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Abstract

We analyze incentive problems in team and partnership structures where the only available

information to condition a contract on is a partial and noisy ranking which specifies

who comes first in efforts among the competing partners. This enables us to ensure

both first best efficient effort levels for all partners and the redistribution of output only

among partners. Our efficiency result is obtained for a wide range of cost and production

functions. (JEL C7, D7, D8, L2. Keywords: Moral hazard, Teams and Partnerships,

Tournaments.)

1 Introduction

We study teams and partnerships in which risk neutral partners jointly produce output which

they share among themselves. It is generally accepted that such partnerships are inefficient if

the partners’ actions are not verifiable. The argument is that partners shirk because they must

share their marginal benefit of effort with others but bear the cost alone. The question is, then,

why are there well publicized examples of extremely profitable partnerships which seem to have

very little trouble to provide incentives to partners?

We provide an intuitive answer to this question by focusing on team compensation schemes.

These schemes are based on a partial and noisy ranking which specifies who comes first in

efforts among the competing partners. We find that full efficiency can be obtained under

the assumption that such a partial ranking of the partners’ efforts is verifiable. This ranking

should be less costly to acquire than cardinal information on efforts or a full ranking of efforts.

Our result gives very clear recommendations on how to structure efficient bonus compensation

schemes: nearly equal bonuses should be given to all members in teams where the information

on the ranking of individual efforts is very precise and a single, high bonus should be awarded

in teams where effort monitoring is poor. In the motivating examples below, there are two main

elements present on which we build our analysis: team output determines the pool from which
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prizes are taken and information about relative performance is used as the means of allocating

these prizes.

Partnerships are the dominant organizational form in several fields of the professional ser-

vices industry, especially in law, accounting and, until recently, investment banking.1 The

perceived advantages of partnerships are highly valued by dominant firms in these sectors. For

instance, when Goldman Sachs was converted into a public company in 1999 it retained impor-

tant elements of the partnership that it maintained for 130 years previously. The $20.2 billion

that Goldman Sachs set aside during 2007 for salaries and bonuses was roughly 50% of its net

revenue. (CNNMoney.com, 18-Dec 2007) As this pool is typically split into 40% salaries and 60%

bonuses, this amounts to a bonus averaging $400,000 for each of its 30,000 staff. New partners

are elected every two years. Since their share of this compensation pool is disproportionally

larger than the associates’ share, there is a fierce promotion tournament going on among the

lower ranks.

Similarly, in the tradition of Galanter and Palay (1991), Rebitzer and Taylor (2007) argue

that law “firms are typically structured as partnerships. Attorneys become partners via up-

or-out promotion contests.” Promotions are indeed lucrative, as “at Sullivan & Cromwell, for

example, according to the American Lawyer, the average partner earned $2.35 million last year”

while young lawyers at the same firm have to make do with a meagre $145,000. (The Wall Street

Journal, 1-April-06) A performance evaluation system which could be used by a partnership

for its promotion or bonus award decisions is the popular 360◦ assessment where subalterns,

peers and superiors of a given candidate are asked, typically on questionnaires, to assess the

candidate. The partnership can use this noisy and at least partly qualitative information to

decide on the ranking of partners, that is, on who to promote and who to fire.2

The model’s most direct application is to partnerships in the professional services. However,

since our setup is applicable to any partnership or team structure as long as there exist perfor-

mance related bonuses paid from the joint product, there is a much wider area of application

in virtually any form of cooperation. As Battaglini (2006) observes, “budget balance means

that the mechanism cannot commit to ‘throw away’ surplus or to give it to someone who does

not participate in production. Since budget balance can be interpreted as a constraint imposed

by renegotiation-proofness, [our analysis] is relevant not only for those organizations in which

budget balance seems a natural assumption from an institutional or empirical point of view

(for example, a partnership), but for all the organizational forms.”

In our examples, it is crucial that the tournament prizes are determined by joint output.

This distinguishes our setup from the fixed prizes which are usually studied in the tournaments

literature. We capture this feature by using final output as the total sum of prizes awarded in a

tournament. In our model, the sharing rule which specifies the percentage of output allocated

1 Greenwood and Empson (2003) list the percentage of partnerships as form of governance for the top 100
firms per industry as follows: Law 100%, Accounting 56%, Management consulting 17%, Architecture 18%.

2 “Often (although not always) the objective and measurable criteria used in promotions, including billable
hours in the context of law firms, and profits earned in the corporate context, are less indicative of future
success than other subjective, but less measurable criteria.” Baker, Choi, and Gulati (2006).
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to the winner, second, etc, is proposed by an arbitrary player and the partnership is only formed

if all players agree. A (subgame perfect) equilibrium consists of two elements: a sharing rule

which specifies the prizes in the compensation tournament and a set of efforts which determines

the output and the probabilities of winning these prizes. There are two main incentive effects

from a player increasing effort. On the one hand, additional effort increases the total output

of the team of which the agent only receives a share. On the other hand, however, increased

effort also raises the agent’s chance of winning the tournament. Relative to the socially optimal

level of effort, the first effect leads to under-investment while the second gives the leverage to

counter this adverse effect. For the offered sharing rule, these two effects exactly cancel out in

symmetric equilibrium and we always obtain full efficiency. Moreover, for a sufficiently precise

ranking technology (interpreted as the firm’s capability to monitor efforts), the players who

are not ranked first in the tournament will also get a positive prize in symmetric equilibrium.

In such cases, a winner-take-all compensation scheme leads to overinvestment and a positive

second prize has the effect of dampening incentives such that efficient efforts are obtained.

If we allow for limited liability of partners, there is the additional caveat that the (marginal)

chance of winning the tournament must be reasonably responsive to changes in effort.3 Thus,

relative performance compensation schemes under limited liability are only useful if the pre-

cision with which the partial ranking technology picks out the winner is not too low. This

is arguably easier to achieve in partnerships where professionals share a certain specialization

than in general corporations. Our model can therefore explain why partnerships emerge rather

between similarly specialized colleagues than between professionals with complementary skills.

The remainder of the paper is organized as follows. We start by relating our contribution

to the literature on partnerships and tournaments. In section 2, we introduce the model and

our team game. Section 3 illustrates the main result through example and in section 4, we

prove the efficiency result. We provide extensions to our model for teams with more than two

members and to asymmetric partners in section 5 where we also discuss equilibrium existence

issues. All proofs and technical details can be found in the appendix.

Related literature

Alchian and Demsetz (1972) and Holmström (1982) pose the original problem of unattainabil-

ity of first best efforts in neoclassical partnerships when output is ex ante non-contractible and

shared among partners. Legros and Matthews (1993) show that full efficiency can be obtained

in some cases, for example, for partnerships with finite action spaces or with Leontief tech-

nologies. Nevertheless, they confirm and generalize Holmström’s result that full efficiency is

unattainable for neoclassical partnerships, ie. the case which we study where production and

utility functions are smooth. They show that approximate efficiency can be achieved in mixed-

strategy equilibria, where one partner takes an inefficient action with small probability. (These

3 Under limited liability, a partner’s share of output is non-negative. This is important, because “since
the introduction of legal forms such as the limited liability partnership and the limited liability company,
unlimited liability partnerships are rarely seen in the professional services.” Levin and Tadelis (2005)
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results have been recently generalized by Rahman and Obara (2008).) However, sustaining

such equilibria depends crucially on the partners bearing full liability. If the partners enjoy

limited liability, the mechanism does not work since it is impossible to impose the large fines

necessary to prevent deviations. In our result, full efficiency is attainable even with limited

liability, provided that the ranking technology gives a sufficiently high marginal probability of

winning for symmetric efforts. Battaglini (2006) discusses the joint production of heteroge-

nous goods. For multi-dimensional output he finds that implementing the efficient allocation

is possible whenever the average dimensionality of the agents’ strategy spaces is lower than the

number of different goods produced. He confirms that efficiency is unattainable in the standard

case.

Kandel and Lazear (1992) show that the existence of peer pressure can weaken the free

rider problem in teams and partnerships. Their concept of peer pressure among partners

captures factors such as guilt, norms, and mutual monitoring which all serve as disciplinary

devices. Unlike our compensation scheme, they use constant shares of output rather than a

tournament. Miller (1997) shows that whenever a single partner can observe and report on at

least one other’s actions, efficient efforts can be implemented. Strausz (1999) shows that when

agents choose their efforts sequentially and observe the actions taken by their predecessors,

there exists a sharing rule which implements efficient efforts. This sharing rule induces players

to reveal a shirking partner by influencing final output in a particular way.

The classic reference on efficiency in tournaments is Lazear and Rosen (1981).4 They com-

pare rank order wage schemes to wages based on individual output and find that, for risk-neutral

agents, both allocate resources efficiently. Nalebuff and Stiglitz (1983) find that, in addition,

efficiency can also be obtained if the individual outputs are correlated. The two papers share

the feature that there exists a principal facing a perfectly competitive market. Assuming the

presence of an optimizing principal, an efficiency result only requires risk neutrality in their

setup. Indeed, as shown by Mookherjee (1984) in the setup of a principal with many agents,

the optimal incentive scheme can sometimes be based solely on the ranking of the agents’ out-

puts. In other words and using Holmström’s terminology, the ranking of the agents’ outputs

can, under some conditions, be a sufficient statistic of the agents’ outputs.5 In a similar setup

of a principal with many agents, the advantages of ranking-based compensation schemes are

discussed by Green and Stokey (1983) and Malcomson (1986), among others. However, exis-

tence of a principal immediately solves Holmström’s moral hazard in teams problem as he can

play the role of a budget breaker or residual claimant. Absent the optimizing principal, the

presence of perfectly competitive and centralized markets is required in the setup of Lazear and

Rosen (1981) and Nalebuff and Stiglitz (1983) to obtain efficiency. By contrast, we do neither

require any markets nor a budget breaker, and therefore, our model is suitable for the analysis

of incentive problems inside a partnership regardless of the industry market structure.

4 Kurshid and Sahai (1993) survey the measurements literature which lends support to the tournaments
approach by arguing that ordinal statistics are inherently cheaper to produce than cardinal statistics.

5 For comparisons of different information structures in principal-agent environments, see Gjesdal (1982) and
Amershi and Hughes (1989).
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Contrasting with our view of a tournament as an incentive device, Holmström (1982) argues

that the rationale for using relative performance evaluation is not to induce competition among

the agents, but to reduce risk exposure of the agents. Nalebuff and Stiglitz (1983) find that

depending on the degree of risk aversion, the agents may choose effort levels either higher or

lower than the first best level. But neither they nor—to our knowledge—any other contribu-

tion studies the problem of designing an endogenous prize structure which encourages efficient

expenditure of efforts in a limited liability team production problem.

There exists a sizable literature on contests with effort dependent prizes such as, for example,

lottery contests, promotion tournaments, R&D, patent- or innovation races. Konrad (2008)

surveys this literature in detail, so we focus on the contributions most relevant to our work.

Chung (1996) discusses a Tullock-style rent seeking model where productive efforts increase the

single rent which contestants compete for. Thus he considers a winner-take-all contest with

linear costs. For this setup, he shows that the equilibrium efforts obtained for the simplified

Tullock success function are always greater than socially optimal. He uses the exponent on

efforts in the general Tullock success function to fine-tune the tournament in order to obtain

efficient efforts.6 Baye and Hoppe (2003) explore the relationships between R&D races and

innovation games in the similar analytical framework of rent seeking tournaments. In both cases,

endogenised prizes arise naturally and the authors show the equivalence of certain formulations

of these classes of games to rent seeking contests. For these games, they arrive at the conclusion

of excessive investment. These contributions do not study the problem of designing an optimal

prize (rent sharing) structure to achieve first best.

Cohen, Kaplan, and Sela (2008) characterize optimal effort dependent prize structures in an

all-pay auction setup. Although they account for the optimal design problem, they do not allow

for the possibility of a second prize, as in our paper. Depending on the designer’s objective,

they find that the optimal reward may decrease or increase in the players’ efforts. Since there is

no interpretation to their efforts in terms of social desirability, there is no optimality yardstick

against which to measure efficiency or the over- or underprovision of effort. Heintzelman, Salant,

and Schott (2006) discuss a problem where a single player’s decision leads to the overuse of

a common-property. Gathering agents together into a single group generates a free-riding

problem, which in turn weakens the agents’ incentives and decreases the excessive use of the

common resource. The authors show that efficient efforts can be implemented when the number

and sizes of partnerships are chosen appropriately. This contrasts with our paper which uses a

contest in a single team to ensure decentralized efficiency of productive efforts.

When more than one prizes can be used, Nalebuff and Stiglitz (1983) find that the optimal

fixed prize structure entails at most three prizes for a uniformly and normally distributed

individual error term. Their second prize may not necessarily be positive. Clark and Riis

(1998a) study an all-pay auction with multiple identical prizes and show that multi-prizes can

be used to elicit extra efforts from the agents. Moldovanu and Sela (2001) characterize the

6 Baik and Lee (2007) are interested in the structure of (private) sharing rules employed in a rent seeking
contest between two groups of players. Although they develop their inter-group contest over a fixed prize,
the intra-group contests are over variable prizes.
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optimal prize structures of all-pay auctions. They show that, for convex cost functions and a

fixed prize pool, it is optimal to give positive prizes not only to the winner. One contribution

of our analysis is to show that convexity per se does not optimally lead to multiple prizes in

partnerships. In order to get multiple prizes, the informativeness of the ranking technology has

a crucial role as well. In all discussed contributions, a second prize is used to elicit more efforts

from the agents, in contrast to our view that a second positive prize can be used to soften the

incentive for overexertion such that efficient efforts can be obtained.

2 The model

There are two identical, risk neutral agents exerting unobservable individual efforts ei ∈

[δ,∞), i ∈ {1, 2}, for some positive δ arbitrarily close to zero.7,8 However, some noisy and

partial ranking of efforts of the partners is assumed to be observable and verifiable. For the

ratio of efforts xij = ei/ej (we drop subscripts on xij when there is no risk of confusion), the

technology translating a partner’s effort into his probability of being ranked first is described

by9

Γ(ei, ej) = [fi (xij) , fj (xij)] (1)

where fk(·) is the probability that partner k ∈ {i, j} gets the first place in the ranking given his

effort ei and the rival partner’s effort ej, with fi + fj = 1. We make the following assumptions

on f(·)

A1 Symmetry: fi(xij) = fj(xji), for x ∈ (0,∞);

A2 Responsiveness:
dfi(x)

dx
> 0,

dfj(x)

dx
< 0; lim

x→0
fi(x) = 0 and lim

x→∞
fi(x) = 1;

A3 f(·) is twice continuously differentiable.

Assumption A1 captures the symmetry of the two partners. Assumption A2 reflects the

idea that the probability that one partner is ranked first in effort is dependent upon the relative

performance of the two partners, measured by x = ei/ej. In particular, partner i’s winning

probability is increasing in x, but partner j’s winning probability is decreasing in x.

If a partnership is formed, the output of the partnership is a function of the total efforts

of the partners. Denote the production function as y = y(
∑

i ei). The production function

is smooth and twice continuously differentiable, with y(2δ) = 0, y′(·) > 0 and y′′(·) ≤ 0. A

partner who receives a share s of final output, given his own effort ei and the other partner’s

7 The natural effort choice set would be [0,∞) but we avoid zero effort because of potential division by zero
in the effort ratio.

8 We generalize our results to more than two players in section 5 but the full intuition can be understood from
the two players case.

9 This class includes the Tullock success function
e

r
i

e
r
i
+e

r
j

for r > 0 where fi(x) = 1

1+x−r . It has been axiomatized

by Skaperdas (1996) and others who show that only variants of the Tullock contest success function satisfy
a set of desiderata similar to our assumptions.
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effort ej , gets utility

ui(ei, ej) = sy(ei + ej) − C(ei)

where C : [δ,∞) → R is a cost function with C(δ) = 0, C ′(·) > 0 and C ′′(·) > 0.

A partner’s objective is to maximize his own expected utility. We investigate whether it is

possible to induce the players to exert efficient efforts using a rank order compensation scheme.

Timing

At the first stage, an arbitrary partner initiates the partnership formation by making a proposal

to the other partner, offering a sharing rule (s, 1 − s). Without loss of generality let partner 1

be the proposer. Partner 2 then decides whether to accept the proposal or not. If he accepts,

the partnership is set up, and the game proceeds to the next stage. If he rejects, the game ends

and each player obtains his reservation utility which we normalize to zero. At the second stage,

conditional on the formation of the partnership, the partners choose their efforts simultaneously

to maximize their own expected utility. Some noisy ranking of efforts specifies a winner, final

output realizes and is then distributed among the two partners. The winner obtains the share

s of total output, and the other partner gets 1 − s.

(In-)Efficiency benchmark

Efficient actions are those which maximize the total welfare of the two partners absent of any

incentive aspects

max
(ei,ej)

w(ei, ej) = y(ei + ej) − C(ei) − C(ej).

The first best effort level is determined by y′(2e∗) = C ′(e∗) where e∗i = e∗j = e∗. Suppose the

two partners fix the shares (si, sj) ex ante, with si + sj = 1. As shown by Holmström (1982),

there is no sharing rule that achieves full efficiency and satisfies a balanced budget at the same

time. Given the sharing rule (si, sj), the partners choose their efforts to maximize

ui(ei, ej) = siy(ei + ej) − C(ei).

Conditional on the formation of the partnership, partner i’s best response is given by

siy
′(ei + ej) = C ′(ei),

where equilibrium efforts are dependent upon the share si received. The bigger the share

received, the higher the effort. However, since si + sj = 1, at least one of the partner always

chooses suboptimal effort.
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3 Example of efficient team production

We now use a specific example to illustrate that the proposed partnership tournament game

achieves full efficiency. Let the production function be linear in total efforts

y = α(ei + ej), α > 0

and assume cost functions to be quadratic10

C(ei) =
e2

i

2
, i ∈ {1, 2}.

Let the technology specifying winning probabilities be the generalized Tullock success func-

tion.11 Partner i ∈ {1, 2} is ranked first with probability

er
i

er
i + er

j

=
1

1 + x−r
, r > 0, (2)

if he exerts effort ei and the other partner exerts effort ej . The partner who is ranked first

receives share s of the final output, and the partner who is ranked second receives share 1− s.

In this example, the efficient effort levels are (e∗1, e
∗
2) = (α, α).

In our tournament game, given the shares agreed on at the first stage, partners choose efforts

non-cooperatively at the second stage. Thus partner i ∈ {1, 2} chooses effort ei to maximize

ui(ei, ej) =
er

i

er
i + er

j
︸ ︷︷ ︸

pr winning

sα(ei + ej)
︸ ︷︷ ︸

payoff if win

+
er

j

er
i + er

j
︸ ︷︷ ︸

pr losing

(1 − s)α(ei + ej)
︸ ︷︷ ︸

payoff if lose

−
e2

i

2
︸︷︷︸

cost

. (3)

The symmetric equilibrium efforts depend on s

ei(s) = ej(s) =
α − rα + 2rsα

2
. (4)

Equilibrium efforts are increasing in the share s. Notice that, for arbitrary r > 0, the agents

choose efficient efforts if s equals

s∗ =
1 + r

2r
. (5)

The intuition of the efficiency result is straightforward. As one partner increases effort, given

the other partner’s effort level, he increases the final output, and at the same time increases

his probability of being ranked first. This implies that he has a higher probability of receiving

the winning share of an increased final outcome. The larger the winner’s share s, the higher

10 Multiplying the cost function with a constant does not make the formulation more general as its effects can
be assimilated into the coefficient α of the production technology.

11 As δ is only a technical device to prevent division by zero in the effort ratio, we allow efforts in [0,∞) in
this example and set a probability of f1(·) = 1/2 for e1 = e2 = 0. The generated discontinuity of the success
function at zero efforts plays no role in the example.
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the incentive for a partner to exert high effort.12

Comparing a partner’s objective function (3) with that of a social welfare maximizer

w(e1, e2) = α(e1 + e2) −
e2
1 + e2

2

2

we see that in (3), each partner’s incentive to exert effort consists of two parts. The first is that

exerted effort increases total output α(ei + ej), which increases a partner’s payoff no matter

whether he is ranked first or second. This motive also exists in the social welfare maximization

problem. In a partnership, an agent expects to receive only part of the output and thus

does not internalize the positive externality of higher effort on the other partner. This is the

usual incentive to free-ride leading to under-investment of effort in partnerships. In our game,

however, a tournament is used to allocate the shares. Therefore, partners have an additional

motive to exert effort, because higher effort increases the probability of getting a bigger share

of the output and decreases the probability of getting the smaller share. This extra incentive

brought about by the tournament exactly offsets the incentives to free ride from profit sharing

if the prizes are chosen appropriately.

To illustrate that full efficiency is achieved, we still need to show that it is optimal for

partner 1 to propose the share (5) at the first stage and for partner 2 to accept. Given the

equilibrium efforts ei(s), partner 1 chooses share s at the first stage to maximize

u1(s) = u1(e1(s), e2(s)) =
(3 − r(2s − 1))(1 + r(2s − 1))α2

8
(6)

subject to participation of the second player. Since choosing a minimal effort generates non-

negative utility, this participation is ensured.13 This objective (6) is maximized at (5) and thus

it is optimal for partner 1 to propose the efficient sharing rule at the first stage of the game.

For the case of r = 1 in the success function (2), the optimal allocation rule is to give the

entire outcome to the partner who ranks first in efforts. But this is not a feature of the efficient

mechanism in general. For a sufficiently precise ranking technology, ie. r > 1, the efficient

mechanism shares output between the players such that each partner receives a positive prize.

With higher ranking precision, however, the existence of pure strategy symmetric equilibrium

becomes problematic. This phenomenon is well studied in the rent seeking literature where no

such equilibria exist for r > 2. We discuss the lessened scope of this problem in our framework

in section 5 and demonstrate that existence is ensured for r ≤ 5 for the current example. In

the case of r = 5, the resulting winning share is as small as 60%.

From expression (5), if r < 1 the loser needs to be punished (ie. s > 1) in order to achieve

efficiency. Such a policy is not feasible if partners face a limited liability constraint. As the

ranking technology gets more responsive, ie. r > 1, a winner-take-all tournament with s = 1

gives the agents too high incentives, and the agents overinvest ei = (1 + r)α/2 > e∗i = α, as

12 This result is similar to (but in our case stronger than) the standard tournaments result with fixed prizes
where incentives increase with the spread between the prizes.

13 For the case of unlimited liability, the second player’s participation constraint has to be examined separately.
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shown by Chung (1996) and Baye and Hoppe (2003). If the winner’s share is 1/2, the allocation

mechanism is equivalent to a fixed equal sharing rule. It is well known that in this case the

agents free ride and provide insufficient efforts. As, for any given r, function (3) is continuous

in s, we can ascertain the existence of a winner’s share s∗ ∈ (1
2
, 1] ensuring positive shares of

final output for both agents and efficient effort provision at the second stage.

4 Results

We now show that in the general setup, full efficiency is attainable for general concave (including

linear) production functions and a large class of ranking technologies. Recall the production

technology

y = y(ei + ej), with y(2δ) = 0, y′(·) > 0, y′′(·) ≤ 0.

Given the sharing rule s and partner j’s effort of ej, partner i’s expected utility from exerting

effort ei is

ui(ei, ej) = fi

(
ei

ej

)

sy(ei + ej) +

(

1 − fi

(
ei

ej

))

(1 − s)y(ei + ej) − C(ei). (7)

By restricting attention to this implicitly linear contract we do not actually lose generality as

is shown for risk neutral agents by Nandeibam (2002).14 Assuming the existence of interior

solutions, maximizing the above implies for i = 1, 2, that

f ′
i

(
ei

ej

)
1

ej

(2s − 1)y(ei + ej)+
(

fi

(
ei

ej

)

s +

(

1 − fi

(
ei

ej

))

(1 − s)

)

y′(ei + ej) − C ′(ei) = 0.
(8)

Given j’s effort ej , (8) implies that marginally increasing effort ei has three effects: 1) a

marginal increase of final output, 2) a marginal increase of partner i’s winning probability, and

3) a marginal increase of effort cost.

When the symmetric Nash solution exists, then ei = ej = e and fi(1) = 1
2
. Substituting

these, we obtain from (8) that

f ′
i(1)

e
(2s − 1)y(2e) +

1

2
y′(2e) = C ′(e). (9)

As equilibrium effort e is a function of s we write effort as e(s) and the associated output as

y = y(2e(s)). Intuitively, f ′
i(1) relates to the precision of the tournament’s ranking technology.

(In the example of section 3, for instance, f ′
i(1) = r/4.) A high value of f ′

i(1) corresponds to a

highly precise ranking technology involving a drastic change of the winning probability as the

ratio ei/ej approaches 1.15 In the following lemma we begin the analysis of equilibrium effort

14 We are grateful to an anonymous referee for pointing out the generality of this formulation.
15 Output variance is necessary for pure strategy equilibrium existence in Lazear and Rosen (1981) or Nalebuff

and Stiglitz (1983). In our case, this role is taken by the assumed differentiability of the ranking technology.
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choice.

Lemma 1. Second stage equilibrium effort e is increasing in s.

This corresponds to the standard tournament literature result that a partner’s incentive is

increasing in the spread between prizes. Here we have replaced the fixed prizes with a fixed

sharing of the final output. It is natural that effort is increasing in the share s since a larger

share means a bigger prize for the winner.

Lemma 2. Denoting the first best, efficient efforts by e∗, the sharing rule s which satisfies

f ′
i(1)

1

e∗
(2s − 1)y(2e∗) =

1

2
y′(2e∗) (10)

elicits the efficient effort choice at the second stage. Under unlimited liability, there always

exists a share s∗ such that (10) is satisfied.

We proceed to show that first best can always be implemented as a subgame perfect equi-

librium under unlimited liability.

Proposition 1. Under unlimited liability, full efficiency is obtained. At the first stage, partner

1 proposes a sharing rule (s∗, 1 − s∗) and at the second stage, each partner exerts first best

efforts.

The efficiency result of proposition 1 does not depend on the ratio-form of the success

function, it extends to any symmetric, differentiable success function.

If partners face a limited liability constraint, their possible shares are restricted to [0, 1].

The next lemma establishes a threshold precision for the ranking technology for efficiency to

obtain under limited liability.

Lemma 3. Under limited liability with s ∈ [0, 1], there exists an s∗ that satisfies (10) if f ′
i(1) ≥

1
4
.

Notice that, when f ′
i(1) is sufficiently low (ie. below 1/4), the equilibrium share which induces

efficient efforts may exceed 1. Denote by s̃ the solution to (10).

Proposition 2. Under limited liability, if s̃ ∈ [0, 1], then full efficiency can always be obtained.

If s̃ /∈ [0, 1], then player 1 proposes shares (s∗, 1− s∗) = (1, 0) and the agents choose suboptimal

efforts.

For a sufficiently precise ranking technology it is always the case that s̃ ∈ [0, 1]. Hence,

there is a threshold precision above which efficiency is guaranteed.

Corollary 1. If the ranking technology is sufficiently precise, that is if f ′
i(1) ≥ 1

4
, then full

efficiency can always be obtained.
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The above propositions show that for the class of production functions studied, as long as

the ranking technology is such that the marginal winning probability for symmetric efforts is

sufficiently large, full efficiency can always be achieved, even under limited liability. There is

no necessity for a budget breaker. The only requirement is the observability of some noisy

and partial ranking of efforts picking out winning probabilities. This result does not depend on

whether or not one can deduce the other partner’s effort after output is observed. The efficiency

result is robust to production functions of other forms, as long as the concept of symmetric

equilibrium can be applied.

The condition on the marginal winning probability for symmetric efforts is critical for limited

liability. In the symmetric equilibrium we consider here, a partner is only willing to increase

his efforts if doing so significantly increases his probability of winning a bigger share of the

final output. We emphasize that f ′
i(1) < 1/4 is a necessary but not sufficient condition for

inefficiency under limited liability. When inefficiency occurs, it depends on the curvature of

the production function and the tournament ranking technology. In the example of section 3

with linear production function, f ′
i(1) = 1/4 is exactly the critical value between full efficiency

and inefficiency. If the production function is strictly concave, y(e) is strictly larger than its

linear approximation y′(e)e and the required threshold on the marginal probability of winning

decreases. Thus, the requirements on the precision of the ranking technology become weaker

for more concave production functions. The reason is that, as the production technology

becomes more concave, efficient efforts get smaller and the saved (convex) costs from free

riding shrink quickly. Therefore, the power of the incentive scheme, ie. f ′
i(1) and s∗, needs to

be less responsive to deviations from the efficient symmetric effort level because output itself

gives ample reward for high effort provision.

Corollary 2. If, under limited liability, efficiency can be achieved under linear production, then

it can always be achieved with any strictly concave production technology.

It is worth pointing out that whenever the partial ranking technology is precise enough,

the player who comes out second also receives a positive share. The exact precision threshold

depends on the used production function. Notice that (10) can be solved to obtain the efficient

sharing rule corresponding to (5) as

s∗ =
e∗y′(2e∗)

4y(2e∗)f ′
i(1)

+
1

2
.

If f ′
i(1) indeed exceeds 1/4, the loser’s prize (1 − s∗) is strictly positive.

Corollary 3. If the ranking technology is sufficiently precise, that is if f ′
i(1) > 1

4
, then s∗ <

1, ie. both players receive a positive share. Moreover, the winner’s share s∗ exceeds 1/2 and

decreases with f ′
i(1).

For a sufficiently precise ranking technology, the players who are not ranked first in the

tournament also get a positive prize in symmetric equilibrium because the added ranking pre-

12



cision allows to dampen incentives.16 This is a property which, together with limited liability,

corresponds to actual compensation schemes. If we were to compare two similar limited liability

partnerships, one with a very precise monitoring technology and one where the higher effort

provider is identified rather imprecisely, we could obtain two very different sharing rules which

nevertheless both implement first best efforts. In the case of the precise monitoring technology,

all partners could get nearly the same share of output while for the imprecise effort ranking a

sharing rule giving all output to the winner could be optimal. Thus, in our setting, decidedly

egalitarian looking partnerships may actually arise from pure efficiency considerations.

5 Extensions

More than two partners

In this subsection we show that our full efficiency result is not an artifact of two member

partnerships, where one can deduce the effort level of the other partner from observing output.

We demonstrate that with only two types of prizes—one for the winner of the tournament and

one for everyone else—efficiency can be reached. Assume that there are n players and notice

that the efficient effort level e∗ should satisfy

y′ (ne∗) = C ′(e∗). (11)

In our model, success probabilities are functions of effort ratios. For a ratio of efforts xij = ei/ej ,

we denote the vector of n effort ratios of player i by xi = (xi1, xi2, . . . , xin), where the ith element

is 1. Denote by fi(xi) the probability that player i is ranked first, if xi is the vector of the

agents’ effort ratios. We need assumptions on fi(·) similar to those made for the two player

case.17

A1 Symmetry: For any two players l 6= m and for any two vectors of efforts, (e1, . . . , en) and

(ẽ1, . . . , ẽn) with ek = ẽk for k /∈ {l, m} and el = ẽm and em = ẽl, we have

fl(xl) = fm(x̃m).

We also need an additional type of symmetry. For any player i, let the elements of an

effort ratio vector x′
i be arbitrary permutations of those in xi except for the element at

the ith position. For these we require

fi(xi) = fi(x
′
i).

16 It is straightforward to check the performance of a winner-take-all contest as a special case of our second
stage game. Such an allocation rule leads to overinvestment at the second stage if f ′

i
(1) > 1

4
.

17 The literature has treated n-player contests in two distinct ways: Either as fully discriminatory all-pay
auctions as exemplified by Moldovanu and Sela (2001) or as a nested form of Tullock contest as formalized
by Clark and Riis (1996) or Clark and Riis (1998b).
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A2 Responsiveness: For any l ∈ {1, . . . , n} and l 6= i,
∂fi(xi)

∂xil

> 0.

A3 f(·) is twice continuously differentiable.

The new part of A1 says that every opponent of player i affects the winning probability of

i in a similar way. Thus, if players l and m exchange their effort levels, this does not affect the

winning probability of player i /∈ {l, m}. The interpretation of A2 is that the probability of

being ranked first should react positively to increased efforts.

When agents exert identical efforts, then A1 implies that for any i ∈ {1, . . . , n}, l, m 6= i,

we have that ∂fi(1)
∂xil

= ∂fi(1)
∂xim

where 1 is the n dimensional vector of 1. Therefore, ∀l 6= i, we can

use the following notation
∂fi(1)

∂xi

=
∂fi(1)

∂xil

.

The timing structure and the rules of the game are similar to the two players case. At the

first stage, partner 1 proposes a sharing rule consisting of a winner’s share s and an identical

prize 1−s
n−1

to everyone else. If any of the n partners fail(s) to participate in the mechanism, the

partnership is not formed and the game ends. For a given sharing rule, the expected utility of

player i is

fi(xi)sy(

n∑

j=1

ej) + (1 − fi(xi))
1 − s

n − 1
y(

n∑

j=1

ej) − C(ei). (12)

The next proposition shows that full efficiency can be obtained if the success function is precise

enough, ie. if a partner exerting higher effort than his opponents is selected as the winner with

sufficiently high probability.

Proposition 3. There exists a winner’s share s, such that the sharing rule
(
s, 1−s

n−1
, . . . , 1−s

n−1

)

elicits efficient efforts at the second stage. This rule is proposed at the first stage of the game.

Moreover, it satisfies limited liability whenever

∂fi(1)

∂xi

≥
1

n2
. (13)

As efficiency can be obtained with just two prizes, the use of the Tullock success function

(which only picks out the winner) seems justifiable also in the n-players case.

Asymmetric partners

We now show that efficiency does not depend on the symmetric partners. For that purpose,

let’s consider the following 2-partner setup where asymmetric efficient efforts are given by

y′
i(e

∗
i , e

∗
j ) = C ′

i(e
∗
i ), and y′

j(e
∗
i , e

∗
j ) = C ′

j(e
∗
j ) (14)

where y′
i denotes the partial derivative of output with respect to player i’s effort. Let the

winner’s shares be identity-dependent, ie. a winning partner i gets si and a winning j gets sj .

14



Thus, taking e∗j as given, partner i maximizes

fi(xij)siy(ei, e
∗
j ) + (1 − fi(xij))(1 − sj)y(ei, e

∗
j) − Ci(ei)

which, when taking derivatives and inserting (14), gives the best response of partner i as

1

e∗j
f ′

i(xij)y(ei, e
∗
j)(si + sj − 1) + [fi(xij)(si + sj − 1) − sj] y

′
i(ei, e

∗
j) = 0. (15)

One can similarly solve for partner j’s best response to ei = e∗i . Solving the two simultane-

ous equations gives the pair (si, sj) of winning shares which elicits efficient efforts from both

partners. The construction of a first stage proposal game, however, where these shares are

actually proposed in equilibrium proved thus far elusive as there always exists an incentive for

the proposer to increase his (identity-dependent) winning share and to decrease the winning

share of the opponent in order to increase the losing share of the proposer.18 Nevertheless, if

one moves share proposals to a symmetric ex ante stage (where partners have common priors

and do not yet know about cost or production specializations), one can construct a game where

efficient sharing functions giving rise to full efficiency at the second stage are proposed.

Existence

Cornes and Hartley (2005) extend Baye, Kovenock, and de Vries (1994) in giving a necessary

and sufficient condition for existence of symmetric, pure strategy equilibrium in the rent seeking

case of the general Tullock success function with linear cost and fixed prizes (P, 0). In the rent

seeking case, the symmetric equilibrium payoff of (1/2)P − ei decreases in own effort and

becomes negative for ei > (rP )/4 or r > 2 (where (rP )/4 is the unique candidate symmetric

equilibrium effort). For linear cost, this destroys all hope for equilibria using higher precision

success functions than r = 2. Our approach of endogenising efforts into the prize structure

and assuming convex costs differs from this rent seeking case and obtaining positive results for

r > 2 is possible. (In particular, our symmetric equilibrium efforts are independent of r.)

Nevertheless, ensuring existence in our framework is problematic because, as the precision

of the success function increases, the efficient winner’s share s(e∗) goes to one half. Therefore,

as the contest becomes more discriminating, the two-player contest loser is certain to obtain

nearly half the joint product. Therefore, if the cost function is such that the marginal cost

gain of reducing effort below the efficient level is higher than the marginally increased payoff

from winning, agents will underprovide effort. Chung (1996) analyzes the case of productive

efforts with linear costs. He obtains a range of precisions r of the Tullock contest under which

existence is guaranteed. As above, the case of r = 2 represents an upper bound.

The following proposition derives global sufficiency for a significant subclass of problems.

18 This problem is present with any identity-dependent sharing rule. If in the example of section 3 the proposer
were allowed to offer an identity-dependent sharing rule, he would find it optimal to increase his own winning
share while decreasing his opponent’s winning share, relative to the efficient sharing rule.
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Before turning to that general analysis, we illustrate the existence issue by looking again at the

example from section 3 where player i maximizes

ui(ei, ej) =
er

i

er
i + er

j

sα(ei + ej) +
er

j

er
i + er

j

(1 − s)α(ei + ej) −
e2

i

2
. (16)

Figure 1 shows the geometry of this problem. It plots partner i’s utility when unilaterally devi-

ating from symmetric equilibrium e∗. It shows how first single-peakedness and then optimality

of e∗ is lost as r increases beyond a value of 5.19

ei

r = 0.1r = 1
r = 2

r = 3

r = 4
r = 5
r = 6

ui(ei, e
∗) r = 8

e∗ = 1.0

Figure 1: Checking player i’s objective (16) at its critical points ensures existence of the efficient
symmetric equilibrium in the linear production case for r ∈ (0, 5].

The general argument starts with the observation that the efficient solution is necessarily a

maximum. We show quasiconcavity of partner i’s objective by restricting attention to the class

of problems parameterized by r, p and z, ie. to the class comprising of Tullock success function

with parameter r, the production function (ei + ej)
1

p and the cost function
ez+1

i

z+1
.

Proposition 4. Existence of symmetric pure strategy equilibrium for efficient efforts is ensured

if pr ≥ 1 and z ≥ r.

This proposition shows that under linear production, z ≥ r ≥ 1 ensures existence. For r ∈

(0, 1), the well-known results cited above indicate that existence is not problematic. Thus both

a more concave production technology and a more convex cost function weaken the existence

problem.

6 Concluding remarks

Other examples which match our model well are, for example, political contests where the

partners in a coalition government work jointly on what may be viewed as maximizing the

19 As varying the coefficient α on the production technology does not significantly change the problem we set
α = 1 for simplicity.
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countries’ tax base. A follow-up election is a rank order tournament which may not confirm all

coalition parties in office. Joint research among tenure track researchers at a university which

may grant tenure based on the perceived quality of individual research is a further example.

Apart from this promotion aspect, publishing itself can be viewed as a tournament: in the

sciences and engineering, several researchers usually work together on one project. Although

they share joint output, the most important contributor is typically made the first author of a

resulting publication.

Warfare history and the vassal system are rich sources for anecdotes. In the Thirty Years’

War, for instance, Albrecht von Wallenstein, a Bohemian nobleman, was rewarded for his

services to the Catholic emperor Ferdinand II against the Danish King Christian IV: in 1628,

Wallenstein received the duchy of Mecklenburg where combined forces of Wallenstein and Count

Tilly had previously defeated the Danes.20 Similarly, during the Napoleonic wars, a Royal Navy

man-of-war capturing an enemy prize split the proceeds according to a fixed rule specified by

the Cruizers and Convoys Act (1708). It granted three eighths to the ship’s captain, one eighth

each to the (increasingly numerous sets of) wardroom, principal warrant and petty officers, and

the final two eighths to the crew.21 Promotion, thus, was more than a source of pride.

Finally, a team or partnership in which information quality is the key in the selection

of projects is a natural application. Partners spending more effort in collecting information

increase the quality of information, hence the quality of project selection, and thus expected

output. Therefore, a partner with good information plays a more important role in decision

making than the ones with bad information who would rather rubber stamp the suggestion of

the former. The partners, as a matter of fact, engage in a contest in the collection of information

about projects. In order to provide incentives to exert effort, a larger share of output should

be granted to better informed partners.22

Appendix

Proof of lemma 1. Rewrite expression (9) as

f ′
i(1)

e
(2s − 1)y(2e) = C ′(e) −

y′(2e)

2
.

Notice that the right hand side of this expression increases in e while the left hand side decreases

in e. Thus, e must be an increasing function of s as claimed by the lemma.

Proof of lemma 2. Given that s satisfies (10), partner i chooses stage 2 effort such that (9)

20 F. Schiller gives a literary but historically accurate account in his 1792 History of the Thirty Years’ War.
21 Kert (1997) and Benjamin and Thornberg (2007) detail related incentive systems in both other navies and

the private sector.
22 Incidentally, many TV game shows—for example the CBS reality show Survivor—have this format. Players

start out in teams but the final prizes are awarded to individuals based on their earlier team performance.
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is satisfied. Substituting (10) into (9), one obtains

y′(2e) = C ′(e)

which determines the fully efficient effort level. Therefore, there always exists a unique s ∈

(1
2
,∞) solving (10).

Proof of proposition 1. Expecting the symmetric equilibrium effort levels e1(s) = e2(s) =

e(s) determined by equation (9), partner 1’s expected utility from choosing the share s is

u1(s) = u1(e(s), e(s)) = f1(1)sy(2e(s)) + (1 − f1(1))(1 − s)y(2e(s))− C(e(s))

=
1

2
y(2e(s)) − C(e(s))

subject to partner 2’s participation constraint which we will verify later for the derived equi-

librium. Solving partner 1’s utility maximization problem gives the following foc

d

ds
u1(s) = (y′(2e(s)) − C ′(e(s)))

de(s)

ds
= 0.

Partner 1 chooses ŝ such that

y′(2e(ŝ)) = C ′(e(ŝ)).

Therefore, the sharing rule which implements efficient efforts maximizes player 1’s utility. It

is now easily verified that partner 2’s participation constraint holds because in symmetric

equilibrium both players expect the same utilities and by offering s = 1/2, the proposer can

ensure non-negative utility.

Proof of lemma 3. Rewrite equation (10) as

4f ′
i(1)(2s − 1)y(2e∗) = 2y′(2e∗)e∗. (17)

Since y(·) is a concave function, y(x) ≥ y′(x)x for any x ∈ [δ,∞). Therefore, whenever

4f ′
i(1) ≥ 1, there exists a s∗ ∈ [0, 1] solving (17).

Proof of proposition 2. If s̃ ∈ [0, 1], then the proof is exactly as the proof of the previous

proposition. If there is no s̃ ∈ [0, 1] which solves (10), then s̃ > 1. In that case, since

de(s)/ds > 0 limited liability equilibrium efforts are necessarily lower than the efficient levels

e∗. Therefore we have, for the optimal sharing rule s∗,

d

ds
u1(s

∗) = (y′(2e(s∗)) − C ′(e(s∗)))
de(s∗)

ds
> 0,

where de(s∗)/ds > 0 by lemma 1 and y′(2e) > C ′(e) for any e < e∗ from our curvature

assumptions on production and cost functions. This implies that the optimal s∗ = 1.
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Proof of proposition 3. If an interior solution exists to the partners’ maximization of (12),

then it satisfies

∑

l 6=i

∂fi(xi)

∂xil

1

el

(

s −
1 − s

n − 1

)

y(

n∑

i=1

ei) + y′(

n∑

i=1

ei)

(

fi(xi)s + (1 − fi(xi))
1 − s

n − 1

)

= C ′ (ei) .

Moreover, since fi(1) = 1
n
, if the symmetric Nash equilibrium exists, the equilibrium effort e

satisfies
ns − 1

e
y (ne)

∂fi(1)

∂xi

+
1

n
y′(ne) = C ′ (e) . (18)

Since the efficient effort level satisfies

y′(ne∗) = C ′ (e∗) ,

the winner’s share s that solves

ns − 1

e∗
y (ne∗)

∂fi(1)

∂xi

=
n − 1

n
y′(ne∗) (19)

elicits efficient efforts at the second stage. We will show now that, in equilibrium, the efficient

winner’s share will be proposed at the first stage of the game. In symmetric equilibrium,

each agent expects the payoff (1/n)y(ne(s)) − C(e(s)). Thus partner 1 faces the following

maximization problem at the first stage

u1(s) = u1(ne(s)) =
1

n
y(ne(s)) − C(e(s)).

Partner 1 chooses the s that satisfies the first order condition, which is

(y′(ne(s)) − C ′(e(s)))
de(s)

ds
= 0.

The s solving this first order condition elicits the first best effort level. Finally, for concave

production y(ne∗) ≥ ne∗y′(ne∗) there always exists s ∈ ( 1
n
, 1] that solves (19) if (13) holds.

Proof of proposition 4. Consider an auxiliary problem of the following type. The utility of

player i when choosing effort ei is given by

g(ei, e
∗)s∗(ei + e∗)

1

p + (1 − g(ei, e
∗))(1 − s∗)(ei + e∗)

1

p −
ez+1

i

z + 1
(20)

where e∗ =

(

2
1−p

p

p

) p

p+pz−1

and s∗ = 1
2

+ 1
2pr

. We will show that this function is strictly quasi-

concave in ei if g(ei, e
∗) =

er
i

er
i +e∗r , which is sufficient, since

(

2
1−p

p

p

) p

p+pr−1

is the efficient effort

level and s∗ is the sharing rule that leads to efficient efforts. Taking the first derivative of (20)
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with respect to ei and setting it zero gives

g(ei, e
∗) +

∂

∂ei

g(ei, e
∗)(e∗ + ei)p =

1

2
+

ez
i p

2r

(e∗ + ei)
−1+ 1

p

−
pr

2
.

Hence the plan is to show that, for ei < e∗,

g(ei, e
∗) +

∂

∂ei

g(ei, e
∗)(e∗ + ei)p >

1

2
+

ez
i p

2r

(e∗ + ei)
−1+ 1

p

−
pr

2

and the opposite holds for ei > e∗. Notice that for g(ei, e
∗) =

er
i

er
i +e∗r we have

g(ei, e
∗) +

∂

∂ei

g(ei, e
∗)(e∗ + ei)p =

er−1
i (er+1

i + e∗r(ei + (e∗ + ei)pr))

(er
i + e∗r)2

.

1. Thus, we will to show that, for ei < e∗,

er−1
i (er+1

i + e∗r(ei + (e∗ + ei)pr))

(er
i + e∗r)2

>
1

2
+ ez

i p
2r(ei + e∗)1− 1

p −
pr

2

or alternatively

e2r
i

2
−

e∗2r

2
+ 2prer

i e
∗r + prer−1

i e∗r+1 +
pre2r

i

2
+

pre∗2r

2
>

p2r (e∗ + ei)
1− 1

p ez
i

(
e2r

i + 2er
i e

∗r + e∗2r
)
.

Notice that

p (e∗ + e∗)1− 1

p e∗z = 1.

Therefore, since x1− 1

p is increasing in x and ei < e∗, we have

pr
( ei

e∗

)z (
e2r

i + 2er
i e

∗r + e∗2r
)

> p2r (e∗ + ei)
1− 1

p ez
i

(
e2r

i + 2er
i e

∗r + e∗2r
)
.

Therefore, it is sufficient to show that

e2r
i

2
−

e∗2r

2
+ 2prer

i e
∗r + prer−1

i e∗r+1 +
pre2r

i

2
+

pre∗2r

2
≥

pr
( ei

e∗

)z (
e2r

i + 2er
i e

∗r + e∗2r
)
.
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However, since z ≥ r and ei < e∗, it is sufficient to show that

e2r
i

2
−

e∗2r

2
+ 2prer

i e
∗r + prer−1

i e∗r+1 +
pre2r

i

2
+

pre∗2r

2
≥

pr
( ei

e∗

)r (
e2r

i + 2er
i e

∗r + e∗2r
)

⇔

e2r
i

2
−

e∗2r

2
+ prer

ie
∗r + prer−1

i e∗r+1 −
3

2
pre2r

i +
pre∗2r

2
≥ pr

e3r
i

e∗r
⇔

e2r
i

2
−

e∗2r

2
+ prer

i e
∗r + prer−1

i e∗r+1 −
1

2
pre2r

i − pre2r
i +

pre∗2r

2
− pr

e3r
i

e∗r
≥ 0 ⇔

(
e∗2r

2
−

e2r
i

2

)

(pr − 1) + pr
(
er

i (e∗r − er
i ) + er−1

i

(
e∗r+1 − er+1

i

))
≥ 0

where the last line follows since
e3r
i

e∗r = e2r
i

er
i

e∗r < e2r
i . Finally, since xn is an increasing

function for x > 0 and n > 0, all elements of the last expression are positive.

2. Now we will show that for ei > e∗,

er−1
i (er+1

i + e∗r(ei + (e∗ + ei)pr))

(er
i + e∗r)2

<
1

2
+ ez

i p
2r(ei + e∗)1− 1

p −
pr

2

or alternatively

e2r
i

2
−

e∗2r

2
+ 2prer

i e
∗r + prer−1

i e∗r+1 +
pre2r

i

2
+

pre∗2r

2
<

p2r (e∗ + ei)
1− 1

p ez
i

(
e2r

i + 2er
i e

∗r + e∗2r
)
.

Recall that p (e∗ + e∗)1− 1

p e∗z = 1. Therefore, since x1− 1

p is increasing in x and ei > e∗,

we have

pr
( ei

e∗

)z (
e2r

i + 2er
i e

∗r + e∗2r
)

< p2r (e∗ + ei)
1− 1

p ez
i

(
e2r

i + 2er
i e

∗r + e∗2r
)
.

Therefore, it is sufficient to show that

e2r
i

2
−

e∗2r

2
+ 2prer

i e
∗r + prer−1

i e∗r+1 +
pre2r

i

2
+

pre∗2r

2
≤

pr
( ei

e∗

)z (
e2r

i + 2er
i e

∗r + e∗2r
)
.
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However, since ei > e∗ and z > r, it is sufficient to show that

e2r
i

2
−

e∗2r

2
+ 2prer

i e
∗r + prer−1

i e∗r+1 +
pre2r

i

2
+

pre∗2r

2
≤

pr
( ei

e∗

)r (
e2r

i + 2er
i e

∗r + e∗2r
)

⇔

e2r
i

2
−

e∗2r

2
+ prer

i e
∗r + prer−1

i e∗r+1 −
3

2
pre2r

i +
pre∗2r

2
≤ pr

e3r
i

e∗r
⇔

e2r
i

2
−

e∗2r

2
+ prer

i e
∗r + prer−1

i e∗r+1 −
1

2
pre2r

i − pre2r
i +
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2
− pr

e3r
i

e∗r
≤ 0 ⇔

(
e∗2r

2
−

e2r
i

2

)

(pr − 1) + pr
(
er

i (e∗r − er
i ) + er−1

i

(
e∗r+1 − er+1

i

))
≤ 0

where the last line follows since
e3r
i

e∗r = e2r
i

er
i

e∗r > e2r
i . Finally, since xn is an increasing

function for x > 0 and n > 0, all elements of the last expression are negative.
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