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Abstract

We study the equivalence between Bayes-Nash Incentive Compat-
ibility (BIC) and Dominant Strategy Incentive Compatibility (DIC)
in a standard social choice environment with linear utility and one-
dimensional types. We consider two notions of equivalence: one based
on agents’interim utilities (U-equivalence), and a stronger one based
on conditional expected probabilities of choosing each alternative (P-
equivalence). Our main results are: 1) For any BIC mechanism there
is a P-equivalent DIC mechanism in settings with two social alterna-
tives. 2) We construct a symmetric, BIC mechanism for which there is
no P-equivalent DIC mechanism in an example with three alternatives.
3) In general symmetric settings, for any symmetric BIC mechanism
there exists a symmetric, DIC and U-equivalent mechanism.
Our insights are based on elegant mathematical results about the

existence of monotone measures with given monotone marginals.
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1 Introduction

In an important and surprising contribution Manelli and Vincent [2010] focus
on the standard one-object auction setting with private values and indepen-
dent types, and show that for any Bayes-Nash Incentive Compatible (BIC)
mechanism there exists a Dominant-Strategy Incentive Compatible (DIC)
mechanism that yields, for each bidder and each type of this bidder, the
same conditional expected probability of obtaining the object as in the orig-
inal mechanism and hence, by payoff equivalence, the same interim expected
utility.
In this paper we look at a standard, general social choice environment

with linear utility and one-dimensional types which includes as a special case
the one-object auction considered by Manelli and Vincent. We consider two
notions of equivalence between mechanisms1: equivalence based on agents’
interim utilities (U-equivalence), and equivalence based on conditional ex-
pected probabilities of choosing each alternative (P-equivalence). These two
notions coincide in the Manelli and Vincent setting (where U-equivalence
necessarily implies equivalence in conditional expected probabilities of ob-
taining the object for each bidder), or in any social choice setting with two
alternatives. But, in general, P-equivalence is stronger than U-equivalence in
settings when there are more than two alternatives. On the other hand, P-
equivalence is weaker than an earlier notion used by Mookherjee and Reichel-
stein [1992] who require that two equivalent mechanisms provide the same
ex-post probabilities for each alternative. Note that the primitive object in
mechanism design is the social choice function, consisting here of a phys-
ical allocation and monetary transfers as functions of private information.
Utilities are separate objects. Accordingly, most of the literature has been
indeed concerned with properties of social choice functions (or correspon-
dences). While P-equivalence follows this tradition, U-equivalence blends
social choice functions and utilities in a specific way.
Our main results are: 1) For any settings with two alternative we show

that, for any BICmechanism there is a P-equivalent (and hence U-equivalent)
DIC mechanism. 2) For any symmetric setting we show that for any symmet-
ric BIC mechanism there exists a symmetric, DIC and U-equivalent mecha-
nism. 3) For an example with three alternative we construct a symmetric,

1We are extremely grateful to an anonymous referee for encouraging us to explicitly
address the two notions.
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BIC mechanism for which there is no P-equivalent DIC mechanism.
Our entire analysis is based on elegant mathematical results and ideas

that, somewhat surprisingly, have been ignored so far in the Economics/Mechanism
Design literature2. The main role is played by a result due to Gutmann et
al. [1991]: For any bounded, non-negative function of several variables that
generates monotone, one dimensional marginals, it is possible to generate the
same marginals (i.e., the same expectations over all variables but one) with
another non-negative function that is monotone in each coordinate, and that
respects the same bound3. It is important to note that the diffi culty in this
result stems from the constraint of keeping the same bound.
The connection to BIC-DIC equivalence should be now obvious since in

the independent private values model with quasi-linear utility and monetary
transfers, DIC mechanisms are characterized by monotone allocations, which
are described by probabilities of choosing various alternatives, while BIC
mechanisms are characterized by monotone conditional expected allocations,
which are obtained as marginals of the actual allocation.
Why do we need several notions of equivalence? A utilitarian designer

who only takes into account the actual players will be indifferent between two
U-equivalent mechanisms. But it is obvious that non-utilitarian designers -
that may have personal preferences of their own, or that may take into ac-
count preferences of agents not currently in the game - need not be indifferent
between two U-equivalent mechanisms. Here are two such examples:
1) Consider a risk averse/risk loving designer that cares about the agents’

expected utilities and that has additional costs/benefits of implementing var-
ious alternatives. U-equivalence does not necessarily preserve ex-ante prob-
abilities of choosing the alternatives (see for example our U-equivalent con-
struction in the proof of Proposition 2, and the Remark after it). Hence
such a designer need not be indifferent among two U-equivalent mechanisms,
while she is necessarily indifferent among two P-equivalent mechanisms - they
produce, by definition, the same ex-ante probabilities of choosing the various
social alternatives.
2) Consider a dynamic setting where the designer takes a public decision

2Building upon our work, Goeree and Kushnir [2011] provide a short proof of Manelli
and Vincent’s equivalence result by generalizing the proof of the Gutmann et al. [1991]
theorem.

3Gutmann et al. build upon earlier contributions due to Lorenz [1949], Kellerer [1961]
and Strassen [1965], that study the existence of measures with given marginals. These
studies are in fact relevant for the analysis of reduced form auctions, e.g., Border[1991].
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that affects both current and future agents. While the distribution of the
values of the current agents may be known, the distribution of values for
future agents may be yet unknown, and may depend on current realizations.
Thus, from the point of view of the designer, the private information of
current agents naturally enters the proxy utility functions for future agents, so
even a utilitarian social planner will not be indifferent between U-equivalent
mechanisms for the current agents.
Stronger notions of equivalence ensure that a richer set of designers is

indifferent among two mechanisms that satisfy the respective requirements.
Our counter-example shows that there is a price to be paid: even the tran-
sition from U- to the mildly stronger P-equivalence implies that, for non-
utilitarian designers, implementation in dominant strategies offers strictly
less freedom relative to Bayesian implementation.

2 Model and Preliminaries

There are K social alternatives and N agents. The utility of agent i in
alternative k is given by aki xi + cki + ti where xi ∈ [0, 1] is agent i’s private
type, where aki , c

k
i ∈ R with aki ≥ 0, and where ti ∈ R is a monetary transfer.

Types are drawn independently of each other, according to strictly increasing
distributions Fi. Type xi is private information of agent i.
Note that the one-object auction analyzed in Manelli and Vincent [2010]

is the special case of the above model where K = N, where aii = 1, a
j
i = 0

for any j 6= i, and where cki = 0 for any i, k.
A direct revelation mechanism M is given by K functions qk : [0, 1]N →

[0, 1] and N functions ti : [0, 1]N → R where qk(x1, ..., xN) is the probability
with which alternative k is chosen, and ti(x1, ..., xN) is the transfer to agent
i if the agents report types x1, ..., xN . Note that

∑K
k=1 q

k(x1, ..., xN) = 1 for
each vector of reports x = (x1, ..., xN) ∈ [0, 1]N .
A direct revelation mechanism M is Dominant-Strategy Incentive Com-

patible (DIC) if truth-telling constitutes a dominant strategy equilibrium in
the game defined by M and the given utility functions. A direct revelation
mechanismM is Bayes-Nash Incentive Compatible (BIC) if truth-telling con-
stitutes a Bayes-Nash equilibrium in the game defined by M and the given
utility functions. Obviously, a DIC mechanism is a fortiori BIC.
Given mechanismM, define for each i, k, one-dimensional marginal with
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respect to coordinate i as

Qk
i (x̂i) =

∫
[0,1]N−1

qk(x1, ..., xi, x̂i, xi+1, ..., xN)dF−i

where dF−i = dF1...dFi−1dFi+1...dFN . This expression represents the condi-
tional expected probability that alternative k is chosen if all agents j 6= i
report truthfully while agent i reports type x̂i.
A necessary condition for M to be BIC is that, for each agent i, the

function
∑K

k=1 a
k
iQ

k
i (xi) is non-decreasing. Moreover, a standard argument

that follows from the incentive compatibility constraint implies that any K
functions qk that satisfy this condition are part of a BIC mechanism.
Analogously, a necessary condition forM to be DIC is that, for each agent

i, and for any signals of the other agents, the function
∑K

k=1 a
k
i q
k(x1, ..., xN)

is non-decreasing in xi. Any K functions qk that satisfy this condition are
part of a DIC mechanism.

Definition 1 1. Two mechanismsM and M̃ are P -equivalent if, for each
i, k and xi, it holds that Qk

i (xi) = Q̃k
i (xi), where Q

k
i and Q̃

k
i are the con-

ditional expected probabilities associated with M and M̃, respectively.

2. Two mechanisms M and M̃ are U-equivalent if they provide the same
interim utilities for each agent i and each type xi of agent i.

Note that, for each agent i, interim utility is obtained (up to a constant)
by integrating the function

∑K
k=1 a

k
iQ

k
i (xi) with respect to xi - this is a con-

sequence of payoff equivalence. Thus P -equivalence implies U -equivalence.
The main tool in the subsequent analysis is the following result, which is

a simple consequence of an elegant result due to Gutmann et al. [1991]4:

4Gutmann et al. formulate their result, Theorem 7, in terms of non-decreasing mar-
ginals only. Our extension is based on an immediate re-arrangement argument. Moreover,
they only consider marginals with respect to the Lebesgue measure. A simple argument
can be used to extend it to marginals with respect to product measures of the form
dF−i = dF1...dFi−1dFi+1...dFN as needed in our application. This is done by considering
the change of variables ui = F (xi).
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Theorem 1 Consider an integrable function 0 ≤ q ≤ 1 on RN having non-
decreasing one-dimensional marginals with respect to coordinates i ∈ D ⊆
[1, 2, ..., N ], and non-increasing one-dimensional marginals with respect to
coordinates j ∈ DC = [1, 2, ..., N ] \ D. Then there exists a function 0 ≤ ψ ≤
1, with exactly the same marginals, such that ψ is non-decreasing in each
coordinate i ∈ D, and is non-increasing in each coordinate j ∈ DC.

3 BIC-DIC Equivalence for Two Alternatives

In this section we consider settings with two social alternatives only. Since
q2(x1, ..., xN) = 1−q1(x1, ..., xN), we obtain that

∑2
k=1 a

k
iQ

k
i (xi) = a2i +(a

1
i −

a2i )Q
1
i (xi), and therefore U -equivalence implies P -equivalence, and the two

notions coincide here. In order to avoid trivial cases, we also assume that
a1i 6= a2i , for all agents i.

Proposition 1 Assume that K = 2. Then for any BIC mechanism there
exists a P -equivalent (and thus U-equivalent) DIC mechanism.

Proof. SinceK = 2 and q2(x1, ..., xn) = 1−q1(x1, ..., xn), the allocation func-
tion in any mechanism can be represented by just one function q1(x1, ..., xn),
the probability that alternative 1 is chosen. For BIC mechanisms we ob-
tain for each i that the function

∑K
k=1 a

k
iQ

k
i (xi) = a2i + (a

1
i − a2i )Q

1
i (xi) is

non-decreasing. In particular, Q1i is non-decreasing if a
1
i − a2i > 0 and Q1i

is non-increasing if a1i − a2i < 0. Thus, the function q1(x1, ..., xn) satisfies
the conditions in the Theorem 1 with D = {i | a1i − a2i > 0}. We obtain
another function 0 ≤ ψ ≤ 1, with exactly the same marginals, such that ψ
is non-decreasing in each coordinate i ∈ D, and non-increasing in each coor-
dinate j ∈ DC . As a consequence, a1iψ(x1, ..., xn) + a2i [1− ψ(x1, ..., xn)] =
a2i + (a

1
i − a2i )ψ(x1, ..., xn) is non-decreasing in xi for any i. Together with

appropriate transfers, ψ(x1, ..., xn) defines a DIC mechanism which is P -
equivalent to the given BIC mechanism.

4 BIC-DIC Equivalence for Three or More
Alternatives

In this section, we demonstrate that P -equivalence and U -equivalence differ
for settings with three or more alternatives. We first construct a (symmetric)
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BIC mechanism that has no P -equivalent DIC mechanism. This counterex-
ample illustrates that P -equivalence between BIC and DIC fails in general
when there are three or more alternatives. In this symmetric example we also
note that U−equivalence holds. This observation can be then easily gener-
alized to show that for any BIC mechanism there exists a U -equivalent DIC
mechanism in the general symmetric environment (allowing for any number
of agents and alternatives).

4.1 A Counterexample for Three Alternatives

We now construct a BIC mechanism that has no P -equivalent DIC mecha-
nism.
The key observation behind the construction is as follows: In the Manelli-

Vincent auction model and in settings with two alternatives, the BICmonotonic-
ity condition can be separately imposed on the conditional probabilities
Qk
i (xi). But, in our general model the BIC monotonicity condition for agent

i is imposed on the function
∑K

k=1 a
k
iQ

k
i (xi). While U -equivalence requires

that, for each agent i, the aggregated function
∑K

k=1 a
k
iQ

k
i (xi) is kept fixed,

P -equivalence fixes separately each conditional expected probability of choos-
ing alternative k, Qk

i (xi) - this is mathematically more demanding and cannot
always be attained.
We consider a setting with 2 agents, and 3 alternatives called A,B, V .

It will be clear that the impossibility of P−equivalence is not a knife-edge
phenomenon.
Agent 1 has types x1 > x2, agent 2 has types y1 > y2. Types are drawn

independently from the uniform distribution, e.g. each type is drawn with
probability 1/2.5

The utility of agent 1 with type xi (i = 1, 2), exclusive of transfers, is
given by: axi+ c in alternative A; xi+d in alternative B; v in V . The utility
for agent 2 is obtained by plugging yi instead xi in these expressions. We
further assume that 0 < a < 1.6

5This discrete setting allows us to clearly illustrate the diffi culty in the construction.
The example can be extend to continuous distributions that, say, put almost all mass
around two types. Note that a discrete setting allows even more flexibility when choosing
transfers that complement a given monotonic allocation to form a DIC mechanism.

6A counter-example can be easily constructed also for asymmetric situations. But the
main idea behind the construction is clearer in the present symmetric setting because less
functions and parameters are involved.
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An allocation is given by probabilities {qA(xi, yj), qB(xi, yj)}1≤i,j≤2. Note
that qA(xi, yj) + qB(xi, yj) ≤ 1, where qV (xi, yj) = 1− qA(xi, yj)− qB(xi, yj)
represents the probability of choosing alternative V. In view of our previous
result we need to ensure that qV is not identically zero.

The construction is divided in several steps.
Step 1: Equivalence and Symmetry.
Consider an (agent) symmetric allocation function {q̂A(xi, yj), q̂B(xi, yj)}1≤i,j≤2,

i.e., an allocation where q̂A(x1, y2) = q̂A(x2, y1) and q̂B(x1, y2) = q̂B(x2, y1).
We first show that any P−equivalent allocation —that keeps all marginals
fixed —has to be symmetric as well.
To see this, consider the conditional expected probabilities of choosing

each alternative obtained from a given symmetric allocation. We have:

QA
1 (x1) =

1

2
[q̂A(x1, y1) + q̂A(x1, y2)]

=
1

2
[q̂A(x1, y1) + q̂A(x2, y1)] = QA

2 (y1)

QB
1 (x1) =

1

2
[q̂B(x1, y1) + q̂B(x1, y2)]

=
1

2
[q̂B(x1, y1) + q̂B(x2, y1)] = QB

2 (y1)

Consider any other equivalent allocation rule {q̃A(xi, yj), q̃B(xi, yj)}1≤i,j≤2.
By equivalence we must have

QA
1 (x1) =

1

2
q̃A (x1, y1) +

1

2
q̃A (x1, y2)

QA
2 (y1) =

1

2
q̃A (x1, y1) +

1

2
q̃A (x2, y1)

Together with QA
1 (x1) = QA

2 (y1), this yields q̃
A (x1, y2) = q̃A (x2, y1) . An

analogous argument yields q̃B (x2, y1) = q̃B (x1, y2). Thus {q̃A(xi, yj), q̃B(xi, yj)}1≤i,j≤2
must be symmetric as well.

Step 2: Construction of a symmetric BIC mechanism.
We now construct a specific symmetric BIC mechanism for the above

setting. Let s be a small positive number, say, s = 1/15, and consider the
following symmetric allocation (i.e., with q̂A(x1, y2) = q̂A(x2, y1), q̂B(x1, y2) =
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q̂B(x2, y1)) and corresponding conditional expected probabilities:

q̂A(x1, y1) = 13s q̂B(x1, y1) = as
q̂A(x1, y2) = s q̂B(x1, y2) = as
QA(x1) = 7s QB(x1) = as

(1)

and
q̂A(x2, y1) = s q̂B(x2, y1) = as
q̂A(x2, y2) = s q̂B(x2, y2) = 9as
QA(x2) = s QB(x2) = 5as

(2)

Note that q̂A (xi, yj) , q̂B (xi, yj) ∈ (0, 1) and q̂A (xi, yj)+ q̂B (xi, yj) < 1. This
last inequality is precisely the degree of freedom gained by having more than
2 alternatives.
The function aq̂A + q̂B is not increasing in each coordinate separately,

and therefore the mechanism is not DIC. But, the constructed mechanism
satisfies

aQA(x1) +QB(x1) = 8as > 6as = aQA(x2) +QB(x2)

and analogously for agent 2. This "monotonicity on average" property im-
plies that we can construct appropriate transfers that, together with q̂, yield
a symmetric BIC mechanism.

Step 3: An equivalent DIC mechanism does not exist.
Assume now the existence of a DIC mechanism that is P -equivalent to

the BIC mechanism constructed in Step 2. This DIC mechanism needs to be
symmetric, as explained in Step 1. Therefore, it consists of 6 non-negative
numbers

qA(x1, y1), q
A(x1, y2) = qA(x2, y1), q

A(x2, y2)

qB(x1, y1), q
B(x1, y2) = qB(x2, y1), q

B(x2, y2)

that satisfy the following system of equations:

1
2
qA(xi, y1) +

1
2
qA(xi, y2) = QA(xi), i = 1, 2

1
2
qB(xi, y1) +

1
2
qB(xi, y2) = QB(xi), i = 1, 2

(3)

where we omitted the redundant equations that need to hold for agent 2 with
type yi, i = 1, 2.
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Let’s define the function ψ (xi, yj) as follows:

ψ(xi, yj) = aqA(xi, yj) + qB(xi, yj), i, j = 1, 2 (4)

Because qA (xi, yj) , qB (xi, yj) ∈ [0, 1] and qA (xi, yj) + qB (xi, yj) < 1, we
obtain that ψ(xi, yj) ∈ [0, 1). By symmetry we have ψ(x1, y2) = ψ(x2, y1).
Since the underlying mechanism {qA, qB} is assumed to be DIC, ψ (xi, yj)
must be non-decreasing in each coordinate:

ψ(x1, y1) ≥ ψ(x1, y2) = ψ(x2, y1) ≥ ψ(x2, y2). (5)

It follows from (3) that
1
2
ψ(x1, y1) +

1
2
ψ(x1, y2) = aQA(x1) +QB(x1) = 8as

1
2
ψ(x1, y2) +

1
2
ψ(x2, y2) = aQA(x2) +QB(x2) = 6as

(6)

Together with inequalities (5), equations (6) yield the following necessary
bounds:

8as ≤ ψ(x1, y1) ≤ 10as
6as ≤ ψ(x1, y2) = ψ(x2, y1) ≤ 8as
4as ≤ ψ(x2, y2) ≤ 6as

(7)

Note that ψ(x, y) is a solution to the (discrete) Gutmann et. al problem
of finding a function, monotone in x and y separately, with given monotone
marginals of the form aQA(xi) +Q

B(xi), aQ
A(yi) +Q

B(yi), i = 1, 2. In fact,
any DIC mechanism (not necessarily P−equivalent to the BIC mechanism
constructed at Step 2) with fixed marginals aQA+QB yields such a solution.
Since we know by the discrete version of Theorem 1 that a solution to this
problem does exist7, the construction of a counterexample must hinge on the
additional constraints imposed by P−equivalence, i.e., by equations 3.
Fix then qA(x1, y2) and use equations (3) and (4) to write all other five

q’s in terms of qA(x1, y2):

qA(x1, y1) = 2QA(x1)−qA(x1, y2) (8)

qB(x1, y2) = ψ(x1, y2)− aqA(x1, y2) (9)

qB(x1, y1) = ψ(x1, y1)− aqA(x1, y1)
= ψ(x1, y1)− 2aQA(x1) + aqA(x1, y2) (10)

qA(x2, y2) = 2QA(x2)− qA(x1, y2) (11)

qB(x2, y2) = ψ(x2, y2)− aqA(x2, y2)
= ψ(x2, y2)− 2aQA(x2) + aqA(x1, y2) (12)

7The discrete version is also found in Gutmann et al.[1991]. In fact, the continuous
result is obtained as a limit of the discrete one.
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We now check whether we can choose qA(x1, y2) ≥ 0, so that all other q’s are
also non-negative.
Equations (8), (9), and (11) yield the necessary condition:

qA(x1, y2) ≤ min
{
2QA(x1), 2Q

A(x2),
1

a
ψ(x1, y2)

}
.

Equations (10) and (12) yield the necessary condition:

qA(x1, y2) ≥ max
{
2QA(x1)−

1

a
ψ(x1, y1), 2Q

A(x2)−
1

a
ψ(x2, y2)

}
.

Therefore, putting these two conditions together yields the necessary condi-
tion:

max

{
2QA(x1)−

1

a
ψ(x1, y1), 2Q

A(x2)−
1

a
ψ(x2, y2)

}
≤ min

{
2QA(x1), 2Q

A(x2),
1

a
ψ(x1, y2)

}
(13)

By using now the the relations QA(x1) = 7s, QA(x2) = s, ψ(x1, y1) =
16as − ψ(x1, y2), ψ(x2, y2) = 12as − ψ(x1, y2),

8 we can rewrite the neces-
sary condition (13) as

max

{
−2s+ 1

a
ψ(x1, y2), −10s+

1

a
ψ(x1, y2)

}
≤ min

{
14s, 2s,

1

a
ψ(x1, y2)

}
⇔

−2s+ 1
a
ψ(x1, y2) ≤ min

{
2s,

1

a
ψ(x1, y2)

}
⇔

1

a
ψ(x1, y2) ≤ 2s+min

{
2s,

1

a
ψ(x1, y2)

}
Since 2s +min

{
2s, 1

a
ψ(x1, y2)

}
≤ 4s, we obtain that a necessary condition

for the above construction to be valid, i.e., for keeping all q’s non-negative,
is that ψ(x1, y2) ≤ 4as. But this contradicts the requirement ψ(x1, y2) ≥
6as, which was obtained in inequalities (7) at Step 3. Thus, a P -equivalent
DIC mechanism cannot be constructed here. It should be clear from the
above that the inexistence is not a knife-edge phenomenon —there are several
degrees of freedom here in the choice of parameters.
Q.E.D.

8See equations (1), (2) and (6).
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4.2 U-Equivalence for Symmetric Settings

As we saw at Step 3 in the construction above , it was possible to construct
an U -equivalent DIC mechanism in the symmetric setting of the counterex-
ample. A straightforward generalization of that insight yields U -equivalence
in the symmetric version of our general model, with any number of agents
and alternatives. In order to apply the Gutmann et al. result, we normalize
here coeffi cients in a suitable way.

Proposition 2 Assume that aki = akj = ak for all k, i, j, and that Fi = F
for all i. Moreover, assume that 0 = a1 ≤ a2 ≤ · · · ≤ aK = 1. Then for
any symmetric, BIC mechanism there exists an U-equivalent symmetric DIC
mechanism.

Proof. Since qk(x1, ..., xN) ∈ [0, 1],
∑K

k=1 q
k(x1, ..., xN) = 1 and ak ∈ [0, 1]

we have
∑K

k=1 a
kqk(x1, ..., xN) ∈ [0, 1]. Moreover, since the original mech-

anism is BIC, the function
∑K

k=1 a
kqk(x1, ..., xN) has non-decreasing mar-

ginals. Symmetry implies that all the N marginals are the same and given
by
∑K

k=1 a
kQk(xi). Thus, the function

∑K
k=1 a

kqk(x1, ..., xN) satisfies the
conditions in Theorem 1. Therefore, there exists a unique function 0 ≤
ψ(x1, ..., xN) ≤ 1, with exactly the same marginals, such that ψ is non-
decreasing in each coordinate. Summing the terms ψ(xπ(1), ..., xπ(N)) for all
permutations π of x1, ..., xN (which does not affect monotonicity), and then
dividing the sum by N ! yields a symmetric function, non-decreasing in each
coordinate, that generates the original marginals.
To complete the proof we need to show that ψ defines a feasible mech-

anism, i.e., to find functions q̂1, ..., q̂K such that
∑K

k=1 a
kq̂k(x1, ..., xn) =

ψ(x1, ..., xn) , and such that q̂k ∈ [0, 1] for any k ∈ {1, ..., K}. This is easily
done, for example by setting q̂K(x1, ..., xn) = ψ(x1, ..., xn) and q̂1(x1, ..., xn) =
1− ψ(x1, ..., xn).
The above proof shows that it is possible to replicate the interim expected

utilities of all the agents while using only two alternatives, with highest and
lowest slope, respectively. In other words, U-equivalence does not necessarily
ensure that the ex-ante probabilities of different alternatives are preserved.

Remark 1 It is worth noting that Theorem 1 has no counterpart for higher-
dimensional marginals (or projections). From this perspective it seems un-
likely that P− equivalence can hold in suffi ciently interesting multi-dimensional
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models. Moreover, in the multi-dimensional case not every monotone alloca-
tion can be augmented by transfers in order to create an incentive compatible
mechanism. Indeed, Jehiel, Moldovanu and Stacchetti [1999] analyzed a stan-
dard multi-dimensional, private values model, interpreted as an one-object
auction with externalities, and computed a Bayes-Nash equilibrium in a two-
bidder auction with a reserve price whose conditional expected probabilities
cannot be replicated in dominant strategies.
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