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1. Introduction

In an inspiring recent contribution, Manelli and Vincent (2010) revisit Bayesian and dominant

strategy implementation in the context of standard single-unit, private-value auctions. They

prove that for any Bayesian incentive compatible (BIC) auction there exists an equivalent

dominant strategy incentive compatible (DIC) auction that yields the same interim expected

utilities for all agents. This equivalence result is surprising and valuable because dominant

strategy implementation has important advantages over Bayesian implementation. In particu-

lar, dominant strategy implementation is robust to changes in agents’ beliefs and does not rely

on the assumptions of a common prior and equilibrium play.

The definition of equivalence in terms of interim expected utilities is a conceptual innovation

of Manelli and Vincent (2010). Most of the earlier literature concerns the implementation of

social choice functions (or correspondences) and defines two mechanisms to be equivalent if

they provide the same ex post allocation.1 Mookherjee and Reichelstein (1992) show that the

latter condition for BIC-DIC equivalence generally fails unless the BIC allocation rule is itself

monotonic in each coordinate. In contrast, Manelli and Vincent (2010) are not concerned with

the implementation of a given allocation rule but rather construct, for any allocation rule that

is Bayesian implementable, another allocation rule that is dominant strategy implementable

and that delivers the same interim expected utilities.2

In this paper, we show that BIC-DIC equivalence extends to social choice environments

with linear utilities and independent, one-dimensional, private types. Moreover, we present a

novel and powerful proof method based on an elegant mathematical theorem due to Gutmann

et al. (1991), which relates to some of the mathematical underpinnings of computed tomog-

raphy.3 The theorem states that for any bounded, non-negative function of several variables

that generates monotone, one-dimensional marginals, there exists a non-negative function that

respects the same bound, generates the same one-dimensional marginals, and is monotone in

each coordinate.4 The proof shows how the desired function can be found as a solution to a

convex minimization problem.

1See, e.g., Gibbard (1973), Satterthwaite (1975), and Roberts (1979).
2A main focus of the mechanism design literature concerns the implementation of efficient mechanisms, e.g.

Green and Laffont (1977), d’Aspremont and Gérard-Varet (1979), Laffont and Maskin (1979), and Williams
(1999). In contrast, the BIC-DIC equivalence result of Manelli and Vincent (2010) applies to every BIC auction,
not just efficient ones. See Goeree and Kushnir (2012) for a geometric approach to BIC-DIC equivalence.

3Gutmann et al. (1991) build on earlier contributions by Lorenz (1949), Gale (1957), Ryser (1957), Kellerer
(1961), and Strassen (1965), who studied the existence of measures with given marginals in various discrete or
continuous settings. Their insights are relevant to the analysis of reduced form auctions, e.g., Border (1991).

4Simply taking the product of the one-dimensional marginals and normalizing by the sum of marginals does
not generally work. It results in a monotone function that produces the same marginals, but one that does not
necessarily respect the same bound.
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The original Gutmann et al. (1991) theorem pertains to a single function, which restricts

its direct applicability to settings with two alternatives or to symmetric settings where all

agents’ utilities share the same functional form.5 In order to analyze more general social choice

environments we prove an extension of this theorem. The extension involves minimizing a

quadratic functional of several functions satisfying certain boundary and marginal constraints.

We use this minimization procedure to construct, for any BIC mechanism, an equivalent DIC

mechanism.

Within the context of auction design the implications of BIC-DIC equivalence can be high-

lighted as follows. BIC-DIC equivalence implies that any auction, including any optimal auction

(in terms of efficiency or revenue), can be implemented using a dominant strategy mechanism

and nothing can be gained from designing more intricate auction formats with possibly more

complex Bayes-Nash equilibria. This holds not only for single-unit auctions but also for multi-

unit auctions with homogeneous or heterogeneous goods, combinatorial auctions, and the like,

as long as bidders’ private values are one-dimensional and independent and utilities are linear.

We also delineate the limits of BIC-DIC equivalence. We first consider an alternative def-

inition of equivalence that requires the same interim expected allocations. In the single-unit,

private-value auction context studied by Manelli and Vincent (2010), this condition is equiv-

alent to the existence of transfers that yield the same interim expected utilities for all agents.

For the social choice environments studied in this paper, however, the two notions do not

necessarily coincide. In particular, demanding the same interim allocations implies that there

exist transfers such that agents’ interim expected utilities are the same, but the converse is not

necessarily true. Using a simple public goods example with three social alternatives we show

that the condition that the interim allocations are the same cannot generally be met.

Next, using a series of simple auction examples we demonstrate that BIC-DIC equivalence

generally fails when utilities are not linear or when types are not independent, one-dimensional,

or private. In other words, once we relax the assumptions underlying our model, Bayesian

implementation may have advantages over dominant strategy implementation. For example,

we show that ex ante social surplus may be strictly higher under BIC implementation when

values are interdependent. Likewise, with multi-dimensional values, BIC mechanisms may

result in higher revenues than can be attained by any DIC mechanism.

The paper is organized as follows. Section 2 presents the social choice environment. We

prove our main BIC-DIC equivalence result in Section 3 and delineate its limits in Section 4.

Section 5 concludes. The Appendix contains proofs omitted in the main text.

5For instance, in a two-alternative social choice setting this single function can describe the probability with
which one of the alternatives occurs while the other alternative occurs with complementary probability.
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2. Model

We consider an environment with a finite set I = {1, 2, . . . , I} of risk-neutral agents and

a finite set K = {1, 2, . . . , K} of social alternatives. Agent i’s utility in alternative k equals

uki (xi, ti) = aki xi+cki + ti where xi is agent i’s private type, aki , c
k
i ∈ R are constants with aki ≥ 0,

and ti ∈ R is a monetary transfer. Agent i’s type xi is distributed according to probability

distribution λi with support Xi, where the type space Xi ⊆ R can be any (possibly discrete)

subset of R. Note that types are one-dimensional and independent. Let A denote the matrix

with elements aki where the player index i corresponds to the rows and the social alternative

index k corresponds to the columns. Furthermore, let X =
∏

i∈I Xi and λ =
∏

i∈I λi.

Our model fits many classical applications of mechanism design, including auctions (e.g.

Myerson, 1981), public goods (e.g. Mailath and Postlewaite, 1990), bilateral trade (e.g. Myer-

son and Satterthwaite, 1983), and screening models (e.g. Mussa and Rosen, 1978). However,

it is important to point out that even within the restricted class of linear environments, one-

dimensional types generally cannot capture the full space of agents’ possible preferences in

arbitrary social choice environments.

Without loss of generality we consider only direct mechanisms characterized by K + I

functions, {qk(x)}k∈K and {ti(x)}i∈I , where x = (x1, . . . , xI) ∈ X is the profile of reports,

qk(x) ≥ 0 is the probability that alternative k is implemented with
∑

k∈K q
k(x) = 1, and ti(x)

is the monetary transfer agent i receives. When agent i reports x′i and all other agents report

truthfully, the conditional expected probability (from agent i’s point of view) that alternative

k is chosen is Qk
i (x′i) = Ex−i

(qk(x′i,x−i)) and the conditional expected transfer to agent i is

Ti(x
′
i) = Ex−i

(ti(x
′
i,x−i)). For later use we define, for i ∈ I and x ∈ X,

vi(x) ≡
∑
k∈K

aki q
k(x)

with marginals Vi(xi) =
∑

k∈K a
k
iQ

k
i (xi), and the modified transfers

τi(x) = ti(x) +
∑
k∈K

cki q
k(x)

with marginals Ti(xi) = Ex−i
(τi(xi,x−i)) = Ti(xi) +

∑
k c

k
iQ

k
i (xi). When agent i’s type is xi

and she reports being of type x′i, her interim expected utility can then be written as

ui(x
′
i) = Vi(x

′
i)xi + Ti(x′i).

Finally, the ex ante expected social surplus is simply the sum of agents’ ex ante expected

utilities minus the sum of agents’ ex ante expected transfers.
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A mechanism (q̃, t̃) is BIC if truthful reporting by all agents constitutes a Bayes-Nash

equilibrium. A mechanism (q, t) is DIC if truthful reporting is a dominant strategy equilibrium.

To relate BIC and DIC mechanisms we employ the following notion of equivalence.

Definition 1. Two mechanisms (q, t) and (q̃, t̃) are equivalent if and only if they deliver the

same interim expected utilities for all agents and the same ex ante expected social surplus.

The definition of equivalence in terms of interim expected utilities follows Manelli and Vincent

(2010). In addition, we demand that the same ex ante expected social surplus is generated so

that no money needs to be inserted to match agents’ utilities.

3. BIC–DIC Equivalence

We first consider connected type spaces, i.e. Xi = [xi, xi] ⊆ R. In this case a mechanism is

BIC if and only if (i) for all i ∈ I and xi ∈ Xi, Vi(xi) is non-decreasing in xi and (ii) agents’

interim expected utilities satisfy

ui(xi) = ui(xi) +

∫ xi

xi

Vi(s)ds,

see, for instance, Myerson (1981). Similarly a mechanism is DIC if and only if (i) for all i ∈ I
and x ∈ X, vi(xi,x−i) is non-decreasing in xi and (ii) agents’ utilities can be expressed as

ui(xi,x−i) = ui(xi,x−i) +

∫ xi

xi

vi(s,x−i)ds,

e.g., Laffont and Maskin (1980). Hence, with connected type spaces, agents’ utilities are deter-

mined (up to a constant) by the allocation rule. This allows us to define equivalence in terms

of the allocation rule only. Consider two mechanisms (q, t) and (q̃, t̃) and transfers such that

ui(xi) = ũi(xi) for all i ∈ I, then agents’ interim expected utilities are the same under the

two mechanisms if Vi(xi) = Ṽi(xi) for all i ∈ I, xi ∈ Xi. Furthermore, the requirement that

expected social surplus is the same is met when the ex ante probabilities of each alternative

are the same for the two mechanisms, i.e. Ex(qk(x)) = Ex(q̃k(x)) for all k ∈ K. To see this,

note that ui(xi) = ũi(xi) and Vi(xi) = Ṽi(xi) imply Ti(xi) = T̃i(xi), so

Ex(ti(x)) = Ex(t̃i(x)) +
∑
k∈K

cki
(
Ex(q̃k(x))− Ex(qk(x))

)
= Ex(t̃i(x))

Hence, the two mechanisms result in the same expected transfers and social surplus if the ex

ante probabilities with which each alternative occurs are identical.

4



We now state and prove our main result. Define v(x) = A · q(x) with elements vi(x) =∑
k a

k
i q

k(x) for i ∈ I, and let || · || denote the usual Euclidean norm: ||v(x)||2 =
∑

i∈I vi(x)2.

The qk(x) are elements of L∞(λ) endowed with the weak* topology. In particular, functions

that are equal almost everywhere with respect to λ are identified.

Theorem 1. Let Xi be connected for all i ∈ I and let (q̃, t̃) denote a BIC mechanism. An

equivalent DIC mechanism is given by (q, t), where the allocation rule q solves

min
{qk}k∈K

qk(x)≥ 0 ∀k,x∑
kqk(x) = 1 ∀x

Vi(xi) = Ṽi(xi) ∀i,xi
Ex(qk(x)) =Ex(q̃k(x)) ∀k

Ex

(
||v(x)||2

)
(1)

and the transfers are given by ti(x) = τi(x)−
∑

k∈K c
k
i q

k(x) with

τi(xi,x−i) = τi(xi,x−i) + vi(xi,x−i)xi − vi(xi,x−i)xi +

∫ xi

xi

vi(s,x−i)ds, (2)

for x ∈ X, i ∈ I, where τi(xi,x−i) = (vi(xi,x−i)/Ṽi(xi))T̃i(xi).6

The constraints in (1) define a non-empty and compact set,7 and the existence of a solution to (1)

is guaranteed because the functional Ex (||v(x)||2) is weak* lower semi-continuous (Gutmann

et al., 1991, pp. 1783-1784). The main difficulty is to establish that a solution vi(xi,x−i) to

(1) is non-decreasing in xi. We do so in three steps. First, we consider discrete and uniformly

distributed types (Lemma 1), then we extend to the continuous uniform types using a discrete

approximation (Lemma 2), and, finally, we generalize to arbitrary type distributions (Lemma

3). The first lemma is covered in the main text while the proofs for the more technical second

and third steps can be found in the Appendix.

To glean some intuition for the proof of Lemma 1 and for how it corresponds to the original

Gutmann et al. (1991) theorem, consider a symmetric single-unit auction with two bidders and

two equally-likely types, x and x. Symmetry allows us to describe the allocation rule with a

single function, which can be represented by a two-by-two matrix. Consider, for instance,

q̃ =

( 1
2

1
4

1
4

1
2

)
,

where the rows correspond to agent 1’s type and the columns to agent 2’s type, and the entries

correspond to the probabilities that the object is assigned to either agent. If agents’ types differ,

each agent receives the object with probability 1
4

(i.e., the object is not always assigned) and if

6Where 0/0 is interpreted as 1.
7The set is non-empty because q̃ satisfies the constraints and compactness follows from Alaoglu’s theorem.
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agents’ types are the same they each get the object with probability 1
2
. The allocation rule is

BIC, since the expected probability with which an agent receives the object is non-decreasing

in her type, but it is not DIC, since the probability that an agent gets the object is decreasing

in her type when the rival’s type is low. There is a one-dimensional family of symmetric and

feasible allocation rules with the same marginals

q̃ε =

( 1
2
− ε 1

4
+ ε

1
4

+ ε 1
2
− ε

)
,

where 0 ≤ ε ≤ 1
4
. Minimizing the sum of squared entries of the perturbed matrix q̃ε yields ε = 1

8
,

and the resulting allocation rule is everywhere non-decreasing. This is the original construction

of Gutmann et al. (1991) that applies to a single function. Lemma 1 extends this result to

settings with an arbitrary number of functions and more complex boundary constraints, thus

widening its applicability to general social choice problems.

Lemma 1. Suppose, for all i ∈ I, Xi is a discrete set and λi is uniform distribution on Xi.

Let {qk}k∈K be a solution to (1) then vi(x) =
∑

k a
k
i q

k(x) is non-decreasing in xi for all i ∈ I,

x ∈ X.

Proof. Suppose, in contradiction, that vj(xj,x−j) > vj(x
′
j,x−j) for some j, x′j > xj, and some

x−j. Since {q̃k}k∈K is a BIC mechanism Ex−j
(vj(xj,x−j)) = Ex−j

(ṽj(xj,x−j)) is non-decreasing

in xj. Hence, there exists x′−j for which vj(xj,x
′
−j) < vj(x

′
j,x
′
−j). Let α ≡ ε/(vj(xj,x−j) −

vj(x
′
j,x−j)) and α′ ≡ ε/(vj(x

′
j,x
′
−j) − vj(xj,x

′
−j)). Then, for small enough ε > 0, we have

0 < α < 1 and 0 < α′ < 1. Define the perturbations

q′(xj,x−j) = (1− α)q(xj,x−j) + αq(x′j,x−j), q′(x′j,x−j) = (1− α)q(x′j,x−j) + αq(xj,x−j)

q′(xj,x
′
−j) = (1− α′)q(xj,x

′
−j) + α′q(x′j,x

′
−j), q′(x′j,x

′
−j) = (1− α′)q(x′j,x

′
−j) + α′q(xj,x

′
−j)

and q′(x) = q(x) for other x ∈ X. By construction q′k(x) ≥ 0 and
∑

k∈K q
′k(x) = 1 for all

x ∈ X. Also Ex(q′(x)) = Ex(q(x)) since q′(xj,x−j) + q′(x′j,x−j) + q′(xj,x
′
−j) + q′(x′j,x

′
−j) =

q(xj,x−j) + q(x′j,x−j) + q(xj,x
′
−j) + q(x′j,x

′
−j). We next show that the perturbations q′ also

produce the same marginals as q. Rewrite the above perturbations in terms of v′(x) = A·q′(x):

v′(xj,x−j) = (1− α)v(xj,x−j) + αv(x′j,x−j), v′(x′j,x−j) = (1− α)v(x′j,x−j) + αv(xj,x−j)

v′(xj,x
′
−j) = (1− α′)v(xj,x

′
−j) + α′v(x′j,x

′
−j), v′(x′j,x

′
−j) = (1− α′)v(x′j,x

′
−j) + α′v(xj,x

′
−j)

and the equal-marginal condition as Ex−i
(v′i(xi,x−i)) = Ex−i

(vi(xi,x−i)). For i = j, this

condition follows from α(vj(xj,x−j)− vj(x′j,x−j)) = α′(vj(x
′
j,x
′
−j)− vj(xj,x′−j)) when xi = xj

or xi = x′j, while for other values of xi it follows trivially. For i 6= j, the condition follows since
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v′(xj,x−j) + v′(x′j,x−j) = v(xj,x−j) + v(x′j,x−j) and v′(xj,x
′
−j) + v′(x′j,x

′
−j) = v(xj,x

′
−j) +

v(x′j,x
′
−j). Finally,

Ex

(
||v′(x)||2 − ||v(x)||2

)
= −2α(1− α)

|X|
||v(xj,x−j)− v(x′j,x−j)||2

−2α′(1− α′)
|X|

||v(x′j,x
′
−j)− v(xj,x

′
−j)||2

a contradiction since the right hand side is strictly negative and {qk}k∈K solves (1). Q.E.D.

Lemma 2. Suppose, for all i ∈ I, Xi = [0, 1] and λi is the uniform distribution on Xi. Let

{qk}k∈K denote a solution to (1) then vi(x) is non-decreasing in xi for all i ∈ I, x ∈ X.

The proof is in the Appendix. The idea is to consider a partition of [0, 1]K|X| and define a

discrete approximation of the {q̃k}k∈K by replacing the q̃k with their averages in each element

of the partition. Lemma 1 ensures that for this discrete approximation there exists a solution

{qk}k∈K to (1). The qk can be extended to piecewise constant functions over [0, 1]K|X|. The

result follows by considering increasingly finer partitions of [0, 1].

Lemma 3. Suppose, for all i ∈ I, Xi ⊆R and λi is some distribution on Xi. Let {qk}k∈K
denote a solution to (1). Then vi(x) is non-decreasing in xi for all i ∈ I, x ∈ X.

The proof is in the Appendix. The intuition is to consider a transformation of variables and

relate the uniform distribution covered by Lemma 2 to the case of a general distribution. In

particular, if the random variable Zi is uniformly distributed then λ−1i (Zi), with λ−1i (zi) =

inf{xi ∈ Xi|λi(xi) ≥ zi}, is distributed according to λi.

Proof of Theorem 1. Lemmas 1-3 establish that the allocation rule that solves (1) produces

non-decreasing vi(x). What remains to be shown is that the modified transfers τi(xi,x−i) in

(2) are such that the interim expected utilities ui(xi) in the DIC mechanism (q, t) are the same

as the interim expected utilities ũi(xi) in the BIC mechanism (q̃, t̃). Taking expectations over

x−i in (2) yields

Ti(xi) = T̃i(xi) + Vi(xi)xi − Vi(xi)xi +

∫ xi

xi

Vi(s)ds

= T̃i(xi) + Ṽi(xi)xi − Ṽi(xi)xi +

∫ xi

xi

Ṽi(s)ds

= ũi(xi)− Ṽi(xi)xi = T̃i(xi)

and, hence, ui(xi) = Vi(xi)xi + Ti(xi) = Ṽi(xi)xi + T̃i(xi) = ũi(xi). Furthermore, the constraint

that Ex(qk(x)) = Ex(q̃k(x)) for all k ∈ K ensures that the expected transfers are the same

under the BIC and DIC mechanisms, and, hence, so is expected social surplus. Q.E.D.
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Remark 1. The constructed equivalent DIC mechanism satisfies ex post individual rationality

if and only if the original BIC mechanism satisfies interim individual rationality. To see this,

note that the utility of the lowest type in the constructed DIC mechanism equals

vi(xi,x−i)xi + τi(xi,x−i) =
vi(xi,x−i)

Ṽi(xi)

(
xiṼi(xi) + T̃i(xi)

)
and the expression in parentheses on the right side is non-negative if and only if the BIC

mechanism (q̃, t̃) is interim individually rational. Ex post individual rationality for all other

types follows since the vi(xi,x−i) are non-decreasing in xi.

Remark 2. Theorem 1 can be adapted to include other objectives to construct different

equivalent DIC mechanisms. For example, we can replace the squared norm in the minimization

problem (1) by
∑

i∈I Ex

(
Ci(vi(x))

)
where the Ci(·) can be arbitrary continuous, strictly convex

functions.

Remark 3. The constraint Ex(qk(x)) = Ex(q̃k(x)) ensures that the expected transfers and

social surplus are the same. This constraint is also important when there are additional costs

or benefits of implementing various alternatives or when the designer is not risk neutral.

Lemma 3 above applies to any distribution, not just continuous ones. We used the assumption

of continuous type spaces only to invoke payoff equivalence, which allowed us to define the DIC

transfers as in (2). We next prove BIC-DIC equivalence for discrete type spaces. For each i ∈ I
let Xi = {x1i , . . . , x

Ni
i }, where xni > xn−1i for n = 2, . . . , Ni. A mechanism (q̃, t̃) is BIC if and

only if (i) for all i ∈ I and xi ∈ Xi, Ṽi(xi) is non-decreasing in xi and (ii) the transfers satisfy

(Ṽi(x
n
i )− Ṽi(xn−1i ))xn−1i ≤ T̃i(xn−1i )− T̃i(xni ) ≤ (Ṽi(x

n
i )− Ṽi(xn−1i ))xni (3)

for n = 2, . . . , Ni. Similarly, a mechanism (q, t) is DIC if and only if (i) for all i ∈ I and x ∈ X,

vi(xi,x−i) is non-decreasing in xi and (ii) the transfers satisfy

(vi(x
n
i ,x−i)− vi(xn−1i ,x−i))x

n−1
i ≤ τi(x

n−1
i ,x−i)− τi(xni ,x−i) ≤ (vi(x

n
i ,x−i)− vi(xn−1i ,x−i))x

n
i

(4)

For n = 2, . . . , Ni let

αn
i ≡

T̃i(xn−1i )− T̃i(xni )

Ṽi(xni )− Ṽi(xn−1i )

when Ṽi(x
n
i ) 6= Ṽi(x

n−1
i ) and αn

i = xni otherwise.
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Theorem 2. Let Xi be discrete for all i ∈ I and let (q̃, t̃) denote a BIC mechanism. An

equivalent DIC mechanism is given by (q, t), where the allocation rule q solves (1) and the

transfers are given by ti(x) = τi(x)−
∑

k∈K c
k
i q

k(x) with

τi(x
n
i ,x−i) = τi(x

1
i ,x−i)−

n∑
m=2

(vi(x
m
i ,x−i)− vi(xm−1i ,x−i))α

m
i (5)

for n = 2, . . . , Ni, i ∈ I, where τi(x
1
i ,x−i) = (vi(x

1
i ,x−i)/Ṽi(x

1
i ))T̃i(x1i ).

Remark 4. Payoff equivalence does not apply to the discrete type case, which allows for a

wider range of transfers and, generally, two mechanisms (q, t) and (q̃, t̃) can be equivalent even

when their marginals Vi(xi) and Ṽi(xi) are not the same. Theorem 2 focuses on equivalent DIC

mechanisms that have the same marginals and the same expected transfers.

We end this section by comparing our approach to that of Manelli and Vincent (2010). Im-

portantly, our analysis is not restricted to the single-unit auction case and includes multi-unit

auctions for homogeneous and heterogeneous goods, combinatorial auctions, and the like.8

Moreover, our BIC-DIC equivalence result goes well beyond the auction context, see Section

4.1 where we apply it to a public goods provision problem.

But even for single-unit auctions, our approach differs in several respects. First, Manelli

and Vincent (2010) restrict attention to continuous distributions with connected supports. The

discrete case covered by our Theorem 2 thus provides an important extension of their results.

Second, Manelli and Vincent (2010) assume that cki = 0, which means that keeping the same

interim expected utility for all agents implies the same expected social surplus. In our setting,

the latter is ensured by the additional constraint Ex(qk(x)) = Ex(q̃k(x)) for all k ∈ K. Finally,

Manelli and Vincent (2010) first prove BIC-DIC equivalence for the case with symmetric bidders

(their Theorem 1), then introduce asymmetries between bidders (Theorem 2), and, finally, allow

for the seller to have her own private value for the object (Theorem 3).

These different cases are all covered by the minimization approach in (1). To see this,

consider a setup with I + 1 agents (I bidders plus one seller) and K = I + 1 alternatives. If

the seller has no private value for the object we simply set aii = 1 for i = 1, . . . , I and aki = 0

otherwise (and cki = 0). By including the seller as the (I + 1)-th agent, the possibility that the

object does not sell is included. In fact, the constraint
∑

k∈K q
k(x) = 1 in (1) becomes

I∑
k=1

qk(x) = 1− qI+1(x),

which combined with Ex(qk(x)) = Ex(q̃k(x)) for all k ∈ K implies that if the seller does

not sell with some probability in the original BIC mechanism then she does not sell with the

8Assuming types are one-dimensional, independent, and private.
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(0, 0)

(0, 0)
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(x1, β) (β, β)

Figure 1. BIC allocation rule (left) and DIC allocation rule (right) for β ≤ 1/2. Here (q1, q2)
represent the probabilities that bidders (1, 2) win the object.

same probability in the equivalent DIC mechanism. Furthermore, by including the seller as the

(I+1)-th agent, the minimization approach in (1) implies that the constructed DIC mechanism

generates the same expected revenue for the seller, since expected revenue is equal to minus the

sum of bidders’ expected transfers. To summarize, the constructed DIC mechanism is efficiency

and revenue equivalent to the original BIC mechanism.

Moreover, if the original BIC mechanism is symmetric, an equivalent symmetric DIC mech-

anism can be found by including symmetry as a constraint in (1).9 Alternatively, without this

additional constraint, one could symmetrize any solution to (1) by permuting the agents and

taking an average over all permutations.10 Finally, the minimization approach in (1) also

applies when the seller’s private value is distributed over some range. In this case, we simply

treat the seller like the bidders and set aii = 1 for i = 1, . . . , I + 1 and aki = 0 otherwise.

To illustrate, consider a single-unit private value auction with I = 2 bidders whose values,

labeled x1 and x2, are independently and uniformly distributed on [0, 1]. Suppose the seller

does not allocate the object if the difference between bidders’ values is too high,11 i.e. when

|x1−x2| > β where, for simplicity, we assume that β ≤ 1/2. In all other cases, the seller allocates

the object efficiently, see the left panel of Figure 1. The allocation rule is not monotone and,

hence, cannot be implemented in dominant strategies (Mookherjee and Reichelstein, 1992).

Denote the probability that bidder k = 1, 2 gets the object by q̃k and the probability that

the seller keeps the object by q̃3. So there are K = 3 social alternatives, a11 = a22 = 1 and aki = 0

9Note that the resulting constraint set is again non-empty, compact, and convex.
10Permuting the agents honors the constraints in (1) if the original BIC mechanism is symmetric.
11Suppose the xi for i = 1, 2 represent cost reductions from an innovation. A market regulator may prohibit

the introduction of the innovation when the cost reductions are too asymmetric to avoid the advantaged firm
being able to push the rival out of the market and gain monopoly power.
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otherwise (and cki = 0). For i 6= j ∈ {1, 2} the allocation rule can be stated as

q̃i(x) =


1 if xj < xi ≤ xj + β
1
2

if xi = xj

0 otherwise

while q̃3(x) = 1− q̃1(x)− q̃2(x). This allocation rule has non-decreasing marginals∫ 1

0

q̃i(x)dxj = min(xi, β)

for i 6= j ∈ {1, 2}, and is thus Bayesian implementable. For β ≤ 1/2 the allocation rule

qi(x) = min(xi, β)

for i = 1, 2 and q3(x) = 1−min(x1, β)−min(x2, β) is a solution to minimization problem (1).

This solution is shown in the right panel of Figure 1. Since the qi are everywhere non-decreasing

in xi for i = 1, 2, they are dominant strategy implementable: supplemented with appropriate

payments, they define an equivalent DIC mechanism.

4. The Limits of BIC–DIC Equivalence

In this section we present a series of examples, based on environments with two agents and

discrete types, which delineate the limits of BIC-DIC equivalence. We start with a discussion

of a stronger equivalence notion while maintaining the main assumptions of the social choice

model: linear utilities, and independent, one-dimensional, private types. Subsequently we

return to the equivalence notion of Definition 1 while relaxing these assumptions. In each case,

we show how BIC-DIC equivalence fails.

4.1. Equivalence Based on Interim Expected Allocations

In this subsection we show that BIC-DIC equivalence breaks downs when requiring the same

interim expected allocation probabilities. This notion becomes relevant when, for instance, the

designer is not utilitarian or when preferences of agents outside the mechanism play a role.12

Definition 2. Two mechanisms (q, t) and (q̃, t̃) are equivalent if they deliver the same interim

expected allocation probabilities, i.e. Qk
i (xi) = Q̃k

i (xi) for all i ∈ I, xi ∈ Xi, and k ∈ K.

12Consider, for example, a dynamic setting where a public decision affects both current and future generations.
The distribution of values for future agents may be unknown and may depend on current realizations. Thus,
current private information enters the “proxy” utility functions used for future agents, and a designer need not
be indifferent between two mechanisms that are equivalent from the point of view of the current agents.
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With continuous types, Definitions 1 and 2 are equivalent in settings with only two social

alternatives or in the single-unit auction setting studied by Manelli and Vincent (2010).13

More generally, however, requiring the same interim expected allocations is more stringent

than Definition 1 and we next show that it fails in a simple public goods setting.

Suppose there are K = 3 alternatives, e.g. building a tunnel or a bridge or neither, and

I = 2 symmetric agents, each with two equally likely and independent types x1 < x2. The

utility, net of any transfers, of an agent with type xj, for j = 1, 2, is xj + c1 in alternative 1,

axj + c2 with 0 < a ≤ 1 in alternative 2, and c3 (independent of the agent’s type) in alternative

3. The utility parameters are summarized by the matrices

A =

(
1 a 0
1 a 0

)
, C =

(
c1 c2 c3

c1 c2 c3

)
,

where rows correspond to agents and columns to social alternatives. To economize on notation

we also represent the allocation rule with two-by-two matrices, where the rows correspond to

agent 1’s type and the columns to agent 2’s type. Consider the following symmetric allocation

rule

q̃1 = as

(
1 1
1 13

)
, q̃2 = s

(
9 1
1 1

)
,

and q̃3 = 1 − q̃1 − q̃2 where s is some small number, say s = 1/20. Note that q̃1 + aq̃2 is not

increasing in each coordinate but its marginals (6as, 8as) are. In other words, the allocation rule

is BIC but not DIC. The symmetric allocation rules that are equivalent according to Definition

2 are summarized by14

q̂1 = as

(
2− α α
α 14− α

)
, q̂2 = s

(
10− β β
β 2− β

)
,

for 0 ≤ α ≤ 2 and 0 ≤ β ≤ 2. Note that q̂1 + aq̂2 is DIC only if 6 ≤ α+ β ≤ 8, a contradiction.

Of course, it is straightforward to solve the minimization problem in (1) to find equivalent DIC

allocation rules in the sense of Definition 1:

q1 = as

(
3 6
6 1

)
, q2 = s

(
2 1
1 8

)
,

so that q1 + aq2 is increasing in each coordinate.

4.2. Relaxing the Conditions of Theorems 1 and 2

In this subsection we demonstrate that BIC-DIC equivalence generally does not hold when we

relax the assumption of linear utilities or when types are not one-dimensional, private, and

13Since
∑

k∈K a
k
iQ

k
i (xi) =

∑
k∈K a

k
i Q̃

k
i (xi) reduces to Qk

i (xi) = Q̃k
i (xi) for all k ∈ K when there are only

K = 2 alternatives or when aki = 0 unless i = k as in the single-unit auction case. In addition, Definition 2
implies the ex ante probabilities of each alternative are the same, i.e. Ex(qk(x)) = Ex(q̃k(x)) for all k ∈ K.

14It is easy to see that an equivalent dominant strategy mechanism must be symmetric.
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independent. We will illustrate the breakdown of BIC-DIC equivalence using simple auction

examples. Recall from Section 3 that the constructed DIC mechanism is efficiency and revenue

equivalent to the original BIC mechanism, which will prove useful in understanding the design

of the counter-examples. Denote the seller’s expected revenue by R and expected social surplus

by W . Relaxing constraints in a revenue-maximization problem can only increase the achieved

revenue level, so

max
BIC, IR

R ≥ max
DIC, IR

R ≥ max
equivalent DIC, IR

R (6)

where IR, DIC, and BIC represent the interim individual rationality, dominant strategy in-

centive compatibility, and Bayesian incentive compatibility constraints respectively, and equiv-

alence refers to Definition 1. For BIC-DIC equivalence to hold, these conditions have to be

met with equality.15 Conversely, if one of the conditions does not hold with equality, e.g.

if the optimal DIC mechanism yields strictly less revenue than the optimal BIC mechanism,

then BIC-DIC equivalence fails. A similar logic applies to social surplus. Importantly, in (6)

we impose the same interim individual rationality constraints for all three cases so that any

differences between the DIC and BIC mechanisms are not due to differences in participation

constraints.

Interdependent Values

As noted by Manelli and Vincent (2010), Cremer and McLean (1988, Appendix A) construct

an example with correlated types for which a BIC mechanism extracts all surplus from the

buyers, while full-surplus extraction is not possible with a DIC mechanism. We therefore focus

here on a setting with interdependent values but with independent types.

In this environment it is more natural to employ the notion of ex post incentive compatibility

(EPIC), which requires that, for each type profile, agents prefer to report their types truthfully

when others do. This characterization is akin to the definition of DIC for private values settings

for which the two notions coincide (Bergemann and Morris, 2005). Unlike DIC, however, EPIC

does not depend on agents’ beliefs when there are value interdependencies.

Consider a discrete version of an example due to Maskin (1992). There are two bidders,

labeled i = 1, 2, who compete for a single object. There are K = 3 possible alternatives

corresponding to the cases where bidder 1 wins the object (k = 1), bidder 2 wins the object

(k = 2), or the seller keeps the object (k = 3). Bidder i’s value for the object is xi + 2xj, where

i 6= j ∈ {1, 2} and the signal xi is equally likely to be x1 = 1 or x2 = 10. Because of the higher

15It is important to point out that our BIC-DIC equivalence result in Section 3 is not constrained to revenue-
maximizing BIC mechanisms. Here we limit attention to surplus-maximizing and revenue-maximizing BIC
mechanisms only to derive conditions under which BIC-DIC equivalence fails.
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weight on the other’s signal, the first-best symmetric allocation rule is to assign the object to

the lowest-signal bidder (with ties broken randomly)

q1 =

(
1
2

1

0 1
2

)
,

and q2 = (q1)T , i.e. the transpose of q1, so that q3 = 1− q1 − q2 = 0, i.e. the object is always

assigned. (As before, the rows of the qk correspond to bidder 1’s type and the columns to bidder

2’s type.) The expected social surplus generated by the first-best allocation rule is W = 150/8.

Maskin (1992) used a continuous version of this example to show that the first-best al-

location rule is not Bayesian implementable. Here this follows simply because the marginals

are decreasing in a bidder’s signal. It is a simple linear programming problem to find the

surplus-maximizing allocation rule that respects Bayesian incentive compatibility:

q1 =

(
0 3

4

1
4

1
2

)
, (7)

and q2 = (q1)T , yielding a total surplus of W = 135/8. Note that this “second-best” allocation

rule does not always assign the object (q311 = 1) and that the marginal probability of winning is

constant. Importantly, the allocation rule is not monotone, so the second-best solution is not

ex post incentive compatible.16

For this example, the EPIC mechanism that maximizes surplus is given by

q1 =

(
1
2

1
2

1
2

1
2

)
,

and q2 = (q1)T , yielding a total surplus of W = 132/8. In other words, there exists no EPIC

mechanism that generates the same total surplus as the second-best solution in (7).

This non-equivalence result does not hinge on the assumptions of discrete types or the

fact that single crossing is violated.17 Suppose, for instance, that signals are continuous and

uniformly distributed and that bidder i’s value is xi + αxj for i 6= j ∈ {1, 2} and 0 ≤ α ≤ 1.

Consider the following continuous extension of the second-best BIC allocation rule in (7)

q̃1(x1, x2) =


0 if x1 <

1
2
, x2 <

1
2

3
4

if x1 <
1
2
, x2 ≥ 1

2

1
4

if x1 ≥ 1
2
, x2 <

1
2

1
2

if x1 ≥ 1
2
, x2 ≥ 1

2

16Hernando-Veciana and Michelucci (2012) previously demonstrated these properties for a continuous version
of Maskin’s (1992) example where the signals xi are uniformly distributed on [0, 1]. They also provide a general
characterization of second-best efficient mechanisms and show that, with two bidders, the second-best solution
can be implemented via an English auction (Hernando-Veciana and Michelucci, 2011).

17Singe crossing is violated because in the agent’s value the weight on the other’s signal is twice as large as
the weight on the agent’s own signal.
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and q̃2(x1, x2) = q̃1(x2, x1). It is readily verified that the marginals are constant, i.e. Q̃1(x1) =

Q̃2(x2) = 3
8
. Since any EPIC allocation rule q1(x1, x2) has to be non-decreasing in x1 for all

x2, the only way to match this constant marginal is if q1(x1, x2) is independent of x1 (and,

likewise, q2(x1, x2) is independent of x2). Among the feasible EPIC allocation rules that match

the constant marginals of 3
8
, the one that maximizes social surplus is given by

q1(x1, x2) =

{
0 if x2 <

1
4

1
2

if x2 ≥ 1
4

and q2(x1, x2) = q1(x2, x1).

The EPIC rule produces the same marginals as the BIC allocation rule and, hence, there

exist transfers such that the EPIC rule yields the same interim expected utilities for the bidders.

However, the sum of the expected transfers is larger under the EPIC mechanism. This can be

verified by comparing the expected social surplus under the BIC and EPIC mechanisms:

W =
2∑

i,j =1
i 6= j

∫ 1

0

∫ 1

0

(xi + αxj)q
i(x1, x2)dx1dx2

A straightforward computation shows that the social surplus under BIC and EPIC is given by

W = 3
8

+ 1
2
α and W = 3

8
+ 15

32
α respectively. So with value interdependencies (α > 0), the

designer would have to insert money to implement an equivalent EPIC mechanism.

More generally, consider an environment with linear value interdependencies: agent i’s

value from alternative k equals aki xi +
∑

j 6=i a
k
ijxj for some non-negative akij (see also Jehiel and

Moldovanu, 2001). Straightforward extensions of Theorems 1 and 2 hold for this environment,

and can be used to construct for any BIC allocation rule an EPIC rule that produces the

same marginals and, hence, the same interim expected utilities for all agents. However, with

interdependent values, social surplus is not determined by marginals alone and the constructed

EPIC mechanism may generate less social surplus.

Multi-Dimensional Signals

There are two reasons why an equivalence result for multi-dimensional signals is not to be

expected. First, monotonicity is not sufficient for implementation, and it must be complemented

by an “integrability” condition, reflecting the various directions in which incentive constraints

may bind (see, e.g., Rochet, 1987; Jehiel et al., 1999). Second, Gutmann et al. (1991) show

that their result fails for higher dimensional marginals, which corresponds here to conditional

expected probabilities given a multi-dimensional type. We explore here the first reason.
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Consider a two-unit auction with I = 2 ex ante symmetric bidders whose types are equally

likely to be x1 = (1, 1), x2 = (2, 1), or x3 = (5, 3), where the first (second) number represents

the marginal value for the first (second) unit. Note that marginal values are non-increasing for

all three types, i.e. goods are substitutes. For simplicity we assume that both units sell so that

there are only K = 3 possible alternatives: bidder 1 wins both units (k = 1), both bidders win

a unit (k = 2), and bidder 2 wins both units (k = 3). It is a standard linear-programming

exercise to find a BIC allocation rule that maximizes seller revenue

q̃1 =


1
2

11
20

0
9
20

0 0

1 1 0

 ,

with q̃3 = (q̃1)T and q̃2 = 1−q̃1−q̃3. Interim transfers that support this allocation rule as part of

a BIC mechanism and preserve interim individual rationality are given by (T̃ (x1), T̃ (x2), T̃ (x3)) =

(−21
30
,−23

30
,−147

30
) for both bidders, resulting in expected seller revenues of R = 191

45
.

The allocation rule is not DIC, however. To see this, suppose the rival bidder’s type is x1.

Then the condition for a bidder of type x1 not to report being of type x2 is t21− t11 ≤ 1
10

, where

the superscripts correspond to the bidder’s type and the other’s type respectively. Similarly,

the condition for a bidder of type x2 not to report x1 is t21 − t11 ≥ 3
20

, a contradiction.18 An

allocation rule that maximizes seller revenue under the DIC constraints is given by

q1 =


1
2

1
2

0
1
2

1
2

0

1 1 0

 ,

and q3 = (q1)T and q2 = 1− q1 − q3. The transfers that support this allocation rule as part of

a DIC mechanism are

t =

 −1 −1 0

−1 −1 0

−5 −5 −5

 ,

where rows correspond to the bidder’s own type and columns to the other bidder’s type. The

resulting seller revenue is R = 38
9

. In other words, the optimal DIC mechanism produces strictly

less revenues than the optimal BIC mechanism.

Non-Linear Utilities

We can reinterpret the multi-dimensional type example of the previous subsection in terms

of non-linear utilities. A bidder’s utility when her type is xj and the alternative is k, for

18In other words, when the opponent’s type is x1 the allocation rule violates one of Rochet’s (1987) cycle
conditions for dominant strategy implementability. However, the allocation rule does satisfy the “averaged”
cycle conditions (where the average is taken over the opponent’s type) that are necessary and sufficient for
Bayesian implementation, see Müller, Perea, and Wolf (2007).
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j, k = 1, 2, 3, is summarized by the matrix 2 1 0

3 2 0

8 5 0

 .

Obviously, only a non-linear model can fit all the payoffs in the matrix. Consider the one-

dimensional types, y1 = 1, y2 = 2, and y3 = 5, and, for both bidders, the non-linear utility

functions gk(y) for k = 1, 2, 3, with g1(y) = 1
6
(y)2 + 1

2
y + 4

3
, g2(y) = y, and g3(y) = 0. It is

readily verified that this non-linear model reproduces the utilities in the above matrix. Hence,

bidders’ interim expected utilities and their incentives to deviate are identical to those in the

multi-dimensional example, and again there is an optimal BIC mechanism that produces strictly

higher revenues than is possible under DIC implementation.

5. Discussion

This paper establishes a link between dominant strategy and Bayesian implementation in social

choice environments. When utilities are linear and types are one-dimensional, independent,

and private, we prove that for any social choice rule that is Bayesian implementable there

exists a (possibly different) social choice rule that yields the same interim expected utilities

for all agents, the same social surplus, and is implementable in dominant strategies. While

Bayesian implementation relies on the assumptions of common prior beliefs and equilibrium

play, dominant strategy implementation is robust to changes in agents’ beliefs and allows agents

to optimize without having to take into account others’ behavior.

This paper also delineates the boundaries for BIC-DIC equivalence. When types are corre-

lated, Cremer and McLean (1988) provide an example where a BIC mechanism yields strictly

higher seller revenue than is attainable by any DIC mechanism. The examples in Section 4.2

show that BIC implementation may result in more social surplus or more revenue when values

are interdependent, types are multi-dimensional, or utilities non-linear.

In general, the equivalence of Bayesian and dominant strategy implementation thus requires

linear utilities and one-dimensional, independent, and private types. When these conditions

are met, Bayesian implementation provides no more flexibility than dominant strategy imple-

mentation.
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A. Appendix: Proofs

Proof of Lemma 2. The intuition behind the proof is to relate the solution to that of

Lemma 1 by taking a discrete approximation. For i ∈ I, n ≥ 1, li = 1, . . . , 2n, define the

sets Si(n, li) = [(li − 1)2−n, li2
−n), which yield a partition of [0, 1) into 2n disjoint intervals of

equal length. Let Fn
i denote the set consisting of all possible unions of the Si(n, li). Note that

Fn
i ⊂ Fn+1

i . Also let l = (l1, ..., lI) and S(n, l) =
∏

i∈I Si(n, li), which defines a partition of

[0, 1)I into disjoint half-open cubes of volume 2−nI . Let {q̃k}k∈K define a BIC mechanism and

consider, for each i ∈ I, the averages

q̃k(n, l) = 2nI

∫
S(n,l)

q̃k(x)dx (A.1)

El−i
ṽi(n, l) = 2n

∫
Si(n,li)

Ex−i
ṽi(x)dxi (A.2)

Since q̃k(x) ≥ 0 and
∑

k q̃
k(x) = 1 we have q̃k(n, l) ≥ 0 and

∑
k q̃

k(n, l) = 1. By construction∑
l−i
ṽi(n, l) = 2n(I−1)El−i

ṽi(n, l), which is non-decreasing in li by (A.2).

Lemma 1 applied to the case where, for each i ∈ I, Xi = {1, . . . , 2n} and λi is the discrete

uniform distribution on Xi, implies there exist {qk(n, l)}k∈K with qk(n, l) ≥ 0 and
∑

k q
k(n, l) =

1 such that
∑

l−i
vi(n, l) =

∑
l−i
ṽi(n, l),

∑
l q

k(n, l) =
∑

l q̃
k(n, l), and vi(n, l) is non-decreasing

in li for all l.

For each i ∈ I, n ≥ 1 define qk(n,x) = qk(n, l) for all x ∈ S(n, l). Then qk(n,x) ≥ 0,∑
k q

k(n,x) = 1, and for each i ∈ I, vi(n,x) is non-decreasing in xi for all x. Furthermore∫
Si(n,li)

Ex−i
ṽi(x)dxi = 2−nEl−i

ṽi(n, l) = 2−nI
∑

l−i
ṽi(n, l) = 2−nI

∑
l−i
vi(n, l)

=
∑

l−i

∫
S(n,l)

vi(n,x)dx =
∫
Si(n,li)×[0,1]I−1 vi(n,x)dx

Thus vi(n,x)−Ex−i
(ṽi(x)) integrates to 0 over every set Si × [0, 1]I−1 with Si ∈ Fn

i . Similarly

qk(n,x) − q̃k(x) integrates to 0 over every set [0, 1]I . Consider any (weak*) convergent subse-

quence from the sequence {qk(n,x)}k∈K for n ≥ 1, with limit {qk(x)}k∈K. Then {qk(x)}k∈K
defines a DIC mechanism that is equivalent to {q̃k(x)}k∈K. Q.E.D.

Proof of Lemma 3. The intuition behind the proof is to relate the unique solution to (1)

to that of the uniform case of Lemma 2. Recall that if the random variable Zi is uniformly

distributed then λ−1i (Zi) is distributed according to λi.
19 Hence, consider for all i ∈ I and

z ∈ [0, 1]I , the functions q̃′k(z) = q̃k(λ−11 (z1), . . . , λ
−1
I (zI)). Since

Ez−i
(ṽ′i(z)) = Ex−i

(ṽi(λ
−1
i (zi),x−i))

the mechanism defined by {q̃′k}k∈K is BIC and by Lemma 2 there exists an equivalent DIC

mechanism {q′k}k∈K where q′k : [0, 1]I → [0, 1]. In particular, q′ minimizes Ez(||v(z)||2) and

19Where λ−1i (zi) = inf{xi ∈ Xi|λi(xi) ≥ zi}.
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satisfies the constraints q′k(z) ≥ 0,
∑

k q
′k(z) = 1, and Ez−i

(v′i(z)) = Ex−i
(ṽi(λ

−1
i (zi),x−i)) for

all i ∈ I. Now define {qk}k∈K with qk : X → [0, 1] where qk(x) = q′k(λ1(x1), . . . , λI(xI)).

Then {qk}k∈K solves (1) since Ex(||v(x)||2) = Ez(||v′k(z)||2) and qk(x) ≥ 0,
∑

k q
k(x) = 1,

and Ex−i
(vi(x)) = Ez−i

(v′i(λi(xi), z−i)) = Ex−i
(ṽi(x)) for all i ∈ I and xi ∈ Xi. Furthermore,

vi(x) =
∑

k a
k
i q

k(x) =
∑

k a
k
i q
′k(λ1(x1), . . . , λI(xI)) is non-decreasing in xi for all k ∈ K, x ∈ X

since {q′}k∈K is a DIC mechanism, λ is non-decreasing, and aki ≥ 0. Q.E.D.

Proof of Theorem 2. We first show the necessary conditions (3) and (4) are also sufficient.

Consider (3) which ensures that deviating to an adjacent type, e.g. from xn−1i to xni , is not

profitable. Now consider types xpi < xqi < xri . We show that if it is not profitable for type xpi
to deviate to type xqi and it is not profitable for type xqi to deviate to type xri then it is not

profitable for type xpi to deviate to type xri . The assumptions imply

Ṽi(x
p
i )x

p
i + T̃i(xpi ) ≥ Ṽi(x

q
i )x

p
i + T̃i(xqi ), Ṽi(x

q
i )l

q
i + T̃i(xqi ) ≥ Ṽi(x

r
i )x

q
i + T̃i(xri )

and, hence,

Ṽi(x
p
i )x

p
i + T̃i(xpi ) ≥ Ṽi(x

r
i )x

p
i + T̃i(xri ) + (Ṽi(x

r
i )− Ṽi(x

q
i ))(x

q
i − x

p
i ) ≥ Ṽi(x

r
i )x

p
i + T̃i(xri )

since Ṽi(xi) is non-decreasing and xqi > xpi . Similarly, if it is not profitable for type xri to deviate

to type xqi and it is not profitable for type xqi to deviate to type xpi then it is not profitable for

type xri to deviate to type xpi . The same logic applies to the DIC constraints in (4).20

Next, consider the transfers defined by (5). Note that the BIC constraints (3) imply that

xn−1i ≤ αn
i ≤ xni for n = 2, . . . , Ni, which, in turn, implies that the difference in DIC transfers

τi(x
n−1
i ,x−i)− τi(xni ,x−i) = (vi(x

n
i ,x−i)− vi(xn−1i ,x−i))α

n
i

satisfies the bounds in (4). Let {qk}k∈K denote a solution to minimization problem in (1).

Lemma 1 ensures that the associated vi(x) is non-decreasing in xi for all i ∈ I, x ∈ X, and by

construction Vi(xi) = Ex−i
(vi(xi,x−i)) = Ṽi(xi). Taking expectations over x−i in (5) yields

Ti(xni ) = T̃i(x1i )−
n∑

m=2

(Vi(x
m
i )− Vi(xm−1i ))αm

i

= T̃i(x1i ) +
n∑

m=2

(T̃i(xmi )− T̃i(xm−1i )) = T̃i(xni )

for n = 1, . . . , Ni. Hence, ui(xi) = Vi(xi)xi + Ti(xi) = Ṽi(xi)xi + T̃i(xi) = ũi(xi), i.e. the DIC

mechanism (q, t) yields the same interim expected utilities as the BIC mechanism (q̃; t̃).

The expected social surplus is the same because Ti(xi) = T̃i(xi) for all xi ∈ Xi and the ex

ante expected probability with which each alternative occurs is the same under the BIC and

DIC mechanisms. Q.E.D.

20Importantly, this derivation does not apply to multi-dimensional types, see Section 4.2.
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