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e1

u1(α; e1, e
∗
2(α

′))

e2

u2(α; e
∗
1(α

′), e2)

α′

u1(α; e
∗
1(α

′), e∗2(α
′))

Figure 1: Potential unilateral deviations from efficient effort choice ei(α
′) in the left and center panels

for players 1 and 2, respectively. Player 1’s reporting problem α′ is shown in the right panel; the blue
curve is player 1’s utility u1(α; e

∗
1(α

′), e∗2(α
′)) from reporting α′ and the gold curve is player 2’s implied

utility from this choice u2(α; e
∗
1(α

′), e∗2(α
′)). Parameters: two players with n1 = n2 = 1, production

y = α(e1 + e2), α = 2, c1(e1) = γe21/2, c2(e2) = e22/2, γ = 4/5, and f1(e1, e2) = e1/(e1 + e2).

first place is f 1(ei, e−i) = ei/
∑

j ej for i ∈ {1, 2}. The first-best efforts are

(17)e∗1 (α1, α2) =
α1 + βα2

γ
, and e∗2 (α1, α2) = α1 + βα2.

These first-best efforts can be achieved with a ranking-based sharing rule, as we show next.

Example 2. With production function y = (α1 + βα2) (e1 + e2), first-best efforts are implementable.⊳

The details of the derivation can be found in the Appendix.

In the presence of multiple, privately informed players, the identity-dependent shares ensur-

ing report-contingent efficient efforts have a degree of freedom captured by the two-dimensional

constant C(α′
1, α

′
2) = C(α′). At the reporting stage, both players know that subsequent

equilibrium stage-two efforts will follow the reports. The sum of the players’ utilities as a

two-dimensional function of the players’ reports is maximized at the true signals (α1, α2) by

definition of efficiency. The two-dimensional constant C(α′
1, α

′
2) ties the two players’ individual

two-dimensional utilities together such that, at the point of truth telling, both players’ utility

functions must have a slope of zero at their partial derivative with respect to their own report.

Figure 2 shows an example of the involved maximization problems for the two-player case

with γ = 1/2, α1 = 3/2, α2 = 2, and β = 3/2. The first row shows the two players’ second-stage

effort choice problems, player 1 on the left and player 2 on the right, given reports α′
1, α

′
2. The

second row shows player 1’s first-stage report choice problem of α′
1 on the left and player 2’s

choice of α′
2 on the right. The second row of the figure exhibits the same “local flattening” of

the expected utility of an informed player, which makes each player a residual claimant given

the other player’s equilibrium report (similarly to the single-dimensional case in Figure 1 of the

previous subsection). Note that the slope of player 2’s “implied” utility at α′
1 = α1 (shown in

gold in the left panel of the second row) is now as critical as its counterpart, the slope of player

1’s “implied” utility at α′
2 = α2 (shown in gold in the right panel of the second row). This
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illustrates that the construction of the two-dimensional C(α′
1, α

′
2) needs to ensure that truthful

reporting is optimal for both players.

e1

u1(α1, α2; e1, e
∗
2(α

′
1, α

′
2))

e2

u2(α1, α2; e
∗
1(α

′
1, α

′
2), e2)

α′
1

u1(α1, α2; e
∗
1(α

′
1, α2), e

∗
2(α

′
1, α2))

α′
2

u2(α1, α2; e
∗
1(α1, α

′
2), e

∗
2(α1, α

′
2))

Figure 2: Potential unilateral deviations from efficient effort choice e∗i (α
′
1, α

′
2) in the left and right

panels of the top row for players 1 and 2, respectively. Unilateral deviations from truthful reports αi

are shown in the bottom row: player 1’s utility u1(α1, α2; e
∗
1(α

′
1, α2), e

∗
2(α

′
1, α2)) is in blue (and the

implied utility for player 2 in gold) on the left and player 2’s utility u2(α1, α2; e
∗
1(α1, α

′
2), e

∗
2(α1, α

′
2))

in blue (and the implied utility for player 1 in gold) on the right. Parameters: two privately informed
players, production y = (α1+βα2)(e1+e2), c1(e1) = γe21/2, c2(e2) = e22/2, γ = 1/2, α1 = 3/2, α2 = 2,
β = 3/2, and f1(e1, e2) = e1/(e1 + e2).

Next we develop an example in which it is not possible to achieve efficiency using our ex-post

construction. It provides us with an intuition about when it is not possible to simultaneously

satisfy the requirements of i) generating correct incentives for effort exertion, ii) truth telling,

and iii) balancing the budget. Consider a team with two players, production function y = α1e1+

α2e2, and symmetric cost functions c (ei) = e2i /2. The efficient effort levels are e∗i (αi) = αi.

Suppose that the usual Tullock success function is employed as ranking technology.

Example 3. With production function y = α1e1 + α2e2, the players’ first-stage incentives for

truth telling are incompatible with their incentives for efficient effort provision at the second

stage.⊳

Again, the details of the derivation can be found in the Appendix.

To understand why efficiency fails with this production function but not with those we

analyzed previously, take player 1’s objective function at the effort stage given the true state

α = (α1, α2), reported signals α′ = (α′
1, α

′
2), and the other player’s effort e∗2(α

′):

(18)f 1(e1, e
∗
2(α

′))s1(y∗,α′)y∗ + (1− f 1(e1, e
∗
2(α

′)))(1− s2(y∗,α′))y∗ − c(e1).
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The first-order condition evaluated at e1 = e∗1(α
′) can be written as

(19)

f 1
1 (e

∗
1(α

′), e∗2(α
′))(s1(y∗,α′) + s2(y∗,α′)− 1)y∗

+ y2(α; e∗1(α
′), e∗2(α

′))
(
f 1(e∗1(α

′), e∗2(α
′))s1(y∗,α′)

+ (1− f 1(e∗1(α
′), e∗2(α

′))(1− s2(y∗,α′))

+y∗
(
f 1(e∗1(α

′), e∗2(α
′))s11(y

∗,α′)−(1−f 1(e∗1(α
′), e∗2(α

′)))s21(y
∗,α′)

))
= c(e∗1(α

′)).

Note that if the production function has the feature that the agents’ private information can be

aggregated such that it is possible to represent y2(α; e∗1(α
′), e∗2(α

′)) by the observed output, y∗,

and the reported signals α′, then the first-order condition depends only upon realized output

and the reported signals (and is therefore independent of the true signals) and we could in

principle solve the system of simultaneous equations for shares that implement the report-

contingent efficient efforts.

In Example 2, for production function y = (α1 + βα2) (e1 + e2) it is the case that

(20)y2(α; e∗1(α
′), e∗2(α

′)) = (α1 + βα2) =
y∗

e∗1(α
′) + e∗2(α

′)
=

y∗γ

(α′
1 + βα′

2) (1 + γ)

while in the case of y = α1e1 + α2e2 in Example 3 we have that

(21)y2(α; e∗1(α
′), e∗2(α

′)) = α1,

which cannot be represented by the realized output and the reported signals. As a result,

one cannot solve for sharing rules that are independent of the true signals. In the cases an-

alyzed previously, including all symmetric and asymmetric production functions we analyzed

in Proposition 3 and Example 2, we could always represent a player’s marginal contribution

to the team’s output by only the realized output and the reported signals. Thus it is always

possible to express the first-order condition at the second stage for player i after a deviation of

that player at the first stage as a function of the contractible variables only (realized output

and reports), independently of the true signals observed by the players.

In other words, we can provide the correct incentives whenever we can aggregate the agents’

private information such that it allows us to express the marginal production as a function of

contractible parameters, i.e., reports and the observable output for any true signals, given the

obedient behavior of all the players at the effort stage.24

Note that the reason for the failure of efficiency in the case of dispersed information when

agents have asymmetric impacts on team production does not follow from the standard mech-

anism design argument on interdependent values. In fact, as we know from Mezzetti (2004),

since the total output is observable and contractible, the adverse selection problem is solvable

in this case. It is a combination of budget balancedness and effort exertion in and out of

equilibrium that makes the efficient allocation non-implementable.

24 This finding again shows the impact of adverse selection: in a pure moral hazard setting, no aggregation of
private information is necessary and it is always possible to find a group of identity-dependent ranking-based
sharing rules that ensure efficient efforts from every player.
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4.3 Generalized information structure

The rest of this paper derives contracts implementing efficient efforts on the basis of the avail-

ability of some contractible ranking information on players’ efforts (in addition to realized

output and the privately informed players’ reports). This section generalizes this available

additional information over the relative rankings f(ei, e−i) used elsewhere in the paper.

For this section, we assume that there are n ≥ 2 symmetric players only one of whom is

privately informed about α. The production function is y (α; e1, . . . , en), which we assume to

be symmetric with respect to the last n arguments. The convex cost function is the same for

all players c(ei), i ∈ N . Denote by e∗(α) the efficient symmetric effort for all players when the

state of the world is α. We denote by A, |A|= k, the set of all possible distinct k signals that

may be observed by all players with generic element a ∈ A. Assume that k ≥ 2. Denote by

Pa(e) the probability of observing signal a ∈ A when agents exert efforts e = {e1, . . . , en}. For
any {e1, . . . , en} we have

(22)
∑

a ∈A

Pa (ei, e−i) = 1.

Assume that Pa(e) is differentiable with respect to every effort. Since the signal of the infor-

mation device is contractible, the share of player i, si(y∗, α′, a), may depend on the observed

output y∗, the reported type α′, and the observed signal from the information device a.

The utility of agent i in true state α, reported state α′, and all other agents exerting efficient,

report-contingent efforts e∗(α′) while agent i exerts effort ei is

(23)ui(α; ei, e
∗
−i(α

′)) = y(α; ei, e
∗
−i(α

′))

[
∑

a∈A

Pa

(
ei, e

∗
−i(α

′)
)
si(y∗, α′, a)

]

− c(ei).

We impose the balanced budget restriction that, for each event a ∈ A, the rewards across

players sum to one, i.e.,
(24)

∑

i ∈N

si(y∗, α′, a) = 1.

The first-order condition of (23) with respect to effort choice at e∗(α′) gives

(25)

y2(α; e
∗(α′), e∗

−i(α
′))
∑

a ∈A

Pa

(
e∗ (α′) , e∗

−i (α
′)
)
si (y∗, α′, a)

+ y∗
∑

a ∈A

Pa,1

(
e∗ (α′) , e∗

−i (α
′)
)
si (y∗, α′, a)

+ y∗

(
∑

a∈A

Pa

(
e∗ (α′) , e∗

−i (α
′)
)
si1 (y

∗, α′, a)

)

y2(α; e
∗(α′), e∗

−i(α
′))

− c′ (e∗ (α′)) = 0,
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where Pa,i(e1, . . . , en) is the derivative with respect to i-th argument. From symmetry,
∑

a∈A Pa

(
e∗ (α′) , e∗

−i

1/n, and the fact that
∑

a∈A Pa (e) si1 (y
∗, α′, a) = 0, we get25

(26)y2(α; e
∗(α′), e∗

−i(α
′))

1

n
+ y∗

∑

a ∈A

Pa,1

(
e∗ (α′) , e∗

−i (α
′)
)
si (y∗, α′, a)− c′ (e∗ (α′)) = 0.

Therefore, it is possible to implement efficiency if Pa are such that there exist shares si (·) that
satisfy:

1. Symmetry: for any i ∈ N , y∗, α′ and α when all the agents exert the same effort,

(27)
∑

a ∈A

Pa (e, e, . . . , e) si (y
∗, α′, a) =

1

n
.

2. Budget balancedness: for any y∗, α′ and a,

(28)
∑

i ∈N

si (y∗, α′, a) = 1.

3. Incentive provision: for any i ∈ N , y∗ and α′,

(29)y2(α; e
∗(α′), e∗

−i(α
′))

1

n
+y∗

∑

a ∈A

Pa,1

(
e∗ (α′) , e∗

−i (α
′)
)
si (y∗, α′, a)− c′ (e∗ (α′))

= 0.

It is always trivially possible to satisfy the first two conditions; complications are generated

by adding condition 3. Therefore, to get a better understanding of the last condition, let us

look at the two-player case. We can rewrite the last condition as follows. For agent 1

(30)y2(α; e
∗(α′), e∗(α′))

1

2
+ y∗

∑

a ∈A

Pa,1 (e
∗ (α′) , e∗ (α′)) s1 (y∗, α′, a)− c′ (e∗ (α′)) = 0;

for player 2,

(31)y3(α; e
∗(α′), e∗(α′))

1

2
+ y∗

∑

a ∈A

Pa,2 (e
∗ (α′) , e∗ (α′)) (1− s1 (y∗, α′, a))− c′ (e∗ (α′)) = 0.

Symmetry of the production function implies that y2(α; e
∗(α′), e∗(α′)) = y3(α; e

∗(α′), e∗(α′)).

Summing up the last two conditions gives us

(32)
y2(α; e

∗(α′), e∗(α′)) + y∗
∑

a ∈A

[Pa,1 (e
∗ (α′) , e∗ (α′))−Pa,2 (e

∗ (α′) , e∗ (α′))] s1 (y∗, α′, a)

− 2c′ (e∗ (α′)) = 0,

25 Recall that efficiency requires that, with α′ = α, it must be the case that y2(α; e
∗(α), e∗

−i(α)) = c′ (e∗ (α)).
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where
∑

a∈A Pa,2 (e
∗ (α′) , e∗ (α′)) = 0. Note that at α = α′, efficiency requires that y2(α; e

∗(α′), e∗(α′)) =

c′ (e∗ (α′)). Thus, for efficiency to obtain, it is necessary to have

(33)y∗
∑

a ∈A

[Pa,1 (e
∗ (α′) , e∗ (α′))− Pa,2 (e

∗ (α′) , e∗ (α′))] s1 (y∗, α′, a)− c′ (e∗ (α′)) = 0.

That is, we need the information structure to satisfy a certain separation requirement: when

agent 1 increases her effort, she increases the chances of observing some set of signals. This

set must be different from the set of signals that are more likely to be observed after an effort

increase of agent 2. Take, for example, |A|= 2 with

(34)a =

{

1 if e1 + e2 + ǫ > K

2 otherwise,

where ǫ is a random variable that distributes according to some continuous distribution H .

That is, the signal equals 1 if the noisy sum of efforts exceeds some constant K and equals 2

otherwise. In this case, for any a ∈ A, it is true that Pa,1 (e
∗ (α′) , e∗ (α′)) = Pa,2 (e

∗ (α′) , e∗ (α′))

and hence efficient efforts are not implementable. In this environment, increasing efforts by any

player increases the chances of receiving the same signal.

Example 4. A relative-ranking-based contest is the special case where |A|= n. For the Tullock

success function, for any i ∈ {1, 2, . . . , n}, Pai = eri/(e
r
1 + · · ·+ ern) for r > 0. When a = ai, the

share

(35)si(y∗, α′, ai) =
1

n
+

ne∗(α′)
(
nc′(e∗(α′))− y2(α(y

∗, α′); e∗(α′), e∗
−i(α

′))
)

nry∗

and sj(y∗, α′, ai) = (1− si(y∗, α′, ai))/(n− 1) for j 6= i, where α(y∗, α′) is as defined in Propo-

sition 1, satisfy all of the above conditions 1–3 and implement the efficient outcome.⊳

Example 5. Consider an even number of players n ≥ 2. Assume that a “coarse ranking”

exists which differentiates between the top half and the bottom half of the agents. That is,

|A|= (n)!
(n/2)!(n/2)!

, where signal a is a list of the top-half-ranked players. Denote by PB(ei, e−i)

the probability for player i to be in the top-half group. Assume (similarly to the Tullock success

function) that

(36)PB(ei, e−i(α
′)) =

eri + (n/2− 1)e(α′)r

eri + (n− 1)e(α′)r
, r > 0.

This results in a symmetric player’s objective

(37)
ui(α; ei, e−i(α

′)) = y(α; ei, e−i(α
′))

(

PB(ei, e−i(α
′))

s(y∗, α′, a)

n/2

+ (1− PB(ei, e−i(α
′)))

1− s(y∗, α′, a)

n/2

)

− c(ei).
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One can verify that a share of

(38)s(y∗, α′, a) =
ne∗(α′)

(
nc′(e∗(α′))− y2(α(y

∗, α′); e∗(α′), e∗
−i(α

′))
)
+ ry∗

2ry∗

given to all the top-half agents (with the remaining output equally spread among the bottom-

half agents) satisfies all the above conditions 1–3.⊳

In the following example we explore a different direction of generalization of the underlying

information structure. We ask whether and under what circumstances efficient efforts can be

implemented if the relative ranking that enters our construction is available for only a subset

of the team members. Therefore, in the next example, we assume that agents are ex-ante

asymmetric with respect to the available information on the players.

Example 6. In this example we consider the case of an incomplete ranking. Among the n team

members in N = A ∪ B, the efforts of n1 ≥ 2 players in set A can be ranked using a Tullock

ranking technology and the efforts of n2 ≥ 1 players in set B cannot be ranked. Suppose that

the informed player is from set B. The production function is y(α, e) = α
∑

i ei and the effort

cost is c(ei) = e2i /2. The efficient efforts are e∗(α) = α.

The following ranking-based sharing rule with (s1(y∗, α′), s2(y∗, α′)) can be used to achieve

efficiency. The share of output s1(y∗, α′) is awarded to the winner of the contest, s2(y∗, α′) is

the share awarded to the losers of the contest, and each of the players whose efforts cannot be

ranked receives an equal share (1− s1(y∗, α′)− (n1 − 1)s2(y∗, α′))/n2:

(39)
s1(y∗, α′) =

1

n1
− 1

rn
+

nn1α
′2

y∗r(n1 − 1)
− nn2α

′2 log(y∗)

n1y∗
+

C(α′)

y∗
,

s2(y∗, α′) =
1

n1

+
1

nr(n1 − 1)
− nn2α

′2 log(y∗)

n1y∗
+

C(α′)

y∗
.

where

(40)C(α′) =
nn2α

′2 log(nα′2)

n1

− (n+ 1)n2α
′2

2n1

− nα′2

r(n1 − 1)
.

The details of the derivation of these shares are relegated to the Appendix. How can efficiency be

obtained in this setting? Consider first the second stage. Every unranked player who considers

slightly varying his effort provision gets the full social return of his variation; i.e., for local

deviations, every deviating unranked player is fully compensated.26 Hence, out of equilibrium,

26 This can be seen from the derived shares: the payoff of the unranked uninformed player is given by

(41)nα′2 log y∗ − n1C (α′)

n2

− nn1α
′2

n2r (n1 − 1)
− e2i

2
.

Therefore, when all the other players exert effort α′, a small increase in effort above α′ by an unranked
player increases this player’s payoff by α′, which is exactly the increase in the total social welfare provided
that the informed player reports truthfully.
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the ranked players act as budget breakers.27 At the first stage, the unranked players act as

residual claimants and therefore maximize overall utility, which implies an efficient report.

This example implements efficiency contingent on the informed player being unranked. To

see that the efficient allocation cannot be achieved if the informed player is from set A, note

that in this example the utility of all ranked agents is the same. The utility of an informed,

ranked player (and hence all ranked agents) is increasing in the report α′ whenever it exceeds

the true α. Intuitively, what happens is that the uninformed agents “pay all the costs.” In order

to provide the unranked player(s) with incentives to exert efforts, the unranked players’ share

of the output should be substantially more volatile with increasing output. If the informed

player exaggerates the report α′, all players increase their efforts. However, given the report,

the output is below the expected output and the unranked agents (to be provided with efficient

incentives) suffer more than the ranked agents. This destroys the reporting incentives of a

ranked informed player at the first stage.⊳

5 Concluding remarks

The present paper analyzes the question of what constitutes the coordinative essence of leader-

ship in team structures when (some of) the team members are privately informed about some

aspect of the profitability of a joint project. Such proprietary information arises naturally if,

for example, some team member occupies a role in a predefined organizational structure by

virtue of which she acquires and disseminates information. Our model extensions allow both

for private information that is dispersed among otherwise symmetric team members and for

ex-ante asymmetries among team members. We show in both cases that, to some extent, our

main efficiency result can be retained.

An immediate implication of our symmetric analysis is that efficiency can be achieved in a

project selection problem. Consider a situation in which some team members propose projects

and are privately informed about their productivity. That is, each member is a potential

leader of one of the projects. However, the team is able to execute only one of the projects

due to limited resources. Consider a mechanism in which the agents report the productivity

parameters at the first stage. Then the project that maximizes joint welfare (based on the

reports) is chosen. At the second stage, the mechanism described in Proposition 1 is used

to implement efficient efforts. In this model each privately informed player reports his signal

truthfully and the best project is selected.

Connecting to the literature on leading by example represented by Hermalin (1998), if the

leader is allowed to choose her effort before the other players and this effort is observable by

her team partners, the leader’s effort serves as a signal of her private information on the team

27 For the ranked players, nothing changes from our base model analysis.
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productivity parameter. As a result, the leader is unable to choose effort which is inconsistent

with her (implicit) report, thereby reducing the dimensionality of the problem. In this case,

there exists a simpler ranking-based sharing rule which implements the efficient outcome and

depends only on observed output. A detailed analysis of this case is provided in Appendix A.

An example which emphasizes the coordination aspect and features the main elements of

our model environment can be found in the “trench whistle,” which officers in most armies

used to communicate isolated timing information to their teams during the First World War.

Its high-pitched sound was used to coordinate large scale attacks. At the sound of the officers’

whistles, the soldiers would go “over the top” of the trenches and attack the enemy. Note that

signaling the attack at the wrong time could result in over- or underexertion of team efforts

relative to the efficient level that would benefit or harm the standing of the whistling leader.

A final example of carefully designed incentive structures in partnerships is the nineteenth-

century American whaling industry, beautifully described by Hilt (2006). The author reports

how managing partners provided appropriate incentives to the whaler’s captains and crews

on their entirely unobservable multi-year expeditions. During the 1830s, part of the industry

changed its structure from the previously unincorporated partnerships to corporative owner-

ship. “This represented a significant departure from the traditional reliance on concentrated

ownership to resolve incentive conflicts in the industry, and it failed: none of the whaling cor-

porations survived beyond the 1840s, and few experienced much financial success, at a time

the American whaling industry as a whole continued to expand.” (Hilt, 2006, p. 198)

Appendix A: Leading by example

In this Appendix we return to the symmetric setting of Section 2, but we change the structure

of the interaction by allowing the leader to choose her effort before the other players. This

effort is assumed to be observable by her team members, with everything else the same as in

the base model. We show that in such a case, there exists a simpler ranking-based sharing rule

that implements the efficient outcome. This sharing rule will depend only on observed output.

To show this result we consider the following sequential game: at the first stage, the leader

chooses effort e1. Then, at the second stage, all other players j 6= 1 observe e1 and choose

their own efforts ej(e1(·)). Following this stage, a noisy ranking of all players’ efforts is realized.

The winner receives a fraction s1 of the team’s output and each of the losers receives a share

(1− s1)/(n− 1).

In this environment, the sharing rule may be conditioned on the observed output y∗ alone

because the leader’s effort e1 is observed by all other players before they choose their own

efforts. Thus, the leader’s effort serves as a signal of the team’s productivity parameter α.

Moreover, and this is crucial, this time structure limits the strategic possibilities of the leader.
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While in the original game—in which everyone chooses efforts simultaneously—the leader was

able to deviate in both her report α′ and the chosen effort (and so multi-dimensional deviations

had to be taken into account), one of these channels is shut here. In the present structure,

a misreport is more costly to the leader, as she cannot report α′ and subsequently choose an

effort that is inconsistent with this report. Therefore, a report of productivity α is not needed

to implement the efficient allocation as it can be deduced from the leader’s effort choice.

Proposition 4. Assume the sequential game described above. The sharing rule consisting of

(42 )s1(y∗) =
1

n
+

n− 1

n

c′(e∗ (ᾰ (y∗)))− y2(ᾰ(y∗);e∗(ᾰ(y∗)),e∗−i(ᾰ(y
∗)))

n

y∗f 1
1 (e

∗ (ᾰ (y∗)) , e∗
−i (ᾰ (y∗)))

and sj(y∗) = 1−s1(y∗)
n−1

for all j 6= 1 in which ᾰ (y∗) is the solution to y∗ = y (α; e1(α), e−1(α))

implements efficient efforts.

Proof. We show that this sharing rule induces i) the leader to choose e1 = e∗ (α), and ii) all the

other agents to follow the leader and choose e1 as well. We start with analyzing the incentives

of agent j 6= 1, given that all the other agents follow the described strategy. The expected

utility of agent j 6= 1 if he chooses effort e is given by

(43)y
(
α; e, e∗

−j (α)
)
[

f 1
(
e, e∗

−j (α)
)
s1 (y∗) +

(
1− f 1

(
e, e∗

−j (α)
)) 1− s1 (y∗)

n− 1

]

− c(e).

The derivative of the last expression with respect to e is given by

(44)

y2
(
α; e, e∗

−j (α)
)
[

f 1
(
e, e∗

−j (α)
)
s1 (y∗) +

(
1− f 1

(
e, e∗

−j (α)
)) 1− s1 (y∗)

n− 1

]

− c′(e) + y
(
α; e, e∗

−j (α)
)

[

f 1
1

(
e, e∗

−j (α)
)
(
ns1 (y∗)

n− 1
− 1

n− 1

)

+ s1
′

(y∗)

(

f 1
(
e, e∗

−j (α)
)
−
(
1− f 1

(
e, e∗

−j (α)
))

n− 1

)

y2
(
α; e, e∗

−j (α)
)

]

.

For e = e1 to be an equilibrium, it must be the case that the last derivative at point e = e1 is

0. Since f 1
(
e∗ (α) , e∗

−j (α)
)
= 1/n, we get

(45)
c′(e∗(α))− y2(α; e

∗(α), e∗
−j (α))

n

= y(α; e∗(α), e∗
−j (α))

[

f 1
1

(
e∗ (α) , e∗

−j (α)
)
(
ns1(y∗)

n− 1
− 1

n− 1

)]

.

Inserting

(46)s1 (y∗) =
1

n
+

n− 1

n

c′(e∗ (ᾰ (y∗)))− y2(ᾰ(y∗);e∗(ᾰ(y∗)),e∗−j(ᾰ(y
∗)))

n

y∗f 1
1 (e

∗ (ᾰ (y∗)) , e∗
−j (ᾰ (y∗)))
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and noticing that in equilibrium ᾰ (y∗) = α gives the required condition.

For the leader, her expected utility if she chooses effort e1 when the state of the world is α

is given by

(47)y (α; e1, . . . , e1)
1

n
− c(e1).

This is maximized at

(48)c′ (e1) =
1

n

n+1∑

j=2

yj (α; e1, . . . , e1) .

By symmetry, yj(α; e1, . . . , e1) = yk(α; e1, . . . , e1) for j, k ∈ {2, . . . , n + 1}. Thus, the efficient

effort level, given state of the world α, maximizes player 1’s payoff.

Example 7. We continue our example with y = α
∑

i ei, c(ei) = e2i /2, and f 1(ei, e−i) =

eri/
∑

erj by replacing the simultaneous game with the sequential structure described above. In

this sequential game, a contest with shares

(49)s1 =
(n− 1) + r

nr
, sj =

r − 1

nr
for j 6= 1

implements efficiency. To see this, note that on observing the effort choice of player 1, e1,

players j 6= 1 believe that the productivity parameter of the team is α = e1. Given sharing

rule (49), it is a best reply of the uninformed players to follow their leader by choosing exactly

ej = e1. At the first stage, anticipating that the uninformed players are going to follow suit by

choosing ej = e1, player 1’s best strategy is to choose effort e1 = α, thus communicating the

true state of world and implementing efficiency. Note that sharing rule (49) is independent of

output. That this is the case is due only to the fact that our example uses a linear production

function; output independence is not obtained in general.⊳

In a setup with linear production and quadratic effort costs, Hermalin (1998, p. 1192) finds

that leading by example is superior to a range of other mechanisms. Nevertheless, leading by

example fails to achieve full efficiency because the usual moral hazard problem persists. The

reason for this failure is the fixed sharing rule that Hermalin (1998) uses throughout the paper.

We show that a well-designed contest, by orchestrating competition among the players, removes

the free-riding incentives while ensuring truthful information revelation.

In the discussion of Section 3 we explain that fixed shares can generally not provide incen-

tives for the efficient provision of efforts. This remains true with upfront exertion of observable

efforts by a privately informed leader. The fact that efficiency is easier to implement in the

sequential structure than in the simultaneous structure echoes the finding in Zhou & Chen

(2015) that in network structures, players’ contributions increase when they move sequentially

rather than simultaneously.
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We have thus far assumed that only final output is contractible. If, however, the leader’s

upfront effort is also contractible, then the next Proposition states that there exists a shar-

ing rule that provides the correct incentives to all agents and conditions only on the leader’s

observed effort.

Proposition 5. Assume the sequential game described above with contractible leader’s effort. In

this game, there exists a sharing rule that depends solely upon the leader’s effort that implements

efficiency.

Proof. We show that the following winner’s share

(50)s1 (e1) =
1

n
+

n− 1

n

c′ (e1)− y2(α∗∗(e1);e1,e1)
n

y (α∗∗ (e1) ; e1) f
1
1 (e1, e1)

where α∗∗ (e1) is the solution to e∗ (α∗∗) = e1, together with sj(y∗) = 1−s1(y∗)
n−1

for all j 6= 1,

induces i) the leader to choose e1 = e∗ (α), and ii) all the other agents to follow the leader and

choose e1 as well. We start with analyzing the incentives of agent j 6= 1, given that all the

other agents choose e1 = e∗ (α). The expected utility of agent j 6= 1 if he chooses effort e is

given by

(51)y
(
α; e, e∗

−j (α)
)
[

f 1
(
e, e∗

−j (α)
)
s1 +

(
1− f 1

(
e, e∗

−j (α)
)) 1− s1

n− 1

]

− c(e).

Since s1(e1) is independent of the realized output, agent j cannot affect it. The derivative of

the last expression with respect to e is given by

(52)
y2
(
α; e, e∗

−j (α)
)
[

f 1
(
e, e∗

−j (α)
)
s1 +

(
1− f 1

(
e, e∗

−j (α)
)) 1− s1

n− 1

]

+ y
(
α; e, e∗

−j (α)
)
[

f 1
1

(
e, e∗

−j (α)
)
(

ns1

n− 1
− 1

n− 1

)]

− c′(e).

For e = e1 to be an equilibrium, it must be the case that the derivative is 0 at this point. Since

f 1 (e∗ (α) , e
−j

∗ (α)) = 1/n and c′(e∗ (α)) = y2(α; e
∗(α), e∗

−j (α)), we obtain

(53)c′ (e∗ (α))− y2
(
α; e∗(α), e∗

−j (α)
)

n
= y (α; e∗ (α))

[

f 1
1 (e

∗ (α) , e
−j

∗ (α))

(
ns1

n− 1
− 1

n− 1

)]

which implies

(54)s1 (e1) =
1

n
+

n− 1

n

c′ (e1)− y2(α;e1,e1)
n

y (α∗∗; e1) f
1
1 (e1, e1)

.

Since in equilibrium α∗∗ (e1) = α, player j indeed chooses e1 under sharing rule (50).

For the leader, her expected utility if she chooses effort e1 when the state of the world is α

is given by

(55)y (α; e1, . . . , e1)
1

n
− c(e1).
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This is maximized at

(56)c′ (e1) =
1

n

n+1∑

j=2

yj (α; e1, . . . , e1) .

By symmetry, yj(α; e1, . . . , e1) = yk(α; e1, . . . , e1) for j, k ∈ {2, . . . , n + 1}. Thus, the efficient

effort level, given the state of the world α, maximizes player 1’s payoff.

Appendix B: Proofs

Proof of Proposition 1. We prove the Proposition in two steps. In step 1 we show that, given

the leader’s report α′, it is a mutually best response for the leader and the other players to

choose effort e∗(α′) under sharing rule (8). In step 2 we show that, anticipating the equilibrium

at the second stage, the leader’s optimal strategy is to report truthfully.

Step 1. For a given report α′, given that every other player chooses e∗(α′), the team-leader’s

first-order condition with respect to effort choice is

∂u1(e1, e
∗
−1(α

′), α)

∂e1
= y2(α; e1, e

∗
−1(α

′))

(
n∑

ℓ=1

f ℓ(e1, e
∗
−1(α

′))sℓ(y∗, α′)

)

+ y(α; e1, e
∗
−1(α

′))

(
n∑

ℓ=1

f ℓ
1(e1, e

∗
−1(α

′))sℓ(y∗, α′)

)

+y(α; e1, e
∗
−1(α

′))y2(α; e1, e
∗
−1(α

′))

(
n∑

ℓ=1

f ℓ(e1, e
∗
−1(α

′))sℓ1(y
∗, α′)

)

− c′(e1),
(57)

which equals

(58)

y2(α; e1, e
∗
−1(α

′))

(
n∑

ℓ=1

f ℓ(e1, e
∗
−1(α

′))sℓ(y∗, α′)

)

− c′(e1)

+ y(α; e1, e
∗
−1(α

′))

(
n−1∑

ℓ=1

f ℓ
1(e1, e

∗
−1(α

′))
(
sℓ(y∗, α′)− sn(y∗, α′)

)

)

+ y(α; e1, e
∗
−1(α

′))y2(α; e1, e
∗
−1(α

′))

(
n∑

ℓ=1

f ℓ(e1, e
∗
−1(α

′))sℓ1(y
∗, α′)

)

where f ℓ
1(e1, e−1) =

∂
∂e1

f ℓ(e1, e−1). The equality holds because of equation (2), budget-

balancedness, and
∑

ℓ f
ℓ
1(e1, e

∗
−1(α

′)) =
∑

ℓ s
ℓ
1(y

∗, α′) = 0. In the case of equal effort levels
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of all agents, e1 = e∗(α′), f ℓ(e∗(α′), e∗
−1(α

′)) = 1/n for all ℓ = 1, . . . , n. Then, setting the

first-order condition with respect to effort choice to zero gives

(59)
0 =

∂u1(e
∗(α′), e∗

−1(α
′), α)

∂e1
=

y2(α; e
∗(α′), e∗

−i(α
′))

n

+ y∗

(
n−1∑

ℓ=1

f ℓ
1(e

∗(α′), e∗
−1(α

′))
(
sℓ(y∗, α′)− sn(y∗, α′)

)

)

− c′(e∗(α′))

with output in equilibrium y∗ = y(α, ne∗(α′)). Therefore, we get that

n−1∑

ℓ =1

f ℓ
1(e

∗(α′), e∗
−1(α

′))
(
sℓ(y∗, α′)− sn(y∗, α′)

)
=

c′(e∗(α′))− y2(α; e
∗(α′), e∗

−i(α
′))/n

y∗
.

(60)

Under the simple prize structure with s2(y∗, α′) = · · · = sn(y∗, α′), this gives

f 1
1 (e

∗(α′), e∗
−1(α

′))
(
s1(y∗, α′)− sn(y∗, α′)

)
=

c′(e∗(α′))− y2(α; e
∗(α′), e∗

−i(α
′))/n

y∗
. (61)

This equation is satisfied under sharing rule (8), proving that it is indeed a best reply of

the leader to choose e∗(α′) given every other player choosing e∗(α′). A similar argument

implies that all the uninformed agents also prefer to exert the report-contingent efficient

effort level e∗(α′) for any report of the team leader α′.

Step 2. We now have to show that, at the first stage, player 1 announces the true signal. At the

reporting stage, player 1 who exerts efforts e∗(α′) reports α′ so as to maximize expected

utility (6), i.e.,

(62)max
α′

u1(e
∗(α′), e∗

−1(α
′), α) = max

α′

(

y
(
α; e∗(α′), e∗

−1(α
′)
)

n
− c(e∗(α′))

)

.

The first-order condition is

(63)
1

n

n+1∑

j =2

yj(α; e
∗(α′), . . . , e∗(α′))e∗′(α′)− c′(e∗(α′))e∗′(α′) = 0.

Recall that symmetry implies yj(α; e
∗(α′), . . . , e∗(α′)) = yl(α; e

∗(α′), . . . , e∗(α′)) for j, l ∈
{2, . . . , n+ 1}. Therefore, (63) can be rewritten as

(64)yj(α; e
∗(α′), . . . , e∗(α′)) = c′(e∗(α′))
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which exactly coincides with the first-best solution (4). Thus, player 1’s expected utility

(62) is maximized at the report α′ = α, implying that player 1 reports truthfully. All team

members will find it optimal to accept the contract because each player j will get 1/n of

the generated efficient social surplus, which must be positive because y2(α; 0, e
∗
−j(α

′)) > 0

and c′(0) = 0. Therefore, the players’ ex-post efficient efforts e∗(α) are implementable.

Proof of Corollary 1. Recall that the winner’s share is

(65)s1(y∗, α′) =
1

n
+

n− 1

ny∗

[
c′(e∗(α′))

f 1
1 (e

∗(α′), e∗
−i(α

′))
− y2(α(y

∗, α′); e∗(α′), e∗
−i(α

′))

f 1
1 (e

∗(α′), e∗
−i(α

′))n

]

.

Given the truth-telling behavior of the team leader, we can rewrite the equilibrium winner’s

share as follows:

(66)

s1(y∗, α) =
1

n
+

n− 1

n

[
c′(e∗(α))

f 1
1 (e

∗(α), e∗
−i(α))y

∗
− y2(α(y

∗, α); e∗(α), e∗
−i(α))

f 1
1 (e

∗(α), e∗
−i(α))y

∗n

]

=
1

n
+

n− 1

n

[
c′(e∗(α))

f 1
1 (e

∗(α), e∗
−i(α))y

∗
− y2(α; e

∗(α), e∗
−i(α))

f 1
1 (e

∗(α), e∗
−i(α))y

∗n

]

=
1

n
+

n− 1

n

[
y2(α;ne

∗(α))

f 1
1 (e

∗(α), e∗
−i(α))y

∗
− y2(α; e

∗(α), e∗
−i(α))

f 1
1 (e

∗(α), e∗
−i(α))y

∗n

]

=
1

n
+

(
n− 1

n

)2
1

f 1
1

(
e∗(α), e∗

−i(α)
)
y2(α; e

∗(α), e∗
−i(α))

y(α; e∗(α))
,

where the second line follows since α = α(y∗, α) and the third line follows since in the efficient

allocation we have c′(e∗(α)) = y2(α; e
∗(α), e∗

−i(α)).

Proof of Proposition 2. As in the previous proof, denote by s1 (y∗,α′) the share of the

winner of the contest if the realized output is y∗ and the reported signals are α′ = (α′
1, . . . , α

′
n).

We will show that the following sharing rule implements both truthful reports at the first stage

and efficient efforts at the second stage:

(67)

s1 (y∗,α′) =
1

n
+

n− 1

ny∗f 1
1

(
e∗ (α′) , e∗

−i (α
′)
)

[

c′ (e∗ (α′))− yn+1

(
α (y∗,α′) ,α′

−1; e
∗ (α′)

)

n

]

where sj (y∗,α′) = (1− s1 (y∗,α′))/(n− 1), for j ∈ {2, . . . , n}, and α (y∗,α′) is the solution to

y∗ = y
(
α,α′

−1; e
∗ (α′)

)
.

Due to symmetry it suffices for us to analyze only the incentives of agent 1. The expected

utility of agent 1 at the second stage after reports of α
′ if the state of the world is α =

(α1, . . . , αn), all the others exert efforts of e∗ (α′), while player 1 exerts efforts of e is given by

(68)y∗
[

f 1
(
e, e∗

−1 (α
′)
)
s1 (y∗,α′) +

(
1− f 1

(
e, e∗

−1 (α
′)
)) 1− s1 (y∗,α′)

n− 1

]

− c (e) .
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The derivative with respect to e is

(69)

yn+1

(
α

′; e, e∗
−1 (α

′)
)
[

f 1
(
e, e∗

−1 (α
′)
)
s1 (y∗,α′)

+
(
1− f 1

(
e, e∗

−1 (α
′)
)) 1− s1 (y∗,α′)

n− 1

]

+ y∗
{

f 1
1

(
e, e∗

−1 (α
′)
)
[

s1 (y∗,α′)− 1− s1 (y∗,α′)

n− 1

]

+s11 (y
∗,α′) yn+1

(
α

′; e, e∗
−1 (α

′)
)

[

f 1
(
e, e∗

−1 (α
′)
)
− 1− f 1

(
e, e∗

−1 (α
′)
)

n− 1

]}

−c′ (e) .

We show that this derivative is equal to zero for e = e∗ (α′). Note that for e = e∗ (α′) we can

rewrite the last expression as

(70)yn+1

(
α

′; e, e∗
−1 (α

′)
) 1

n
− c′ (e∗ (α′))+y∗f 1

1

(
e∗ (α′) , e∗

−1 (α
′)
)
[

n

n− 1
s1 (y∗,α′)− 1

n− 1

]

.

Assuming that all players but player 1 report their signals truthfully and that α′
j = αj for all

j 6= 1, we can rewrite the last expression as follows:

(71)
yn+1

(
α′
1,α−1; e, e

∗
−1 (α

′
1,α−1)

) 1

n
− c′ (e∗ (α′

1,α−1))

+ y∗f 1
1

(
e∗ (α′

1,α−1) , e
∗
−1 (α

′
1,α−1)

)
[

n

n− 1
s1 (y∗, α′

1,α−1)−
1

n− 1

]

.

This expression equals zero with the given sharing rule s1 (y∗,α′). Thus it is a best reply of

player 1 to choose e∗(α′).

At the first stage, agent 1 reports α′
1 to maximize his expected utility, given that his oppo-

nents report their types truthfully. Since our sharing rule implements efficient efforts as ex-post

equilibrium, it induces truth telling even if agent 1 knows the signals of all the other players.

(72)max
α′

1

(
y (α1,α−1; e

∗ (α′
1,α−1))

n
− c (e∗ (α′

1,α−1))

)

.

The first-order condition with respect to α′
1 is

(73)
1

n

n∑

j =1

yn+j (α1,α−1; e
∗ (α′

1,α−1)) e
∗
1 (α

′
1,α−1)− c′ (e∗ (α′

1,α−1)) e
∗
1 (α

′
1,α−1) = 0.

Symmetry implies that yn+j (α1,α−1; e
∗ (α′

1,α−1)) = yn+l (α1,α−1; e
∗ (α′

1,α−1)) for j, l ∈ {1, . . . , n}.
Therefore, we can rewrite the last equality as

(74)yn+j (α1,α−1; e
∗ (α′

1,α−1)) = c′ (e∗ (α′
1,α−1)) ,

which holds at α′
1 = α1 and coincides with the first-best.
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Proof of Proposition 3. Consider first the case in which either set A or B has at least two

members, i.e., either n1 ≥ 2 and n2 ≥ 1 or n1 ≥ 2 and n2 ≥ 1. We first derive (15) from the

effort stage for given report α′ by imposing the restriction that it is a mutually best reply of

each player to choose e∗(α′). The derivation shows that for implementing report-contingent

efficiency at the second stage, there is a degree of freedom in the sharing rule captured by

C(α′) that is independent of the realized output. We then proceed to show that at the first

reporting stage, C(α′) can be chosen to provide exactly the right incentive for the leader to

report truthfully.

Effort stage. When the state of the world is α, the reported state is α′, and all other agents

exert efficient efforts given the report, then the expected utility of informed player 1 if she

exerts effort e1 is

(75)

u1(e1, e
∗
−1(α

′), α) =
e1

e1 + (n1 − 1) e∗A (α′) + n2e∗B (α′)
sA (y∗, α′) y∗

+
n2e

∗
B (α′)

e1 + (n1 − 1) e∗A (α′) + n2e∗B (α′)

1− sB (y∗, α′)

n1
y∗ − γe21

2

where y∗ = α(e1 + (n1 − 1)e∗A(α
′) + n2e

∗
B(α

′)). Setting the derivative with respect to e1 to zero

and substituting e1 = e∗A(α
′) = α′

γ
and e∗B(α

′) = α′ gives

(76)α
(
αα′

(
n1s

A
1 (y

∗, α′)− γn2s
B
1 (y

∗, α′)
)
+ γn1s

A(y∗, α′)
)
− α′γn1 = 0.

Solving for sA(y∗, α′) gives

(77)sA(y∗, α′) =
α′
(
α2
(
γn2s

B
1 (y

∗, α′)− n1s
A
1 (y

∗, α′)
)
+ γn1

)

αγn1
.

Analyzing the expected utility maximization problem of an agent from group B in the same

way yields sB(y∗, α′):

(78)sB(y∗, α′) =
α′
(
α2
(
n1s

A
1 (y

∗, α′)− γn2s
B
1 (y

∗, α′)
)
+ γn2

)

αγn2
.

Putting together expressions (77) and (78) and substituting α = γy∗

α′(n1+γn2)
leads to

(79)
sA(y∗, α′) =

γy∗2(γn2sB1 (y∗,α′)−n1sA1 (y∗,α′))+α′2n1(n1+γn2)2

γn1y∗(n1+γn2)
,

sB(y∗, α′) =
γy∗2(n1sA1 (y∗,α′)−γn2sB1 (y∗,α′))+α′2n2(n1+γn2)2

γn2y∗(n1+γn2)
.

From this we get

(80)n1s
A(y∗, α′) + n2s

B(y∗, α′) =
α′2(n1 + n2)(n1 + γn2)

γy∗
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with derivative

(81)n1s
A
1 (y

∗, α′) + n2s
B
1 (y

∗, α′) = −α′2(n1 + n2)(n1 + γn2)

γy∗2
.

Using this in combination with the first equation in (79) gives the differential equations

α′2
(
n2
1 + γn1(n2 − 1)− γn2

)
(n1 + γn2) = γn1y

∗
(
(n1 + γn2)s

A(y∗, α′) + (γ + 1)y∗sA1 (y
∗, α′)

)
.

(82)

which are solved by

(83)sA(y∗, α′) =
α′2(n1 + γn2) (n

2
1 + γn1(n2 − 1)− γn2)

γn1y∗(n1 + γ(n2 − 1)− 1)
+ C(α′)((γ + 1)y∗)−

n1+γn2
γ+1 ,

where C(α′) is some constant for the given α′. Using (80), we get

(84)sB(y∗, α′) =
α′2(n1 + γn2)(n1(n2 − 1) + n2(γn2 − 1))

γy∗(n1 + γ(n2 − 1)− 1)n2
− n1C(α′)((γ + 1)y∗)−

n1+γn2
γ+1

n2
.

Report stage. At the reporting stage, the expected utility of player 1 if the state of the world

is α and he reports α′ is given by

(85)e∗A (α′)αsA (y∗, α′) + n2

n1
e∗B (α′)α

(
1− sB (y∗, α′)

)
− γ(e∗A(α′))

2

2
.

Plugging e∗A(α
′) = α′

γ
, e∗B(α

′) = α′, sA(y∗, α′), and sB(y∗, α′) into (83)–(84) and substituting

y∗ = α′α
γ
(n1 + γn2) yields

(86)

1

γ
C(α′)αα′(γ + 1)

(
αα′(γ + 1)(n1 + γn2)

γ

)−
n1+γn2

γ+1

+
α′ (α′n2

1 + n1(α
′ + γ(α′ + 2αn2 − α′n2))− 2γn2(α + γ(α− αn2 + α′n2)))

2γn1(n1 + γ(n2 − 1)− 1)
.

The derivative of this expression with respect to α′ is

(87)
αn1

(
αα′(γ + 1)(n1 + γn2)

γ

)−
n1+γn2

γ+1

(α′(γ + 1)C ′(α′) + C(α′)(γ − n1 − γn2 + 1))

+
α′n2

1 + n1(α
′ + γ(α′ + n2(α− α′)))− γn2(α + γ(α− αn2 + 2α′n2))

n1 + γ(n2 − 1)− 1
.

This must be equal to zero for α′ = α; that is, C(α′) must satisfy

(88)
n1(n1 + γ(n2 − 1)− 1) (α′(γ + 1)C ′(α′) + C(α′)(γ − n1 − γn2 + 1))

+ (γ + n1 + γn2 + 1)(n1 − γn2)
(

(α′)2(γ+1)(n1+γn2)
γ

)n1+γn2
γ+1

= 0,

34



which gives

(89)C(α′) = α′
n1−n2
γ+1

+n2−1
C2 +

(γn2 − n1)
(

α′2(γ+1)(n1+γn2)
γ

)n1+γn2
γ+1

n1(n1 + γ(n2 − 1)− 1)

for constant C2. Setting C2 to zero yields the claimed sharing rule.

Now consider the case in which both sets A and B have only a single member, i.e., n1 =

n2 = 1. A derivation following exactly the same steps as above yields the shares

(90)
sA(y∗, α′) =

α′2(1− γ) log(y∗)

γy∗
+

C(α′)

y∗
,

sB(y∗, α′) =
α′2(2(γ + 1) + (γ − 1) log(y∗))

γy∗
− C(α′)

y∗

for constant

(91)C(α) =
α′2(γ + 1) + α′2(γ − 1) log

(

α′2 (γ+1)
γ

)

γ
+ C2

for arbitrary constant C2.

Derivation of Example 2. We show that the following sharing rule implements efficient ef-

forts

(92)
s1 (y∗, α′

1, α
′
2) =

(α′
1 + βα′

2)
2 (1− γ) log(y∗)

γy∗
+

C(α′
1, α

′
2)

y∗

s2 (y∗, α′
1, α

′
2) =

(α′
1 + βα′

2)
2 (2(γ + 1) + (γ − 1) log(y∗))

γy∗
− C(α′

1, α
′
2)

y∗
,

where

(93)C(α′
1, α

′
2) =

(α′
1 + α′

2β)
2
(

(γ − 1) log
(

(γ+1)(α′

1
+α′

2
β)2

γ

)

+ γ + 1
)

γ
,

where sj (y∗, α′
1, α

′
2) and 1 − sj (y∗, α′

1, α
′
2) are the winning and losing shares, respectively, if

player j ∈ {1, 2} wins.

At the effort stage, the expected utility of player 1 if he exerts effort e1, the true state of

the world is (α1, α2), the reports are (α′
1, α

′
2), and player 2 exerts effort e∗2 (α

′
1, α

′
2) is

(94)
e1

e1 + e∗2 (α
′
1, α

′
2)
s1 (y∗, α′

1, α
′
2) y

∗ +
e∗2 (α

′
1, α

′
2)

e1 + e∗2 (α
′
1, α

′
2)

(1− s2 (y∗, α′
1, α

′
2)) y

∗ − c1(e1).

Plugging in e∗2 (α
′
1, α

′
2) = α′

1 + βα′
2 and y∗ = (α1 + βα2)(e1 + e∗2(α

′
1, α

′
2)) yields

(95)e1s1 (y
∗, α′

1, α
′
2) (α1 + βα2) + (α′

1 + βα′
2) (1− s2 (y∗, α′

1, α
′
2)) (α1 + βα2)− γ

e21
2
.

Taking the derivative with respect to e1 and equalizing it to zero for e1 =
α′

1
+βα′

2

γ
gives

(96)s1 (y∗, α′
1, α

′
2) (α1 + βα2) +

α′
1 + βα′

2

γ
s11 (y

∗, α′
1, α

′
2) (α1 + βα2)

2 −

− (α′
1 + βα′

2) s21 (y
∗, α′

1, α
′
2) (α1 + βα2)

2 − (α′
1 + βα′

2) = 0.
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The expected utility of player 2 if he exerts effort e2, the true state of the world is (α1, α2), the

reports are (α′
1, α

′
2), and player 1 exerts effort e∗1 (α

′
1, α

′
2) is

(97)
e2

e2 + e∗1 (α
′
1, α

′
2)
s2 (y∗, α′

1, α
′
2) y

∗ +
e∗1 (α

′
1, α

′
2)

e2 + e∗1 (α
′
1, α

′
2)

(1− s1 (y∗, α′
1, α

′
2)) y

∗ − c2(e2).

Taking the derivative with respective to e2 and equalizing it to zero for e2 = α′
1 + βα′

2 gives

(98)
s2 (y∗, α′

1, α
′
2) (α1 + βα2) + (α′

1 + βα′
2) s21 (y

∗, α′
1, α

′
2) (α1 + βα2)

2 −
−α′

1 + βα′
2

γ
s11 (y

∗, α′
1, α

′
2) (α1 + βα2)

2 − (α′
1 + βα′

2) = 0.

The shares (92) are the solutions to the two differential equations (96) and (98). Thus, given

the claimed sharing rule, the players’ mutual best replies are to choose effort e∗i (α
′
1, α

′
2).

We now proceed to the first stage. The expected utility of player 1 if the state of the world is

(α1, α2), player 2 reports truthfully, player 1 reports α′
1, and both players exert effort e∗i (α

′
1, α2)

is given by

e∗1 (α
′
1, α2) s1 (y

∗, α′
1, α2) (α1+βα2)+ e∗2 (α

′
1, α2) (1−s2 (y∗, α′

1, α2)) (α1+βα2)− c1 (e
∗
1 (α

′
1, α2)) .

(99)

Plugging in s1 (y∗, α′
1, α2), s2 (y

∗, α′
1, α2), and e∗1(α

′
1, α2) =

α′

1
+βα2

γ
, and e∗2(α

′
1, α2) = α′

1 + βα2,

and rearranging yields

(100)

1

2γ

(

2γC(α′
1, α

′
2)

− (α′
1 + α′

2β)

(

2(γ − 1)(α′
1 + α′

2β) log

(
(γ + 1)(α1 + α2β)(α

′
1 + α′

2β)

γ

)

− 2γ(α1 + α2β − 2α′
2β) + 4α′

1γ + α′
1 + α′

2β

))

.

Taking the derivative with respect to α′
1 and equalizing it to zero at α1 = α′

1 = α1 gives

(101)C1(α
′
1, α

′
2) =

2(α′
1 + α′

2β)
(

(γ − 1) log
(

(γ+1)(α′

1
+α′

2
β)2

γ

)

+ 2γ
)

γ
.

Solving player 2’s problem in the same way gives

(102)C2(α
′
1, α

′
2) =

2β(α′
1 + α′

2β)
(

(γ − 1) log
(

(γ+1)(α′

1
+α′

2
β)2

γ

)

+ 2γ
)

γ
.

The differential equations (101) and (102) are solved by

(103)
C(α′

1, α
′
2) =

(α′
1 + α′

2β)
2
(

(γ − 1) log
(

(γ+1)(α′

1
+α′

2
β)2

γ

)

+ γ + 1
)

γ
+ C2(α′

2),

C(α′
1, α

′
2) =

(α′
1 + α′

2β)
2
(

(γ − 1) log
(

(γ+1)(α′

1
+α′

2
β)2

γ

)

+ γ + 1
)

γ
+ C1(α′

1)
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for constants C1(α′
1) and C2(α′

2). Setting C1(α′
1) = C2(α′

2) = 0 delivers the claimed sharing

rules.

Derivation of Example 3. Consider the second stage first. We want to check the possibility

of inducing efficient effort even if the player deviated at the first stage. Consider player 1. His

utility from effort e after a report of α′
1 if the second player reports truthfully α′

2 = α2 and

exerts the efficient effort e∗2 = α2 is given by

(104)

[
e

e+ α2
s1 (α′

1, α2, y) +
α2

e+ α2
(1− s2 (α′

1, α2, y))

]

y − e2

2
.

Taking the derivative with respect to e and equalizing the expression to zero for e = α′
1 gives

(105)

[
α2s1 (α

′
1, α2, y)− α2 (1− s2 (α′

1, α2, y))

(α′
1 + α2)

2 +α1
α′
1s13 (α

′
1, α2, y)− α2s23 (α

′
1, α2, y)

α′
1 + α2

]

y

+ α1
α′
1s1 (α

′
1, α2, y) + α2 (1− s2 (α′

1, α2, y))

α′
1 + α2

− α′
1 = 0.

In order to provide the players with efficient incentives, the last identity must hold for any

α1, α
′
1, α2. Derive both sides of the last identity with respect to α1. We get

(106)

α′
1

[
α2s1 (α

′
1, α2, y)− α2 (1− s2 (α′

1, α2, y))

(α′
1 + α2)

2

+ α1
α′
1s13 (α

′
1, α2, y)− α2s23 (α

′
1, α2, y)

α′
1 + α2

]

+ y
α′
1s13 (α

′
1, α2, y)− α2s23 (α

′
1, α2, y)

α′
1 + α2

+
α′
1s1 (α

′
1, α2, y) + α2 (1− s2 (α′

1, α2, y))

α′
1 + α2

= 0.

Taking the derivative with respect to α1 gives

(107)α′
1

α′
1s13 (α

′
1, α2, y)− α2s23 (α

′
1, α2, y)

α′
1 + α2

+ α′
1

α′
1s13 (α

′
1, α2, y)− α2s23 (α

′
1, α2, y)

α′
1 + α2

= 0

implying that
(108)α′

1s13 (α
′
1, α2, y)− α2s23 (α

′
1, α2, y) = 0.

Plugging this back into (106) yields

(109)α′
1

α2s1 (α
′
1, α2, y)− α2 (1− s2 (α′

1, α2, y))

(α′
1 + α2)

2 +
α′
1s1 (α

′
1, α2, y) + α2 (1− s2 (α′

1, α2, y))

α′
1 + α2

= 0.

Multiplying by (α′
1 + α2)

2 and rearranging gives

(110)α′
1α2s1 (α

′
1, α2, y)+(α′

1)
2
s1 (α′

1, α2, y)+α2α
′
1s1 (α

′
1, α2, y)+(α2)

2 (1−s2 (α′
1, α2, y)) = 0.
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Since it must hold for any α1, let us take the derivative of the last equality with respect to α1.

We get

α′
1

[

α′
1α2s13 (α

′
1, α2, y) + (α′

1)
2
s13 (α

′
1, α2, y) + α2α

′
1s13 (α

′
1, α2, y) + (α2)

2 s23 (α
′
1, α2, y)

]

= 0.

(111)

The only solution to the system

α′
1α2s13 (α

′
1, α2, y) + (α′

1)
2 s13 (α

′
1, α2, y) + α2α

′
1s13 (α

′
1, α2, y) + (α2)

2 s23 (α
′
1, α2, y) = 0

α′
1s13 (α

′
1, α2, y)− α2s23 (α

′
1, α2, y) = 0

(112)

is s13 (α
′
1, α2, y) = s23 (α

′
1, α2, y) = 0. Similarly, if player 2 assumes that player 1 truthfully

reports his type and exerts efficient effort at the second stage, we get

(113)

[
α1s1 (α1, α

′
2, y)− α1 (1− s2 (α1, α

′
2, y))

(α1 + α′
2)

2 +α2
α′
2s23 (α1, α

′
2, y)− α1s13 (α1, α

′
2, y)

α1 + α′
2

]

y

+ α2
α′
2s2 (α1, α

′
2, y) + α1 (1− s1 (α1, α

′
2, y))

α1 + α′
2

− α′
2 = 0.

Given that s23 (α1, α
′
2, y) = s13 (α1, α

′
2, y) = 0 and taking the derivative with respect to α2

gives

(114)α′
2

α1s1 (α1, α
′
2, y)− α1 (1− s2 (α1, α

′
2, y))

(α1 + α′
2)

2 +
α′
2s2 (α1, α

′
2, y) + α1 (1− s1 (α1, α

′
2, y))

α1 + α′
2

= 0.

However, there is no solution to the system with s1 (α1, α2, y) ≥ 0,

α2
α1 [s1 (α1, α2, y) + s2 (α1, α2, y)− 1]

(α1 + α2)
2 +

α2s2 (α1, α2, y) + α1 (1− s1 (α1, α2, y))

α1 + α2

= 0

α1
α2 [s1 (α1, α2, y) + s2 (α1, α2, y)− 1]

(α1 + α2)
2 +

α1s1 (α1, α2, y) + α2 (1− s2 (α1, α2, y))

α1 + α2
= 0.

Derivation of the sharing rule for Example 6 (incomplete ranking). First consider

player i ∈ A. Given the reported state α′ when the true state is α, player i exerts effort ei,

while the other n − 1 players exert efficient report-contingent efforts e∗(α′) = α′. In this case,

player i’s expected utility is

(115)α (ei + (n− 1)α′)

(
eri

eri + (n1 − 1)(α′)r
s1 (y∗, α′) +

(n1 − 1)(α′)r

eri + (n1 − 1)(α′)r
s2 (y∗, α′)

)

− e2i
2
.
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The derivative with respect to ei is

(116)

αeri s1(y
∗, α′)

eri + (n1 − 1)(α′)r
+

α(n1 − 1)(α′)rs2(y∗, α′)

eri + (n1 − 1)(α′)r
+

α2((n− 1)α′ + ei)e
r
i s11(y

∗, α′)

eri + (n1 − 1)(α′)r

+
α2((n− 1)α′ + ei)(n1 − 1)(α′)rs21(y

∗, α′)

eri + (n1 − 1)(α′)r

+
αr((n− 1)α′ + ei)e

r−1
i (n1 − 1)α′r

(eri + (n1 − 1)(α′)r)2
(s1(y∗, α′)− s2(y∗, α′))− ei.

Setting this to zero at ei = α′ gives the first-order condition

(117)n1α (s1(y∗, α′) + (n1 − 1)s2(y∗, α′)) + αnr(n1 − 1)(s1(y∗, α′)− s2(y∗, α′))

+ α2nn1α
′ (s11(y

∗, α′) + (n1 − 1)s21(y
∗, α′))− n2

1α
′ = 0.

Replacing α = y∗/(nα′) and rearranging yields

(118)y∗n1 (s1(y
∗, α′) + (n1 − 1)s2(y∗, α′)) + y∗rn(n1 − 1)(s1(y∗, α′)− s2(y∗, α′))

+ y∗2n1(s11(y
∗, α′) + (n1 − 1)s21(y

∗, α′))− n2
1α

′2n = 0.

We now check the incentives of player j ∈ B (B contains the informed player). His expected

utility if the state of the world is α and the other n − 1 players exert effort e∗ (α′) = α′ while

player j exerts effort ej is

(119)α (ej + (n− 1)α′)
(1− s1 (y∗, α′)− (n1 − 1)s2 (y∗, α′))

n2

− e2j
2
.

The derivative with respect to ej is

(120)
1

n2
(y∗ (−αs11(y

∗, α′)−α(n1−1)s21(y
∗, α′))+α(−s1(y∗, α′)−(n1−1)s2(y∗, α′)+1))−ej .

Setting this to zero at ej = α′ gives the first-order condition

(121)α(1−s1(y∗, α′)− (n1−1)s2(y∗, α′))−nα2α′(s11(y
∗, α′)+(n1−1)s21(y

∗, α′))−n2α
′ = 0.

Replacing α = y/(nα′) and rearranging, we get

(122)y∗(1−s1(y∗, α′)− (n1−1)s2(y∗, α′))−y∗2(s11(y
∗, α′)+(n1−1)s21(y

∗, α′))−nn2α
′2 = 0.

Rearranging this gives

(123)s11(y
∗, α′) + (n1 − 1)s21(y

∗, α′) =
y∗(1− s1(y∗, α′)− (n1 − 1)s2(y∗, α′))− nn2α

′2

y∗2
.

Plugging (123) into (117) and rearranging, we get

(124)
s1(y∗, α′)− s2(y∗, α′) =

nn1n2α
′2 + n2

1nα
′2 − n1y

∗

y∗rn(n1 − 1)

=
n2n1α

′2 − n1y
∗

y∗rn(n1 − 1)
.
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Taking the derivative with respect to y∗ gives

(125)s11(y
∗, α′)− s21(y

∗, α′) = − n1nα
′2

y∗2r(n1 − 1)
.

From (124) and (125), we get

(126)
s11(y

∗, α′) = s21(y
∗, α′)− n1nα

′2

y∗2r(n1 − 1)

s1(y∗, α′) = s2(y∗, α′) +
n2n1α

′2 − n1y
∗

y∗rn(n1 − 1)
.

Plugging these back into (123), we get the differential equation

(127)n1s21(y
∗, α′)− n1nα

′2

y∗2r(n1 − 1)
=

y∗ − nn2α
′2

y∗2
− 1

y∗

(

n1s2(y
∗, α′) +

n2n1α
′2 − n1y

∗

y∗rn(n1 − 1)

)

.

Rearranging gives

(128)y∗s21(y
∗, α′) + s2(y∗, α′) =

y∗ − nn2α
′2

y∗n1
+

1

rn(n1 − 1)
,

which is solved by

(129)s2(y∗, α′) =
1

n1
+

1

nr(n1 − 1)
− nn2α

′2 log(y∗)

n1y∗
+

C(α′)

y∗

for constant C(α′). The other share is obtained by inserting s2(y
∗, α′) into (126), which gives

(130)s1(y∗, α′) =
1

n1
− 1

rn
+

nn1α
′2

y∗r(n1 − 1)
− nn2α

′2 log(y∗)

n1y∗
+

C(α′)

y∗
.

We now check the reporting incentives for the unranked and privately informed player from

set B. For e∗(α′) = α′ and y∗ = αnα′, (119) transforms into the first-stage maximization

problem

(131)y∗
(
1− s1 (y∗, α′)− (n1 − 1)s2 (y∗, α′)

n2

)

− (α′)2

2
.

Note that from the shares (39)

(132)s1(y∗, α′) + (n1 − 1)s2(y∗, α′) = 1 +
nn1α

′2

y∗r(n1 − 1)
− nn2α

′2 log(y∗)

y∗
+

n1C(α′)

y∗

after plugging in the expression for y∗ we get

(133)1 +
n1α

′

αr(n1 − 1)
− n2α

′ log(nα′α)

α
+

n1C(α′)

nα′α
.

The derivative of (131) with respect to α′ gives the differential equation

(134)
α(−2nn1 + (n− 1)(n1 − 1)n2r + 2n(n1 − 1)n2r log(nα

2))

(n1 − 1)n2r
− n1C

′(α′)

n2

40



which can be solved to yield the constant (40). Inserting this constant gives

(135)2α′(n1 + n2) log
( α

α′

)

.

Setting this derivative to zero yields α′ = α. Hence the unranked player has the appropriate

incentives to report truthfully under the claimed sharing rule (39) with constant (40).

Appendix C: Equilibrium existence

We now examine in which cases the efficient efforts implemented through sharing rule (8)

constitute an equilibrium. Since equilibrium existence depends on the detailed specification

of the curvature of the ranking technology, the production function, and costs, we switch to

a particular class in which we demonstrate that the exertion of efficient efforts constitutes a

global utility maximum under our proposed sharing rule (8).

This is not the only case in which equilibria exist in our model. To illustrate this, we add

an example of a commonly used model setup in which our proposed equilibrium exists. This

example falls outside the class of specifications investigated in the following Proposition.

Proposition 6. We restrict attention to the class of problems consisting of output y(α; e1 +

(n− 1)e∗(α′)) = αw̄(e1 + (n− 1)e∗(α′)), symmetric cost c(e) = (ex)/x, for x > 1, w̄ > 0, and

generalized Tullock contest success technology with precision parameter r > 0. Moreover, we

restrict permissible α to the compact range [a, na] for a > 0. A sufficient condition for efficient

effort provision by every player and truthful type reporting by player 1 to be an equilibrium in

this class is that x = r.

Proof of Proposition 6. We start with the second-stage effort choice problem given any re-

port α′. Consider the objective

(136)u1

(
e1, e

∗
−1(α

′), α
)
= y(α, e1)

(
(1− f 1(e1))(1− s1(e1))

n− 1
+ f 1(e1)s

1(e1)

)

− c(e1)

where

(137)s1(e1) =
(n− 1)

(
c′∗(α′))

f1
1
(e∗(α′))

− y2(α̃(e1),e∗(α′))

nf1
1
(e∗(α′))

)

ny(α, e1)
+

1

n
.

We use the shorthand notation y(α, ê) = y(α; ê+ (n− 1)e∗(α′)), f 1(ê) = f 1(ê, e
−i

∗(α′)), with
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ê ∈ {e1, e∗(α′)}, and similarly for all other expressions. Then,
∂u1

∂e1
=

(138)

y(α, e1)

[(1− f 1(e1))
(

(n−1)y2(α,e1)µ
ny(α,e1)2

+
(n−1)α̃′(e1)y1,2(α̃(e1),e∗(α′))

n2f1
1
(e∗(α′))y(α,e1)

)

n− 1

+ f 1(e1)

(

−(n− 1)y2(α, e1)µ

ny(α, e1)2
− (n− 1)α̃′(e1)y1,2(α̃(e1), e

∗(α′))

n2f 1
1 (e

∗(α′))y(α, e1)

)

+ f 1
1 (e1)

(
(n− 1)µ

ny(α, e1)
+

1

n

)

−
f 1
1 (e1)

(

− (n−1)µ
ny(α,e1)

− 1
n
+ 1
)

n− 1

]

+ y2(α, e1)







f 1(e1)

(
(n− 1)µ

ny(α, e1)
+

1

n

)

+

(1− f 1(e1))

(

− (n−1)µ
ny(α,e1)

− 1

n
+ 1

)

n− 1







− c′(e1)

where µ =
c′∗(α′)

f 1
1 (e

∗(α′))
− y2(α̃(e1), e

∗(α′))

nf 1
1 (e

∗(α′))
. (138) simplifies to

(139)

∂u1

∂e1
=

y2(α, e1)

n
− c′(e1) +

f 1
1 (e1)

f 1
1 (e

∗(α′))

(

c′∗(α′))− y2(α̃(e1), e
∗(α′))

n

)

− α̃′(e1)
y1,2(α̃(e1), e

∗(α′))

n2f 1
1 (e

∗(α′))

{
nf 1(e1)− 1

}
.

Inserting

(140)α̃′(e1) =
y2(α, e1)

y1(α̃(e1), e∗(α′))

we obtain

(141)

∂u1

∂e1
=

y2(α, e1)

n
− c′(e1) +

f 1
1 (e1)

f 1
1 (e

∗(α′))

(

c′∗(α′))− y2(α̃(e1), e
∗(α′))

n

)

− y2(α, e1)

y1(α̃(e1), e∗(α′))

y1,2(α̃(e1), e
∗(α′))

n2f 1
1 (e

∗(α′))

{
nf 1(e1)− 1

}
.

For the linear case y(α, ê) = αw(ê+(n− 1)e∗(α′)) = αw(ê) using again the shortened notation

for the function w(·) in the last step we get

(142)

∂u1

∂e1
=

αw′(e1)

n
− c′(e1) +

f 1
1 (e1)

f 1
1 (e

∗(α′))

(

c′∗(α′))− αw(e1)w
′∗(α′))

nw(e∗(α′))

)

− αw′(e1)

w(e∗(α′)

w′∗(α′))

n2f 1
1 (e

∗(α′))

{
nf 1(e1)− 1

}

where we substitute the linear adjustment

(143)α̃′(e1) =
αw′(e1)

w(e∗(α′))
.
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Using linear w(ê) = w̄(ê+(n−1)e∗(α′)) and monomial cost c(ê) = êx/x, the first-order condition

equals

(144)

∂u1

∂e1
=

αw̄

n
− ex−1

1 +
f 1
1 (e1)

f 1
1 (e

∗(α′))

(

e∗(α′)x−1 − αw̄(e1 + e∗(α′)(n− 1))

n2e∗(α′)

)

− α

ne∗(α′)

w̄

n2f 1
1 (e

∗(α′))

{
nf 1(e1)− 1

}
.

We use ke∗(α′) in order to allow for any possible effort deviation. Then substituting e1 =

ke∗(α′), the report-contingent efficient e∗(α′) = (w̄α′)
1

x−1 , and Tullock technology into the ratio

of success function slopes gives

(145)

f 1
1 (e1)

f 1
1 (e

∗(α′))
=

(
(n− 1)rer−1

1 e∗(α′)r

(er1 + (n− 1)e∗(α′)r)2

)

/

(
(n− 1)r

e∗(α′)n2

)

=
e∗(α′)n2(e1e

∗(α′))r

e1 (er1 + (n− 1)e∗(α′)r)2

=
n2
(

k(α′w̄)
2

x−1

)r

k
((

k(α′w̄)
1

x−1

)r

+ (n− 1)
(

(α′w̄)
1

x−1

)r)2

=
n2kr−1

(kr + n− 1)2
.

Making the same substitutions step by step for the remainder of (144) , for e1 = ke∗(α′), yields

(146)

∂u1

∂e1
=

αw̄

n
− (e∗(α′)k)x−1 +

f 1
1 (ke

∗(α′))

f 1
1 (e

∗(α′))

(

e∗(α′)x−1 − αw̄(e∗(α′)k + e∗(α′)(n− 1))

e∗(α′)n2

)

− αw̄(nf 1(e∗(α′)k)− 1)

e∗(α′)n3f 1
1 (e

∗(α′))
,

inserting Tullock technology yields

(147)

∂u1

∂e1
=

αw̄

n
− (e∗(α′)k)x−1 +

f 1
1 (ke

∗(α′))

f 1
1 (e

∗(α′))

(

e∗(α′)x−1 − αw̄(e∗(α′)k + e∗(α′)(n− 1))

e∗(α′)n2

)

−
αw̄
(

n
(n−1)e∗(α′)r(e∗(α′)k)−r+1

− 1
)

(n− 1)nr
,
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and finally inserting e∗(α′) = (w̄α′)
1

x−1 yields

∂u1

∂e1
=

αw̄

n
−
(

k(α′w̄)
1

x−1

)x−1

+
n2kr−1

(kr + n− 1)2





(

(α′w̄)
1

x−1

)x−1

−
αw̄(α′w̄)−

1

x−1

(

k(α′w̄)
1

x−1 + (n− 1)(α′w̄)
1

x−1

)

n2





−
αw̄



 n

(n−1)

(

(α′w̄)
1

x−1

)r(

k(α′w̄)
1

x−1

)

−r

+1

− 1





(n− 1)nr
(148)

which simplifies to

(149)
∂u1

∂e1
= w̄

(
α

n
− α′kx−1 − α (kr − 1)

nr (kr + n− 1)
+

kr−1 (α′n2 − α(k + n− 1))

(kr + n− 1)2

)

.

As a special case, we substitute x = r and get

(150)
∂u1

∂e1
=

n

α
kr−1

(
α′n2 − α(k + n− 1)

(kr + n− 1)2
− α′

)

+ 1− kr − 1

r (kr + n− 1)
.

We need to find a condition that ensures that this expression is positive for k < 1 and negative

for k > 1.

1. k < 1: We need to ensure that the right-hand side of

(151)
n

α
kr−1

(
α′n2 − α(k + n− 1)

(kr + n− 1)2
− α′

)

+ 1 >
kr − 1

r (kr + n− 1)

is negative whenever k < 1. In order for the left-hand side to be positive, we need

(152)
αk1−r

n
+

α′n2 − α(k + n− 1)

(kr + n− 1)2
> α′

which is implied by

(153)α′

(
n2

(kr + n− 1)2
− 1

)

︸ ︷︷ ︸

=A

+α

(
k1−r

n
− 1

kr + n− 1

)

︸ ︷︷ ︸

=B

> 0.

A > 0 for all k < 1 and r > 0 and B > 0 if k < 1 and

(154)r >
log
(

k(n−1)
n−k

)

log(k)
≥ n

n− 1
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where the final term on the right-hand side is the limit of the increasing log-ratio as

k → 1.

We showed that for x = r, it is the case that

(155)
α

n
− α′kx−1 − α (kr − 1)

nr (kr + n− 1)
+

kr−1 (α′n2 − α(k + n− 1))

(kr + n− 1)2
> 0.

However, since the derivative of the left-hand side of the last inequality with respect to x

is −α′kx−1 log k, which is positive for any k < 1, the last inequality holds for any x ≥ r.

2. k > 1: We start from (149) and want to show that

(156)
kr−1 (α′n2 − α(k + n− 1))

(kr + n− 1)2
− α′kx−1 <

α (kr − 1)

nr (kr + n− 1)
− α

n

is implied by

(157)
n

αk

(
kr (α′n2 − α(k + n− 1))

(kr + n− 1)2
− α′kx

)

+ 1 <
1

nr
kr−1

+ r

whose right-hand side is positive. Thus, we need to show that

(158)
n

αk

(
kr (α′n2 − α(k + n− 1))

(kr + n− 1)2
− α′kx

)

+ 1 < 0

or, equivalently, that

(159)
αk1−r

α′n
+

α′n2 − α(k + n− 1)

α′ (kr + n− 1)2
< kx−r

which is implied by

(160)
n2

(kr + n− 1)2
− α(k + n− 1)

α′ (kr + n− 1)2
<

k−r (α′nkx − αk)

α′n

which gives

(161)
αk − α′nkx

nkr
<

α(k + n− 1)− α′n2

(kr + n− 1)2
.

We restrict possible α ∈ [a, b = sa], with s ≤ n, and—since (161) is linear in α on both

sides—we obtain two subcases:
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(a) Highest misreport α = a, α′ = b: resulting in

(162)
ak−r (k − snkx)

n
<

a (k − sn2 + n− 1)

(kr + n− 1)2

which holds for x sufficiently higher than r. For instance, for x = r, we obtain

(163)
k

kr
− 1 < sn− 1 +

n(k − 1 + n− sn2)

(kr − 1 + n)2

where the left-hand side is negative and the right-hand side is positive for k > 1

because

(164)

sn (kr + n− 1)2 + n (k − 1 + n− sn2)− (kr − 1 + n)2

(kr − 1 + n)2
> 0 ⇐⇒

ns (kr + n− 1)2 − (kr + n− 1)2 + n (k + n2(−s) + n− 1) > 0

which equals

(165)(ns− 1) (kr + n− 1)2 > n3s− n(k + n− 1).

Recall that the left-hand side equals the right-hand side at k = 1 by construction.

The left-hand side derivative is 2rkr−1(ns− 1) (kr + n− 1) > 0 and the right-hand

side derivative is −n < 0. Hence, for k > 1, (163) holds.

(b) Lowest misreport α = b, α′ = a: resulting in

(166)
ak−r (sk − nkx)

n
<

a(k − 1 + n)s− an2

(kr + n− 1)2

which also holds for x sufficiently higher than r. For instance, for x = r, we obtain

(167)
k

kr
− 1 <

n

s
− n (n2 − s(k + n− 1))

s (kr + n− 1)2
− 1

where the left-hand side is negative for k > 1 and the right-hand side is positive if

(168)
n

s
− 1 >

n (n2 − s(k + n− 1))

s (kr + n− 1)2
.

We can rewrite the last inequality as follows

(169)
n− s

s
>

n (n2 − s(k + n− 1))

s (kr + n− 1)2
⇐⇒

(n− s) (kr + n− 1)2 > n3 − sn(k + n− 1).

We have equality for k = 1. The derivative of the right-hand side of the last inequal-

ity is −sn, which is negative for s > 0, while the derivative of the left-hand side

is (n− s) (kr + n− 1) 2rkr−1, which is positive for n > s. Hence, for k > 1, (167)

holds.
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Given player 1’s choice of e1 = e∗(α′) at the second stage,28 we now move on to the reporting

stage at which player 1 chooses α′ in order to maximize utility

(170)

max
α′

y(α, ne(α′))

(
n∑

ℓ=1

f ℓ(e∗(α′))sℓ(y∗, α′)

)

− c(e(α′))

= max
α′

u1(e
∗(α′), α)

= y(α, ne(α′))
1

n
− c(e(α′))

because f ℓ(e∗(α′)) = 1/n for every ℓ and
∑

ℓ s
ℓ(y∗, α′) = 1. This yields the first-order condition

(171)y2(α;ne(α
′)) = c′(e(α′)),

which equals the social planner’s efficiency condition. Therefore, if the solution to the planner’s

problem is unique, then player 1 shares the same objective and will choose to truthfully report

α′ = α.

The following example shows that it is easy to find instances in violation of the sufficient

conditions of Proposition 6 while still exhibiting the equilibrium identified in Proposition 1.

Example 8. Consider the following two-player example outside of the class for which we show

existence in Proposition 6:29 (i) square-root team production y(α, e1, e2) = αw̄
√
e1 + e2 and

(ii) “exponential difference” contest success function defined for two players as

(172)f 1(e1, e2) =
1

1 + exp (r(e2 − e1))
, for r > 0.

All other specifications are as in Proposition 6. Assume that player 2 behaves according to our

equilibrium prescription, i.e., e2 = e∗(α′) = 8
1

1−2x (α′w̄)
2

2x−1 (from the solution to the planner’s

problem). In this example’s setup, we obtain player 1’s objective as u1(e1, e
∗
−1(α

′), α) =

(173)
αw̄(e1 + e∗(α′)) (s1(y∗, α′) (exp(r(e1 − e∗(α′)))− 1) + 1)

exp(r(e1 − e∗(α′))) + 1

where the equivalent of the sharing rule (8) is

(174)s1(y∗, α′) =
1

2

(

1− α∗w̄e1 + α∗w̄e∗(α′)− 4e∗(α′)x

α∗w̄e1e∗(α′)r + α∗w̄e∗(α′)2r

)

,

where α∗ = y∗/(w̄
√

e1 + e∗(α′)). Consider parameter values x = 2, r = 2.5, α ∈ [1, 50]. A plot

of player 1’s objective against e∗(α′) by player two in Figure 3 shows no profitable deviations.

Hence, this example illustrates that there exist situations exhibiting the equilibrium behavior

derived in Proposition 1 and lying outside of the class defined by the sufficient conditions

presented in Proposition 6.⊳

28 Since the effort choice problem of the uninformed players is identical to that of the leader, this argument
directly implies that ej = e∗(α′) for every j > 1 as well.

29 Another example of an easy generalization is to substitute exp e for the monomial cost ex/x used in the
proof of Proposition 6.
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Figure 3: Possible deviations from e∗(α′) for α ∈ [1, 50]; the objective possess no other maxima.
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