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SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG
SELECTOR∗

By Peter J. Bickel , Ya’acov Ritov and Alexandre B.
Tsybakov

We show that, under a sparsity scenario, the Lasso estimator and
the Dantzig selector exhibit similar behavior. For both methods we
derive, in parallel, oracle inequalities for the prediction risk in the
general nonparametric regression model, as well as bounds on the `p

estimation loss for 1 ≤ p ≤ 2 in the linear model when the number
of variables can be much larger than the sample size.

1. Introduction. During the last few years a great deal of attention
has been focused on the `1 penalized least squares (Lasso) estimator of pa-
rameters in high-dimensional linear regression when the number of variables
can be much larger than the sample size [8, 9, 11, 17, 18, 20–22, 26, 27].
Quite recently, Candes and Tao [7] have proposed a new estimate for such
linear models, the Dantzig selector, for which they establish optimal `2 rate
properties under a sparsity scenario, i.e., when the number of non-zero com-
ponents of the true vector of parameters is small.

Lasso estimators have been also studied in the nonparametric regression
setup [2–5, 12, 13, 19]. In particular, Bunea et al. [2–5] obtain sparsity oracle
inequalities for the prediction loss in this context and point out the implica-
tions for minimax estimation in classical non-parametric regression settings,
as well as for the problem of aggregation of estimators. An analog of Lasso
for density estimation with similar properties (SPADES) is proposed in [6].
Modified versions of Lasso estimators (non-quadratic terms and/or penalties
slightly different from `1) for nonparametric regression with random design
are suggested and studied under prediction loss in [14, 25]. Sparsity oracle
inequalities for the Dantzig selector with random design are obtained in [15].
In linear fixed design regression, Meinshausen and Yu [18] establish a bound
on the `2 loss for the coefficients of Lasso which is quite different from the
bound on the same loss for the Dantzig selector proven in [7].

The main message of this paper is that under a sparsity scenario, the Lasso
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2 BICKEL ET AL.

and the Dantzig selector exhibit similar behavior, both for linear regression
and for nonparametric regression models, for `2 prediction loss and for `p

loss in the coefficients for 1 ≤ p ≤ 2. All the results of the paper are non-
asymptotic.

Let us specialize to the case of linear regression with many covariates,
y = Xβ + w where X is the n × M deterministic design matrix, with M
possibly much larger than n, and w is a vector of i.i.d. standard normal
random variables. This is the situation considered most recently by Candes
and Tao [7] and Meinshausen and Yu [18]. Here sparsity specifies that the
high-dimensional vector β has coefficients that are mostly 0.

We develop general tools to study these two estimators in parallel. For
the fixed design Gaussian regression model we recover, as particular cases,
sparsity oracle inequalities for the Lasso, as in Bunea et al. [4], and `2 bounds
for the coefficients of Dantzig selector, as in Candes and Tao [7]. This is
obtained as a consequence of our more general results:

• In the nonparametric regression model, we prove sparsity oracle in-
equalities for the Dantzig selector, that is, bounds on the prediction
loss in terms of the best possible (oracle) approximation under the
sparsity constraint.

• Similar sparsity oracle inequalities are proved for the Lasso in the
nonparametric regression model, and this is done under more general
assumptions on the design matrix than in [4].

• We prove that, for nonparametric regression, the Lasso and the Dantzig
selector are approximately equivalent in terms of the prediction loss.

• We develop geometrical assumptions which are considerably weaker
than those of Candes and Tao [7] for the Dantzig selector and Bunea
et al.[4] for the Lasso. In the context of linear regression where the
number of variables is possibly much larger than the sample size these
assumptions imply the result of [7] for the `2 loss and generalize it to
`p loss, 1 ≤ p ≤ 2, and to prediction loss. Our bounds for the Lasso
differ from those for Dantzig selector only in numerical constants.

We begin, in the next section, by defining the Lasso and Dantzig procedures
and the notation. In Section 3 we present our key geometric assumptions.
Some sufficient conditions for these assumptions are given in Section 4, where
they are also compared to those of [7] and [18] as well as to ones appearing
in [4] and [5]. We note a weakness of our assumptions, and hence of those
in the papers we cited, and we discuss a way of slightly remedying them.
Sections 5, 6 give some equivalence results and sparsity oracle inequalities for
the Lasso and Dantzig estimators in the general nonparametric regression
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LASSO AND DANTZIG SELECTOR 3

model. Section 7 focuses on the linear regression model and includes a final
discussion. Two important technical lemmas are given in Appendix B as
well as most of the proofs.

2. Definitions and notation. Let (Z1, Y1), . . . , (Zn, Yn) be a sample
of independent random pairs with

Yi = f(Zi) + Wi, i = 1, . . . , n,

where f : Z → R is an unknown regression function to be estimated, Z is a
Borel subset of Rd, the Zi’s are fixed elements in Z and the regression errors
Wi are Gaussian. Let FM = {f1, . . . , fM} be a finite dictionary of functions
fj : Z → R, j = 1, . . . , M . We assume throughout that M ≥ 2.

Depending on the statistical targets, the dictionary FM can contain qual-
itatively different parts. For instance, it can be a collection of basis func-
tions used to approximate f in the nonparametric regression model (e.g.,
wavelets, splines with fixed knots, step functions). Another example is re-
lated to the aggregation problem where the fj are estimators arising from
M different methods. They can also correspond to M different values of
the tuning parameter of the same method. Without much loss of generality,
these estimators fj are treated as fixed functions: the results are viewed as
being conditioned on the sample the fj are based on.

The selection of the dictionary can be very important to make the esti-
mation of f possible. We assume implicitly that f can be well approximated
by a member of the span of FM . However this is not enough. In this pa-
per, we have in mind the situation where M À n, and f can be estimated
reasonably only because it can approximated by a linear combination of a
small number of members of FM , or in other words, it has a sparse approx-
imation in the span of FM . But when sparsity is an issue, equivalent bases
can have different properties: a function which has a sparse representation
in one basis may not have it in another one, even if both of them span the
same linear space.

Consider the matrix X = (fj(Zi))i,j , i = 1, . . . , n, j = 1, . . . ,M and the
vectors y = (Y1, . . . , Yn)T , f = (f(Z1), . . . , f(Zn))T , w = (W1, . . . ,Wn)T .
With this notation,

y = f + w.

We will write |x|p for the `p norm of x ∈ RM , 1 ≤ p ≤ ∞. The notation
‖ · ‖n stands for the empirical norm:

‖g‖n =

√√√√ 1
n

n∑

i=1

g2(Zi)
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4 BICKEL ET AL.

for any g : Z → R. We suppose that ‖fj‖n 6= 0, j = 1, . . . ,M . Set

fmax = max
1≤j≤M

‖fj‖n , fmin = min
1≤j≤M

‖fj‖n .

For any β = (β1, . . . , βM ) ∈ RM , define fβ =
∑M

j=1 βjfj , or explicitly,
fβ(z) =

∑M
j=1 βjfj(z), and fβ = Xβ. The estimates we consider are all of

the form fβ̃(·) where β̃ is data determined. Since we consider mainly sparse
vectors β̃, it will be convenient to define the following. Let

M(β) =
M∑

j=1

I{βj 6=0} = |J(β)|

denote the number of non-zero coordinates of β, where I{·} denotes the
indicator function, J(β) = {j ∈ {1, . . . , M} : βj 6= 0}, and |J | denotes the
cardinality of J . The value M(β) characterizes the sparsity of the vector
β: the smaller M(β), the “sparser” β. For a vector δ ∈ RM and a subset
J ⊂ {1, . . . , M} we denote by δJ the vector in RM which has the same
coordinates as δ on J and zero coordinates on the complement Jc of J .

Introduce the residual sum of squares

Ŝ(β) =
1
n

n∑

i=1

{Yi − fβ(Zi)}2,

for all β ∈ RM . Define the Lasso solution β̂L = (β̂1,L, . . . , β̂M,L) by

β̂L = arg min
β∈RM



Ŝ(β) + 2r

M∑

j=1

‖fj‖n|βj |


 ,(2.1)

where r > 0 is some tuning constant, and introduce the corresponding Lasso
estimator

f̂L(x) = f
β̂L

(x) =
M∑

j=1

β̂j,Lfj(z).(2.2)

The criterion in (2.1) is convex in β, so that standard convex optimization
procedures can be used to compute β̂L. We refer to [9, 10, 16, 20, 21, 24] for
detailed discussion of these optimization problems and fast algorithms.

A necessary and sufficient condition of the minimizer in (2.1) is that 0
belongs to the subdifferential of the convex function β 7→ n−1|y − Xβ|22 +
2r|D1/2β|1. This implies that the Lasso selector β̂L satisfies the constraint:

∣∣∣ 1
n

D−1/2XT (y −Xβ̂L)
∣∣∣
∞
≤ r,(2.3)
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LASSO AND DANTZIG SELECTOR 5

where D is the diagonal matrix

D = diag{‖f1‖2
n, . . . , ‖fM‖2

n}.
The Dantzig estimator of the regression function f is based on a particular

solution of (2.3), the Dantzig selector, which is a solution of the minimization
problem:

β̂D = arg min
{
|β|1 :

∣∣∣ 1
n

D−1/2XT (y −Xβ)
∣∣∣
∞
≤ r

}
.(2.4)

The Dantzig estimator is defined by

f̂D(z) = f
β̂D

(z) =
M∑

j=1

β̂j,Dfj(z).(2.5)

where β̂D = (β̂1,D, . . . , β̂M,D) is the Dantzig selector. By the definition of
Dantzig selector, we have |β̂D|1 ≤ |β̂L|1.

The Dantzig selector is computationally feasible, since it reduces to a
linear programming problem [7].

Finally for any n ≥ 1, M ≥ 2, we consider the Gram matrix

Ψn =
1
n

XT X =

(
1
n

n∑

i=1

fj(Zi)fj′(Zi)

)

1≤j,j′≤M

,

and let φmax denote the maximal eigenvalue of Ψn.

3. Restricted eigenvalue assumptions. We now introduce the key
assumptions on the Gram matrix that are needed to guarantee nice statisti-
cal properties of Lasso and Dantzig selector. Under the sparsity scenario we
are typically interested in the case where M > n, and even M À n. Then
the matrix Ψn is degenerate, which can be written as

min
δ∈RM :δ 6=0

(δT Ψnδ)1/2

|δ|2 ≡ min
δ∈RM :δ 6=0

|Xδ|2√
n|δ|2 = 0.

Clearly, ordinary least squares does not work in this case, since it requires
positive definiteness of Ψn, i.e.

(3.1) min
δ∈RM :δ 6=0

|Xδ|2√
n|δ|2 > 0.

It turns out that the Lasso and Dantzig selector require much weaker as-
sumptions: the minimum in (3.1) can be replaced by the minimum over a
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6 BICKEL ET AL.

restricted set of vectors, and the norm |δ|2 in the denominator of the con-
dition can be replaced by the `2 norm of only a part of δ.

One of the properties of both the Lasso and the Dantzig selector is that,
for the linear regression model, both δ = β̂L − β and δ = β̂D − β satisfy,
with high probability,

(3.2) |δJc
0
|1 ≤ c0|δJ0 |1

where J0 = J(β) is the set of non-zero coefficients of β. For the linear regres-
sion model, the vector of Dantzig residuals δ satisfies (3.2) with probability
1 if c0 = 1, cf. (B.9). A similar inequality holds for the vector of Lasso resid-
uals δ = β̂L − β, but this time with c0 = 3, and with a probability which is
not exactly equal to 1, cf. Corollary B.2.

Now, consider for example, the case where the elements of the Gram
matrix Ψn are close to those of a positive definite M ×M matrix Ψ. Denote
by εn

4
= maxi,j |(Ψn−Ψ)i,j | the maximal difference between the elements of

the two matrices. Then for any δ satisfying (3.2) we get

δT Ψnδ

|δ|22
=

δT Ψδ + δT (Ψn −Ψ)δ
|δ|22

≥ δT Ψδ

|δ|22
− εn|δ|21

|δ|22
≥ δT Ψδ

|δ|22
− εn

(
(1 + c0)|δJ0 |1

|δJ0 |2

)2

≥ δT Ψδ

|δ|22
− εn(1 + c0)2|J0|.

(3.3)

Thus, for δ satisfying (3.2) which are the vectors that we have in mind, and
for εn|J0| small enough, the LHS of (3.3) is bounded away from 0. It means
that we have a kind of “restricted” positive definiteness which is valid only
for the vectors satisfying (3.2). This suggests the following conditions that
will suffice for the main argument of the paper. We refer to these conditions
as restricted eigenvalue (RE) assumptions.

Our first RE assumption is:

Assumption RE(s, c0): For some integer s such that 1 ≤ s ≤ M , and a
positive number c0 the following condition holds:

κ(s, c0)
4
= min

J0⊆{1,...,M},
|J0|≤s

min
δ 6=0,

|δJc
0
|1≤c0|δJ0

|1

|Xδ|2√
n|δJ0 |2

> 0.
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LASSO AND DANTZIG SELECTOR 7

The integer s here plays the role of an upper bound on the sparsity M(β)
of a vector of coefficients β.

Note that if Assumption RE(s, c0) is satisfied with c0 ≥ 1, then

min{|Xδ|2 : M(δ) ≤ 2s, δ 6= 0} > 0.

In words, the square submatrices of size ≤ 2s of the Gram matrix are neces-
sarily positive definite. Indeed, suppose that for some δ 6= 0 we have simulta-
neously M(δ) ≤ 2s and Xδ = 0. Partition J(δ) in two sets: J(δ) = J0 ∪ J1,
such that |Ji| ≤ s, i = 0, 1. Without loss of generality, suppose that |δJ1 |1 ≤
|δJ0 |1. Since, clearly, |δJ1 |1 = |δJc

0
|1 and c0 ≥ 1, we have |δJc

0
|1 ≤ c0|δJ0 |1.

Hence κ(s, c0) = 0, a contradiction.
To introduce the second assumption we need some more notation. For

integers s,m such that 1 ≤ s ≤ M/2 and m ≥ s, s + m ≤ M , a vector
δ ∈ RM and a set of indices J0 ⊆ {1, . . . , M} with |J0| ≤ s, denote by Jm

the subset of {1, . . . , M} corresponding to the m largest in absolute value

coordinates of δ outside of J0 and define J0m
4
= J0 ∪ Jm.

Assumption RE(s,m, c0):

κ(s,m, c0)
4
= min

J0⊆{1,...,M},
|J0|≤s

min
δ 6=0,

|δJc
0
|1≤c0|δJ0

|1

|Xδ|2√
n|δJ0m |2

> 0.

Note that that only difference between the two assumptions is between
the denominators, and κ(s,m, c0) ≤ κ(s, c0). As written, for a fixed n,
the two assumptions are equivalent. However, asymptotically for large n,
Assumption RE(s, c0) is less restrictive than RE(s,m, c0), since the ratio
κ(s,m, c0)/κ(s, c0) may tend to 0 if s and m depend on n. For our bounds
on the prediction loss and on the `1 loss of the Lasso and Dantzig estima-
tors we will only need Assumption RE(s, c0). Assumption RE(s,m, c0) will
be required exclusively for the bounds on the `p loss with 1 < p ≤ 2.

Note also that Assumptions RE(s′, c0) and RE(s′,m, c0) imply Assump-
tions RE(s, c0) and RE(s,m, c0) respectively if s′ > s.

4. Discussion of the RE assumptions. There exist several simple
sufficient conditions for Assumptions RE(s, c0) and RE(s,m, c0) to hold.
Here we discuss some of them.

For a real number 1 ≤ u ≤ M we introduce the following quantities that
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8 BICKEL ET AL.

we will call restricted eigenvalues:

φmin(u) = min
x∈RM :1≤M(x)≤u

xT Ψnx

|x|22
,

φmax(u) = max
x∈RM :1≤M(x)≤u

xT Ψnx

|x|22
.

Denote by XJ the n×|J | submatrix of X obtained by removing from X the
columns that do not correspond to the indices in J , and for 1 ≤ m,m′ ≤ M
introduce the following quantities called restricted correlations:

θm1,m2 = max{ 1
n

cT
1 XT

J1
XJ2c2 : J1∩J2 = ∅, |Ji| ≤ mi, ci ∈ RJi , |ci|2 ≤ 1, i = 1, 2}

In Lemma 4.1 below we argue that a sufficient condition for RE(s, c0) and
RE(s, s, c0) to hold is given, for example, by the following assumption on
the Gram matrix.

Assumption 1: Assume
φmin(2s) > c0θs,2s

for some integer 1 ≤ s ≤ M/2 and a constant c0 > 0.

This condition with c0 = 1 appeared in [7], in connection with the Dantzig
selector. Assumption 1 is more general: we can have here an arbitrary con-
stant c0 > 0 which will allow us to cover not only the Dantzig selector but
also the Lasso estimators, and to prove oracle inequalities for the prediction
loss when the model is nonparametric.

Our second sufficient condition for RE(s, c0) and RE(s, m, c0) does not
need bounds on correlations. Only bounds on the minimal and maximal
eigenvalues of “small” submatrices of the Gram matrix Ψn are involved.

Assumption 2: Assume

mφmin(s + m) > c2
0sφmax(m)

for some integers s,m such that 1 ≤ s ≤ M/2, m ≥ s, and s+m ≤ M ,
and a constat c0 > 0.

Assumption 2 can be viewed as a weakening of the condition on φmin in
[18]. Indeed, taking s + m = s log n (we assume w.l.o.g. that s log n is an
integer and n > 3) and assuming that φmax(·) is uniformly bounded by a
constant we get that Assumption 2 is equivalent to

φmin(s log n) > c/ log n
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LASSO AND DANTZIG SELECTOR 9

where c > 0 is a constant. The corresponding slightly stronger assumption
in [18] is stated in asymptotic form (for s = sn →∞):

lim inf
n

φmin(sn log n) > 0.

The following two constants are useful when Assumptions 1 and 2 are
considered:

κ1(s, c0) =
√

φmin(2s)
(

1− c0 θs,2s

φmin(2s)

)

and

κ2(s,m, c0) =
√

φmin(s + m)

(
1− c0

√
s φmax(m)

mφmin(s + m)

)
.

The next lemma shows that if Assumptions 1 or 2 are satisfied, then the
quadratic form xT Ψnx is positive definite on some restricted sets of vectors
x. The construction of the lemma is inspired by Candes and Tao [7] and
covers, in particular, the corresponding result in [7].

Lemma 4.1. Fix an integer 1 ≤ s ≤ M/2 and a constant c0 > 0.
(i) Let Assumption 1 be satisfied. Then Assumptions RE(s, c0) and RE(s, s, c0)

hold with κ(s, c0) = κ(s, s, c0) = κ1(s, c0). Moreover, for any subset J0 of
{1, . . . , M} with cardinality |J0| ≤ s, and any δ ∈ RM such that

(4.1) |δJc
0
|1 ≤ c0|δJ0 |1

we have
1√
n
|P0mXδ|2 ≥ κ1(s, c0)|δJ0m |2

where P0m is the projector in RM on the linear span of the columns of XJ0m.
(ii) Let Assumption 2 be satisfied. Then Assumptions RE(s, c0) and RE(s,m, c0)

hold with κ(s, c0) = κ(s,m, c0) = κ2(s,m, c0). Moreover, for any subset J0

of {1, . . . ,M} with cardinality |J0| ≤ s, and any δ ∈ RM such that (4.1)
holds we have

1√
n
|P0mXδ|2 ≥ κ2(s,m, c0)|δJ0m |2.

The proof of the lemma is given in Appendix A.
There exist other sufficient conditions for Assumptions RE(s, c0) and

RE(s, m, c0) to hold. We mention here three of them implying Assumption
RE(s, c0). The first one is the following [1].
Assumption 3. For an integer s such that 1 ≤ s ≤ M we have

φmin(s) > 2c0θs,1

√
s
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10 BICKEL ET AL.

where c0 > 0 is a constant.
To argue that Assumption 3 implies RE(s, c0) it suffices to remark that

1
n
|Xδ|22 ≥

1
n

δT
J0

XT
J0

XJ0δJ0 −
2
n
|δT

J0
XT

J0
XJc

0
δJc

0
|

≥ φmin(s)|δJ0 |22 −
2
n
|δT

J0
XT

J0
XJc

0
δJc

0
|

and, if (4.1) holds,

|δT
J0

XT
J0

XJc
0
δJc

0
|/n ≤ |δJc

0
|1 maxj∈Jc

0
|δT

J0
XT

J0
x(j)|/n

≤ θs,1|δJc
0
|1|δJ0 |2

≤ c0θs,1
√

s|δJ0 |22.

Another type of assumption related to “mutual coherence” [8] is discussed
in the connection to Lasso in [4, 5]. We state it here in a slightly different
form.
Assumption 4. For an integer s such that 1 ≤ s ≤ M we have

φmin(s) > 2c0θ1,1s

where c0 > 0 is a constant.
It is easy to see that Assumption 4 implies RE(s, c0). Indeed, if (4.1)

holds,

1
n
|Xδ|22 ≥

1
n

δT
J0

XT
J0

XJ0δJ0 − 2θ1,1|δJc
0
|1|δJ0 |1

≥ φmin(s)|δJ0 |22 − 2c0θ1,1|δJ0 |21
≥ (φmin(s)− 2c0θ1,1s)|δJ0 |22.

(4.2)

If all the diagonal elements of matrix XT X/n are equal to 1 (and thus θ1,1

coincides with the mutual coherence [8]), a simple sufficient condition for
Assumption RE(s, c0) to hold is given by
Assumption 5. For an integer s such that 1 ≤ s ≤ M we have

θ1,1 <
1

(1 + 2c0)s
.(4.3)

where c0 > 0 is a constant.
In fact, separating the diagonal and off-diagonal terms of the quadratic

form we get

δT
J0

XT
J0

XJ0δJ0/n ≥ |δJ0 |22 − θ1,1|δJ0 |21 ≥ |δJ0 |22(1− θ1,1s).
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LASSO AND DANTZIG SELECTOR 11

Combining this inequality with (4.2) we see that Assumption RE(s, c0) is
satisfied whenever (4.3) holds.

Unfortunately, Assumption RE(s, c0) has some weakness. Let, for exam-
ple, fj , j = 1, . . . , 2m− 1, be the Haar wavelet basis on [0, 1] (M = 2m) and
consider Zi = i/n, i = 1, . . . , n. If M À n, it is clear that φmin(1) = 0 since
there are functions fj on the highest resolution level whose supports (of
length M−1) contain no points Zi. So, none of the Assumptions 1 – 4 holds.
A less severe although similar situation is when we consider step functions:
fj(·) = I{·<j/M}. It is clear that φmin(2) = O(1/M), although sparse repre-
sentation in this basis is very natural. Intuitively, the problem arises only
because we include very high resolution components. Therefore, we may try
to restrict the set J0 in RE(s, c0) to low resolution components, which is
quite reasonable because the “true” or “interesting” vectors of parameters
β are often characterized by such J0. This idea is formalized in Section 6,
cf. Corollary 6.2, see also a remark after Theorem 7.2 in Section 7.

5. Approximate equivalence. In this section we prove a type of ap-
proximate equivalence between the Lasso and the Dantzig selector. It is ex-
pressed as closeness of the prediction losses ‖f̂D − f‖2

n and ‖f̂L − f‖2
n when

the number of non-zero components of the Lasso or the Dantzig selector is
small as compared to the sample size.

Theorem 5.1. Let Wi be independent N (0, σ2) random variables with
σ2 > 0. Fix n ≥ 1, M ≥ 2. Let Assumption RE(s, 1) be satisfied with
1 ≤ s ≤ M . Consider the Dantzig estimator f̂D defined by (2.5) – (2.4) with

r = Aσ

√
log M

n

where A > 2
√

2, and the Lasso estimator f̂L defined by (2.1) – (2.2) with
the same r.

If M(β̂L) ≤ s, then with probability at least 1−M1−A2/8 we have

∣∣∣‖f̂D − f‖2
n − ‖f̂L − f‖2

n

∣∣∣ ≤ 16A2M(β̂L)σ2

n

f2
max

κ2(s, 1)
log M.(5.1)

Note that the RHS of (5.1) is bounded by a product of three factors
(and a numerical constant which, unfortunately, equals at least 128). The
first factor, M(β̂L)σ2/n ≤ sσ2/n, corresponds to the error rate for pre-
diction in regression with s parameters. The two other factors, log M and
f2
max/κ2(s, 1), can be regarded as a price to pay for the large number of
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12 BICKEL ET AL.

regressors. If the Gram matrix Ψn equals the identity matrix (the white
noise model), then there is only the log M factor. In the general case, there
is another factor, f2

max/κ2(s, 1) representing the extent to which the Gram
matrix is ill-posed for estimation of sparse vectors.

We also have the following result that we state for simplicity under the
assumption that ‖fj‖n = 1, j = 1, . . . , M . It gives a bound in the spirit of
Theorem 5.1 but with M(β̂D) rather than M(β̂L) on the right hand side.

Theorem 5.2. Let the assumptions of Theorem 5.1 hold, but with RE(s, 5)
in place of RE(s, 1), and let ‖fj‖n = 1, j = 1, . . . , M . If M(β̂D) ≤ s, then
with probability at least 1−M1−A2/8 we have

‖f̂L − f‖2
n ≤ 10‖f̂D − f‖2

n + 81A2M(β̂D)σ2

n

log M

κ2(s, 5)
.(5.2)

Remark. The approximate equivalence is essentially that of the rates as
Theorem 5.1 exhibits. A statement free of M(β) holds for linear regression,
see discussion after Theorem 7.2 and Theorem 7.3 below.

6. Oracle inequalities for prediction loss. Here we prove sparsity
oracle inequalities for the prediction loss of Lasso and Dantzig estimators.
These inequalities allow us to bound the difference between the prediction
errors of the estimators and the best sparse approximation of the regression
function (by an oracle that knows the truth, but is constrained by sparsity).
The results of this section, together with those of Section 5, show that the
distance between the prediction losses of Dantzig and Lasso estimators is of
the same order as the distances between them and their oracle approxima-
tions.

A general discussion of sparsity oracle inequalities can be found in [23].
Such inequalities have been recently obtained for the Lasso type estimators
in a number of settings [2–6, 14, 25]. In particular, the regression model with
fixed design that we study here is considered in [2–4]. The assumptions on
the Gram matrix Ψn in [2–4] are more restrictive than ours: in those papers
either Ψn is positive definite or a mutual coherence condition similar to (4.3)
is imposed.

Theorem 6.1. Let Wi be independent N (0, σ2) random variables with
σ2 > 0. Fix some ε > 0 and integers n ≥ 1, M ≥ 2, 1 ≤ s ≤ M . Let
Assumption RE(s, 3 + 4/ε) be satisfied. Consider the Lasso estimator f̂L

defined by (2.1) – (2.2) with

r = Aσ

√
log M

n
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for some A > 2
√

2. Then, with probability at least 1−M1−A2/8, we have

‖f̂L − f‖2
n

≤ (1 + ε) inf
β∈RM :
M(β)≤s

{
‖fβ − f‖2

n +
C(ε)f2

maxA
2σ2

κ2(s, 3 + 4/ε)
M(β) log M

n

}
(6.1)

where C(ε) > 0 is a constant depending only on ε.

We now state as a corollary a softer version of Theorem 6.1 that can be
used to eliminate the pathologies mentioned at the end of Section 4. For this
purpose we define

Js,γ,c0 =
{
J0 ⊂ {1, . . . , M} : |J0| ≤ s and min

|δJc
0
|≤c0|δJ0

|
|Xδ|2√
n|δJ0 |2

≥ γ
}

where γ > 0 is a constant, and set

Λs,γ,c0 = {β : J(β) ∈ Js,γ,c0}.

In similar way, we define Js,γ,m,c0 and Λs,γ,m,c0 corresponding to Assumption
RE(s, m, c0).

Corollary 6.2. Let Wi, s and the Lasso estimator f̂L be the same as
in Theorem 6.1. Then, for all n ≥ 1, ε > 0, and γ > 0, with probability at
least 1−M1−A2/8 we have

‖f̂L − f‖2
n

≤ (1 + ε) inf
β∈Λ̄s,γ,ε

{
‖fβ − f‖2

n +
C(ε)f2

maxA
2σ2

γ2

(M(β) log M

n

)}

where Λ̄s,γ,ε = {β ∈ Λs,γ,3+4/ε : M(β) ≤ s}.

To obtain this corollary it suffices to observe that the proof of Theorem 6.1
goes through if we drop Assumption RE(s, 3 + 4/ε) but we assume instead
that β ∈ Λs,γ,3+4/ε and we replace κ(s, 3 + 4/ε) by γ.

We would like now to get a sparsity oracle inequality similar to that of
Theorem 6.1 for the Dantzig estimator f̂D. We will need a mild additional
assumption on f . This is due to the fact that not every β ∈ RM obeys to
the Dantzig constraint, and thus we cannot assure the key relation (B.9) for
all β ∈ RM . One possibility would be to prove inequality as (6.1) where the
infimum on the right hand side is taken over β satisfying not only M(β) ≤ s

imsart-aos ver. 2007/02/20 file: BRT_LDrev.tex date: May 7, 2008



14 BICKEL ET AL.

but also the Dantzig constraint. However, this seems not very intuitive since
we cannot guarantee that the corresponding fβ gives a good approximation
of the unknown function f . Therefore we choose another approach (cf. [5]):
we consider f satisfying the weak sparsity property relative to the dictionary
f1, . . . , fM . That is, we assume that there exist an integer s and constant
C0 < ∞ such that the set

(6.2) Λs =

{
β ∈ RM : M(β) ≤ s, ‖fβ − f‖2

n ≤
C0f

2
maxr

2

κ2(s, 3 + 4/ε)
M(β)

}

is non-empty. The second inequality in (6.2) says that the “bias” term ‖fβ−
f‖2

n cannot be much larger than the “variance term” ∼ f2
maxr

2κ−2M(β), cf.
(6.1). Weak sparsity is milder than the sparsity property in the usual sense:
the latter means that f admits the exact representation f = fβ∗ for some
β∗ ∈ RM , with hopefully small M(β∗) = s.

Proposition 6.3. Let Wi be independent N (0, σ2) random variables
with σ2 > 0. Fix some ε > 0 and integers n ≥ 1, M ≥ 2. Let f obey
the weak sparsity assumption for some C0 < ∞ and some s such that 1 ≤
smax{C1(ε), 1} ≤ M where

C1(ε) = 4 [(1 + ε)C0 + C(ε)]
φmaxf

2
max

κ2f2
min

and C(ε) is the constant in Theorem 6.1. Suppose further that Assumption
RE(smax{C1(ε), 1}, 3+4/ε) is satisfied. Consider the Dantzig estimator f̂D

defined by (2.5) – (2.4) with

r = Aσ

√
log M

n

and A > 2
√

2. Then, with probability at least 1−M1−A2/8, we have

‖f̂D − f‖2
n

≤ (1 + ε) inf
β∈RM :M(β)=s

‖fβ − f‖2
n + C2(ε)

f2
maxA

2σ2

κ2
0

(
s log M

n

)
.

(6.3)

Here C2(ε) = 16C1(ε) + C(ε) and κ0 = κ(max(C1(ε), 1)s, 3 + 4/ε).

Note that the sparsity oracle inequality (6.3) is slightly weaker than the
analogous inequality (6.1) for the Lasso: we have here infβ∈RM :M(β)=s in-
stead of infβ∈RM :M(β)≤s in (6.1).
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LASSO AND DANTZIG SELECTOR 15

7. Special case: parametric estimation in linear regression. In
this section we assume that the vector of observations y = (Y1, . . . , Yn)T is
of the form

y = Xβ∗ + w(7.1)

where X is an n×M deterministic matrix, β∗ ∈ RM and w = (W1, . . . ,Wn)T .
We consider dimension M that can be of order n and even much larger.

Then β∗ is, in general, not uniquely defined. For M > n, if (7.1) is satisfied
for β∗ = β0 there exists an affine space U = {β∗ : Xβ∗ = Xβ0} of vectors
satisfying (7.1). The results of this section are valid for any β∗ such that
(7.1) holds. However, we will assume that Assumption RE(s, c0) holds with
c0 ≥ 1 and that M(β∗) = s. Then the set U ∩ {β∗ : M(β∗) = s} reduces
to a single element (cf. Remark 2 at the end of this section). In this sense,
there is a unique sparse solution of (7.1).

Our goal in this section, unlike that of the previous ones, is to estimate
both Xβ∗ for the purpose of prediction and β∗ itself for purpose of model
selection. We will see that meaningful results are obtained when the sparsity
index M(β∗) is small.

It will be assumed throughout this section that the diagonal elements of
the Gram matrix Ψn = XT X/n are all equal to 1 (this is equivalent to the
condition ‖fj‖n = 1, j = 1, . . . , M, in the notation of previous sections).
Then the Lasso estimator of β∗ in (7.1) is defined by

β̂L = arg min
β∈RM

{
1
n
|y −Xβ|22 + 2r|β|1

}
.(7.2)

The correspondence between the notation here and that of the previous
sections is the following:

‖fβ‖2
n = |X β|22/n, ‖fβ−f‖2

n = |X (β−β∗)|22/n, ‖f̂L−f‖2
n = |X (β̂L−β∗)|22/n.

The Dantzig selector for linear model (7.1) is defined by

β̂D = arg min
β∈Λ

|β|1(7.3)

where
Λ =

{
β ∈ RM :

∣∣∣ 1
n

XT (y −Xβ)
∣∣∣
∞
≤ r

}

is the set of all β satisfying the Dantzig constraint.
We first get bounds on the rate of convergence of Dantzig selector.
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16 BICKEL ET AL.

Theorem 7.1. Let Wi be independent N (0, σ2) random variables with
σ2 > 0, let all the diagonal elements of the matrix XT X/n be equal to 1,
and M(β∗) = s, where 1 ≤ s ≤ M , n ≥ 1, M ≥ 2. Let Assumption RE(s, 1)
be satisfied. Consider the Dantzig selector β̂D defined by (7.3) with

r = Aσ

√
log M

n

and A >
√

2. Then, with probability at least 1−M1−A2/2, we have

|β̂D − β∗|1 ≤ 8A

κ2(s, 1)
σ s

√
log M

n
,(7.4)

|X(β̂D − β∗)|22 ≤
16A2

κ2(s, 1)
σ2 s log M.(7.5)

In addition, if Assumption RE(s, m, 1) is satisfied, then with the same prob-
ability as above, simultaneously for all 1 < p ≤ 2 we have

|β̂D − β∗|pp ≤ 2p−18
{

1 +
√

s

m

}2(p−1)

s


 Aσ

κ2(s, m, 1)

√
log M

n




p

.(7.6)

Note that, since s ≤ m, the factor in curly brackets in (7.6) is bounded by
a constant independent of s and m. Under Assumption 1 in Section 4 with
c0 = 1 (which is less general than RE(s, s, 1), cf. Lemma 4.1(i)) a bound of
the form (7.6) for the case p = 2 is established by Candes and Tao [7].

Bounds on the rate of convergence of the Lasso selector are quite similar
to those obtained in Theorem 7.1. They are given by the following result.

Theorem 7.2. Let Wi be independent N (0, σ2) random variables with
σ2 > 0. Let all the diagonal elements of the matrix XT X/n be equal to 1,
and M(β∗) = s where 1 ≤ s ≤ M , n ≥ 1, M ≥ 2. Let Assumption RE(s, 3)
be satisfied. Consider the Lasso estimator β̂L defined by (7.2) with

r = Aσ

√
log M

n
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and A > 2
√

2. Then, with probability at least 1−M1−A2/8, we have

|β̂L − β∗|1 ≤ 16A

κ2(s, 3)
σ s

√
log M

n
,(7.7)

|X(β̂L − β∗)|22 ≤
16A2

κ2(s, 3)
σ2 s log M,(7.8)

M(β̂L) ≤ 64φmax

κ2(s, 3)
s.(7.9)

In addition, if Assumption RE(s, m, 3) is satisfied, then with the same prob-
ability as above, simultaneously for all 1 < p ≤ 2 we have

|β̂L − β∗|pp ≤ 16
{

1 + 3
√

s

m

}2(p−1)

s


 Aσ

κ2(s,m, 3)

√
log M

n




p

.(7.10)

Inequalities of the form similar to (7.7) and (7.8) can be deduced from
the results of [3] under more restrictive conditions on the Gram matrix (the
mutual coherence assumption, cf. Assumption 5 of Section 4).

Assumptions RE(s, 1) respectively RE(s, 3) can be dropped in Theorem
7.1 and 7.2 if we assume β∗ ∈ Λs,γ,c0 with c0 = 1 or c0 = 3 as appropri-
ate. Then (7.4), (7.5) or respectively (7.7), (7.8) hold with κ = γ. This is
analogous to Corollary 6.2. Similarly (7.6) and (7.10) hold with κ = γ if
β∗ ∈ Λs,γ,m,c0 with c0 = 1 or c0 = 3 as appropriate.

Observe that combining Theorems 7.1 and 7.2 we can immediately get
bounds for the differences between Lasso and Dantzig selector |β̂L − β̂D|pp
and |X(β̂L − β̂D)|22. Such bounds have the same form as those of Theorems
7.1 and 7.2, up to numerical constants. Another way of estimating these
differences follows directly from the proof of Theorem 7.1. It suffices to
observe that the only property of β∗ used in that proof is the fact that β∗

satisfies the Dantzig constraint, which is also true for the Lasso solution β̂L.
So, we can replace β∗ by β̂L and s by M(β̂L) everywhere in Theorem 7.1.
Generalizing a bit more, we easily derive the following fact.

Theorem 7.3. The result of Theorem 7.1 remains valid if we replace
there |β̂D − β∗|pp by sup{|β̂D − β|pp : β ∈ Λ,M(β) = s} for 1 ≤ p ≤ 2 and
|X(β̂D − β∗)|22 by sup{|X(β̂D − β)|22 : β ∈ Λ,M(β) = s} respectively. Here
Λ is the set of all vectors satisfying the Dantzig constraint.

Remarks.
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18 BICKEL ET AL.

1. Theorems 7.1 and 7.2 only give non-asymptotic upper bounds on the loss,
with some probability and under some conditions. The probability depends
on M and the conditions depend on n and M : recall that Assumptions
RE(s, c0) and RE(s,m, c0) are imposed on the n×M matrix X. To deduce
asymptotic convergence (as n → ∞ and/or as M → ∞) from Theorems
7.1 and 7.2 we would need some very strong additional properties, such
as simultaneous validity of Assumption RE(s, c0) or RE(s,m, c0) (with one
and the same constant κ) for infinitely many n and M .

2. Note that Assumptions RE(s, c0) or RE(s,m, c0) do not imply identifiabil-
ity of β∗ in the linear model (7.1). However, the vector β∗ appearing in the
statements of Theorems 7.1 and 7.2 is uniquely defined because we suppose
there in addition that M(β∗) = s and c0 ≥ 1. Indeed, if there exists a β′

such that Xβ′ = Xβ∗, and M(β′) = s then in view of assumption RE(s, c0)
with c0 ≥ 1 we have necessarily β∗ = β′ (cf. discussion following the def-
inition of RE(s, c0)). On the other hand, Theorem 7.3 applies to certain
values of β that do not come from the model (7.1) at all.

3. For the smallest value of A (which is A = 2
√

2) the constants in the
bound of Theorem 7.2 for the Lasso are larger than the corresponding
numerical constants for the Dantzig selector given in Theorem 7.1, again for
the smallest admissible value A =

√
2. On the contrary, the Dantzig selector

has certain defects as compared to Lasso when the model is nonparametric,
as discussed in Section 6. In particular, to obtain sparsity oracle inequalities
for the Dantzig selector we need some restrictions on f , for example the
weak sparsity property. On the other hand, the sparsity oracle inequality
(6.1) for the Lasso is valid with no restriction on f .

4. The proofs of Theorems 7.1 and 7.2 differ mainly in the value of the tun-
ing constant: c0 = 1 in Theorem 7.1 and c0 = 3 in Theorem 7.2. Note that
since the Lasso solution satisfies the Dantzig constraint we could have ob-
tained a result similar to Theorem 7.2, though with less accurate numerical
constants, by simply conducting the proof of Theorem 7.1 with c0 = 3.
However, we act differently: we deduce (B.30) directly from (B.1), and not
from (B.25). This is done only for the sake of improving the constants: in
fact, using (B.25) with c0 = 3 would yield (B.30) with the doubled constant
on the right hand side.

5. For the Dantzig selector in the linear regression model and under Assump-
tions 1 or 2 some further improvement of constants in the `p bounds for
the coefficients can be achieved by applying the general version of Lemma
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4.1 with the projector P0m inside. We do not pursue this issue here.

6. All our results are stated with probabilities at least 1 −M1−A2/2 or 1 −
M1−A2/8. These are reasonable (but not the most accurate) lower bounds
on the probabilities P(B) and P(A) respectively: we have chosen them just
for readability. Inspection of (B.4) shows that they can be refined to 1 −
2MΦ(A

√
log M) and 1− 2MΦ(A

√
log M/2) respectively where Φ(·) is the

standard normal c.d.f.

APPENDIX A

Proof of Lemma 4.1. Consider a partition Jc
0 into subsets of size m,

with the last subset of size ≤ m: Jc
0 = ∪K

k=1Jk where K ≥ 1, |Jk| = m
for k = 1, . . . ,K − 1 and |JK | ≤ m, such that Jk is the set of indices
corresponding to m largest in absolute value coordinates of δ outside ∪k−1

j=1Jj

(for k < K) and JK is the remaining subset. We have

|P0mXδ|2 ≥ |P0mXδJ0m |2 −
∣∣∣

K∑

k=2

P0mXδJk

∣∣∣
2

= |XδJ0m |2 −
∣∣∣

K∑

k=2

P0mXδJk

∣∣∣
2

≥ |XδJ0m |2 −
K∑

k=2

|P0mXδJk
|2.

(A.1)

We will prove first part (ii) of the lemma. Since for k ≥ 1 the vector δJk
has

only m non-zero components we obtain

1√
n
|P0mXδJk

|2 ≤ 1√
n
|XδJk

|2 ≤
√

φmax(m) |δJk
|2.(A.2)

Next, as in [7], we observe that |δJk+1
|2 ≤ |δJk

|1/
√

m, k = 1, . . . , K− 1, and
therefore

K∑

k=2

|δJk
|2 ≤

|δJc
0
|1√

m
≤ c0|δJ0 |1√

m
≤ c0

√
s

m
|δJ0 |2 ≤ c0

√
s

m
|δJ0m |2(A.3)

where we used (4.1). From (A.1) – (A.3) we find

1√
n
|Xδ|2 ≥ 1√

n
|XδJ0m |2 − c0

√
φmax(m)

√
s

m
|δJ0m |2

≥
(√

φmin(s + m)− c0

√
φmax(m)

√
s

m

)
|δJ0m |2
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which proves part (ii) of the lemma.
The proof of part (i) is analogous. The only difference is that we replace

in the above argument m by s and instead of (A.2) we use the following
bound (cf. [7]):

1√
n
|P0mXδJk

|2 ≤ θs,2s√
φmin(2s)

|δJk
|2.

APPENDIX B: TWO LEMMATA AND THE PROOFS OF THE
RESULTS

Lemma B.1. Fix M ≥ 2 and n ≥ 1. Let Wi be independent N (0, σ2)
random variables with σ2 > 0 and let f̂L be the Lasso estimator defined by
(2.2) with

r = Aσ

√
log M

n
,

for some A > 2
√

2. Then, with probability at least 1 − M1−A2/8 we have
simultaneously for all β ∈ RM :

‖f̂L − f‖2
n + r

M∑

j=1

‖fj‖n|β̂j,L − βj |

≤ ‖fβ − f‖2
n + 4r

∑

j∈J(β)

‖fj‖n|β̂j,L − βj |

≤ ‖fβ − f‖2
n + 4r

√
M(β)

√ ∑

j∈J(β)

‖fj‖2
n|β̂j,L − βj |2,

(B.1)

and
∣∣∣ 1
n

XT (f −Xβ̂L)
∣∣∣
∞
≤ 3rfmax/2.(B.2)

Furthermore, with the same probability

M(β̂L) ≤ 4φmaxf
−2
min

(
‖f̂L − f‖2

n/r2
)

(B.3)

where φmax denotes the maximal eigenvalue of the matrix XT X/n.

Proof of Lemma B.1. The result (B.1) is essentially Lemma 1 from
[5]. For completeness, we give its proof. Set rn,j = r‖fj‖n. By definition,

Ŝ(β̂L) + 2
M∑

j=1

rn,j |β̂j,L| ≤ Ŝ(β) + 2
M∑

j=1

rn,j |βj |
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for all β ∈ RM , which is equivalent to

‖f̂L − f‖2
n + 2

M∑

j=1

rn,j |β̂j,L| ≤ ‖fβ − f‖2
n + 2

M∑

j=1

rn,j |βj |+ 2
n

n∑

i=1

Wi(f̂L − fβ)(Zi).

Define the random variables Vj = n−1 ∑n
i=1 fj(Zi)Wi, 1 ≤ j ≤ M, and the

event

A =
M⋂

j=1

{2|Vj | ≤ rn,j} .

Using an elementary bound on the tails of Gaussian disribution we find that
the probability of the complementary event Ac satisfies

P{Ac} ≤
M∑

j=1

P{√n|Vj | >
√

nrn,j/2} ≤ M P{|η| ≥ r
√

n/(2σ)}

≤ M exp

(
−nr2

8σ2

)
= M exp

(
−A2 log M

8

)
= M1−A2/8

(B.4)

where η ∼ N (0, 1). On the event A we have

‖f̂L − f‖2
n ≤ ‖fβ − f‖2

n +
M∑

j=1

rn,j |β̂j,L − βj |+
M∑

j=1

2rn,j |βj | −
M∑

j=1

2rn,j |β̂j,L|.

Adding the term
∑M

j=1 rn,j |β̂j,L − βj | to both sides of this inequality yields,
on A,

‖f̂L − f‖2
n +

M∑

j=1

rn,j |β̂j,L − βj | ≤ ‖fβ − f‖2
n + 2

∑M
j=1 rn,j

(
|β̂j,L − βj |+ |βj | − |β̂j,L|

)
.

Now, |β̂j,L − βj |+ |βj | − |β̂j,L| = 0 for j 6∈ J(β), so that on A we get (B.1).
To prove (B.2) it suffices to note that on A we have

∣∣∣ 1
n

D−1/2XT W
∣∣∣
∞
≤ r/2.(B.5)

Now, y = f + w, and (B.2) follows from (2.3), (B.5).
We finally prove (B.3). The necessary and sufficient condition for β̂L to

be the Lasso solution can be written in the form

1
n
xT

(j)(y −Xβ̂L) = r‖fj‖n sign(β̂j,L) if β̂j,L 6= 0,

∣∣∣ 1
n
xT

(j)(y −Xβ̂L)
∣∣∣ ≤ r‖fj‖n if β̂j,L = 0

(B.6)
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where x(j) denotes the jth column of X, j = 1, . . . , M . Next, (B.5) yields
that on A we have

∣∣∣ 1
n
xT

(j)W
∣∣∣ ≤ r‖fj‖n/2, j = 1, . . . , M.(B.7)

Combining (B.6) and (B.7) we get
∣∣∣ 1
n
xT

(j)(f −Xβ̂L)
∣∣∣ ≥ r‖fj‖n/2 if β̂j,L 6= 0.(B.8)

Therefore,

1
n2

(f −Xβ̂L)T XXT (f −Xβ̂L) = 1
n2

∑M
j=1

(
xT

(j)(f −Xβ̂L)
)2

≥ 1
n2

∑
j: β̂j,L 6=0

(
xT

(j)(f −Xβ̂L)
)2

= M(β̂L)r2‖fj‖2
n/4 ≥ f2

minM(β̂L)r2/4.

Since the matrices XT X/n and XXT /n have the same maximal eigenvalues,

1
n2

(f −Xβ̂L)T XXT (f −Xβ̂L) ≤ φmax

n
|f −Xβ̂L|22 = φmax‖f − f̂L‖2

n

and we deduce (B.3) from the last two displays.

Corollary B.2. Let the assumptions of Lemma B.1 be satisfied and
‖fj‖n = 1, j = 1, . . . ,M . Consider the linear regression model y = Xβ + w.
Then, with probability at least 1−M1−A2/8, we have

|δJc
0
|1 ≤ 3|δJ0 |1

where J0 = J(β) is the set of non-zero coefficients of β and δ = β̂L − β.

Proof. Use the first inequality in (B.1) and the fact that f = fβ for the
linear regression model.

Lemma B.3. Let β ∈ RM satisfy the Dantzig constraint
∣∣∣ 1
n

D−1/2XT (y −Xβ)
∣∣∣
∞
≤ r

and set δ = β̂D − β, J0 = J(β). Then

|δJc
0
|1 ≤ |δJ0 |1.(B.9)

Further, let the assumptions of Lemma B.1 be satisfied with A >
√

2. Then
with probability of at least 1−M1−A2/2 we have

∣∣∣ 1
n

XT (f −Xβ̂D)
∣∣∣
∞
≤ 2rfmax.(B.10)
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Proof of Lemma B.3. Inequality(B.9) follows immediately from the
definition of Dantzig selector, cf. [7]. To prove (B.10) consider the event

B =
{∣∣∣ 1

n
D−1/2XT W

∣∣∣
∞
≤ r

}
=

M⋂

j=1

{|Vj | ≤ rn,j} .

Analogously to (B.4), P{Bc} ≤ M1−A2/2. On the other hand, y = f + w
and using the definition of Dantzig selector it is easy to see that (B.10) is
satisfied on B.

Proof of Theorem 5.1. Set δ = β̂L − β̂D. We have

1
n
|f −Xβ̂L|22 = 1

n |f −Xβ̂D|22 − 2
nδT XT (f −Xβ̂D) + 1

n |Xδ|22.

This and (B.10) yield

‖f̂D − f‖2
n ≤ ‖f̂L − f‖2

n + 2|δ|1
∣∣∣ 1
n

XT (f −Xβ̂D)
∣∣∣
∞
− 1

n
|Xδ|22

≤ ‖f̂L − f‖2
n + 4fmaxr|δ|1 − 1

n
|Xδ|22

(B.11)

where the last inequality holds with probability at least 1−M1−A2/2. Since
the Lasso solution β̂L satisfies the Dantzig constraint, we can apply Lemma
B.3 with β = β̂L, which yields

|δJc
0
|1 ≤ |δJ0 |1(B.12)

with J0 = J(β̂L). By Assumption RE(s, 1) we get

1√
n
|Xδ|2 ≥ κ|δJ0 |2(B.13)

where κ = κ(s, 1). Using (B.12) and (B.13) we obtain

|δ|1 ≤ 2|δJ0 |1 ≤ 2M1/2(β̂L) |δJ0 |2 ≤
2M1/2(β̂L)

κ
√

n
|Xδ|2.(B.14)

Finally, from (B.11) and (B.14) we get that, with probability at least 1 −
M1−A2/2,

‖f̂D − f‖2
n ≤ ‖f̂L − f‖2

n +
8fmaxrM1/2(β̂L)

κ
√

n
|Xδ|2 − 1

n
|Xδ|22

≤ ‖f̂L − f‖2
n +

16f2
maxr

2M(β̂L)
κ2

,

(B.15)
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where the RHS follows (B.2), (B.10), and another application of (B.14).
This proves one side of the inequality.

To show the other side of the bound on the difference, we act as in (B.11),
up to the inversion of roles of β̂L and β̂D, and we use (B.2). This yields that,
with probability at least 1−M1−A2/8,

‖f̂L − f‖2
n ≤ ‖f̂D − f‖2

n + 2|δ|1
∣∣∣ 1
n

XT (f −Xβ̂L)
∣∣∣
∞
− 1

n
|Xδ|22

≤ ‖f̂D − f‖2
n + 3fmaxr|δ|1 − 1

n
|Xδ|22.

(B.16)

This is analogous to (B.11). Paralleling now the proof leading to (B.15) we
obtain

‖f̂L − f‖2
n ≤ ‖f̂D − f‖2

n +
9f2

maxr
2M(β̂L)
κ2

.(B.17)

The theorem now follows from (B.15) and (B.17).

Proof of Theorem 5.2. Set again δ = β̂L − β̂D. We apply (B.1) with
β = β̂D which yields that, with probability at least 1−M1−A2/8,

|δ|1 ≤ 4|δJ0 |1 + ‖f̂D − f‖2
n/r(B.18)

where now J0 = J(β̂D). Consider the two cases: (i) ‖f̂D − f‖2
n > 2r|δJ0 |1

and (ii) ‖f̂D − f‖2
n ≤ 2r|δJ0 |1. In case (i) inequality (B.16) with fmax = 1

immediately implies

‖f̂L − f‖2
n ≤ 10‖f̂D − f‖2

n

and the theorem follows. In case (ii) we get from (B.18) that

|δ|1 ≤ 6|δJ0 |1
and thus |δJc

0
|1 ≤ 5|δJ0 |1. We can therefore apply Assumption RE(s, 5)

which yields, similarly to (B.14),

|δ|1 ≤ 6M1/2(β̂D) |δJ0 |2 ≤
6M1/2(β̂D)

κ
√

n
|Xδ|2(B.19)

where κ = κ(s, 5). Plugging (B.19) into (B.16) we finally get that, in case
(ii),

‖f̂L − f‖2
n ≤ ‖f̂D − f‖2

n +
18 rM1/2(β̂D)

κ
√

n
|Xδ|2 − 1

n
|Xδ|22

≤ ‖f̂D − f‖2
n +

81 r2M(β̂D)
κ2

.

(B.20)
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Proof of Theorem 6.1. Fix an arbitrary β ∈ RM with M(β) ≤ s. Set
δ = D1/2(β̂L − β), J0 = J(β). On the event A, we get from the first line in
(B.1) that

‖f̂L − f‖2
n + r|δ|1 ≤ ‖fβ − f‖2

n + 4r
∑

j∈J0

‖fj‖n|β̂j,L − βj |

= ‖fβ − f‖2
n + 4r|δJ0 |1,

(B.21)

and from the second line in (B.1) that

‖f̂L − f‖2
n ≤ ‖fβ − f‖2

n + 4r
√
M(β) |δJ0 |2.(B.22)

Consider separately the cases where

4r|δJ0 |1 ≤ ε‖fβ − f‖2
n(B.23)

and

ε‖fβ − f‖2
n < 4r|δJ0 |1.(B.24)

In case (B.23), the result of the theorem trivially follows from (B.21). So, we
will only consider the case (B.24). All the subsequent inequalities are valid
on the event A ∩ A1 where A1 is defined by (B.24). On this event we get
from (B.21) that

|δ|1 ≤ 4(1 + 1/ε)|δJ0 |1
which implies |δJc

0
|1 ≤ (3 + 4/ε)|δJ0 |1. We now use Assumption RE(s, 3 +

4/ε). This yields

κ2|δJ0 |22 ≤
1
n
|Xδ|22 =

1
n

(β̂K − β)T D1/2XT XD1/2(β̂L − β)

≤ f2
max

n
(β̂L − β)T XT X(β̂L − β) = f2

max‖f̂L − fβ‖2
n

where κ = κ(s, 3 + 4/ε). Combining this with (B.22) we find

‖f̂L − f‖2
n ≤ ‖fβ − f‖2

n + 4rfmaxκ
−1

√
M(β) ‖f̂L − fβ‖n

≤ ‖fβ − f‖2
n + 4rfmaxκ

−1
√
M(β)

(
‖f̂L − f‖n + ‖fβ − f‖n

)
.

This inequality is of the same form as (A.4) in [4]. A standard decoupling
argument as in [4] using inequality 2xy ≤ x2/b + by2 with b > 1, x =
rκ−1

√M(β), and y being either ‖f̂L − f‖n or ‖fβ − f‖n yields that

‖f̂L − f‖2
n ≤

b + 1
b− 1

‖fβ − f‖2
n +

8b2f2
max

(b− 1)κ2
r2M(β), ∀ b > 1.
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Taking b = 1 + 2/ε in the last display finishes the proof of the theorem.

Proof of Proposition 6.3. Due to the weak sparsity assumption there
exists β̄ ∈ RM with M(β̄) ≤ s such that ‖fβ̄ − f‖2

n ≤ C0f
2
maxr

2κ−2M(β̄)
where κ = κ(s, 3 + 4/ε) is the same as in Theorem 6.1. Using this to-
gether with Theorem 6.1 and (B.3) we obtain that, with probability at least
1−M1−A2/8,

M(β̂L) ≤ C1(ε)M(β̄) ≤ C1(ε)s.

This and Theorem 5.1 imply

‖f̂D − f‖2
n ≤ ‖f̂L − f‖2

n +
16C1(ε)f2

maxA
2σ2

κ2
0

(
s log M

n

)

where κ0 = κ(max(C1(ε), 1)s, 3 + 4/ε). Applying Theorem 6.1 once again
we get the result.

Proof of Theorem 7.1. Set δ = β̂D − β∗ and J0 = J(β∗). Using
Lemma B.3 with β = β∗ we get that on the event B (i.e., with proba-
bility at least 1 −M1−A2/2): (i) 1

n |XT Xδ|∞ ≤ 2r, and (ii) inequality (4.1)
holds with c0 = 1. Therefore, on B we have

1
n
|Xδ|22 =

1
n

δT XT Xδ

≤ 1
n

∣∣∣XT Xδ
∣∣∣
∞
|δ|1

≤ 2r
(
|δJ0 |1 + |δJc

0
|1

)

≤ 2(1 + c0)r|δJ0 |1
≤ 2(1 + c0)r

√
s |δJ0 |2 = 4r

√
s |δJ0 |2

(B.25)

since c0 = 1. From Assumption RE(s, 1) we get that

1
n
|Xδ|22 ≥ κ2|δJ0 |22

where κ = κ(s, 1). This and (B.25) yield that, on B,

1
n
|Xδ|22 ≤ 16r2s/κ2, |δJ0 |2 ≤ 4r

√
s/κ2.(B.26)

The first inequality in (B.26) implies (7.5). Next, (7.4) is straightforward
in view of the second inequality in (B.26) of the following relations (with
c0 = 1):

(B.27) |δ|1 = |δJ0 |1 + |δJc
0
|1 ≤ (1 + c0)|δJ0 |1 ≤ (1 + c0)

√
s|δJ0 |2
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that hold on B. It remains to prove (7.6). It is easy to see that the kth
largest in absolute value element of δJc

0
satisfies |δJc

0
|(k) ≤ |δJc

0
|1/k. Thus

|δJc
0m
|22 ≤ |δJc

0
|21

∑

k≥m+1

1
k2
≤ 1

m
|δJc

0
|21

and since (4.1) holds on B (with c0 = 1) we find

|δJc
0m
|2 ≤ c0|δJ0 |1√

m
≤ c0|δJ0 |2

√
s

m
≤ c0|δJ0m |2

√
s

m
.

Therefore, on B,

(B.28) |δ|2 ≤
(

1 + c0

√
s

m

)
|δJ0m |2.

On the other hand, it follows from (B.25) that

1
n
|Xδ|22 ≤ 4r

√
s |δJ0m |2.

Combining this inequality with Assumption RE(s,m, 1) we obtain that, on
B,

|δJ0m |2 ≤ 4r
√

s/κ2.

Recalling that c0 = 1 and applying the last inequality together with (B.28)
we get

(B.29) |δ|22 ≤ 16
(

1 + c0

√
s

m

)2

(r
√

s/κ2)2.

It remains to note that (7.6) is a direct consequence of (7.4) and (B.29).
This follows from the fact that inequalities

∑M
j=1 aj ≤ b1 and

∑M
j=1 a2

j ≤ b2

with aj ≥ 0 imply

M∑

j=1

ap
j =

M∑

j=1

a2−p
j a2p−2

j ≤



M∑

j=1

aj




2−p 


M∑

j=1

a2
j




p−1

≤ b2−p
1 bp−1

2 , ∀ 1 < p ≤ 2.

Proof of Theorem 7.2. Set δ = β̂L− β∗ and J0 = J(β∗). Using (B.1)
where we put β = β∗, rn,j ≡ r and ‖fβ − f‖n = 0 we get that, on the event
A,

1
n
|Xδ|22 ≤ 4r

√
s|δJ0 |2(B.30)
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and (4.1) holds with c0 = 3 on the same event. Thus, by Assumption RE(s, 3)
and the last inequality we obtain that, on A,

1
n
|Xδ|22 ≤ 16r2s/κ2, |δJ0 |2 ≤ 4r

√
s/κ2(B.31)

where κ = κ(s, 3). The first inequality here coincides with (7.8). Next, (7.9)
follows immediately from (B.3) and (7.8). To show (7.7) it suffices to note
that on the event A the relations (B.27) hold with c0 = 3, to apply the
second inequality in (B.31) and to use (B.4).

Finally, the proof of (7.10) follows exactly the same lines as that of (7.6):
the only difference is that one should set c0 = 3 in (B.28), (B.29), as well as
in the display preceding (B.28).
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