Chapter 8: The Credit Migration Approach to Measuring Credit Risk
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1.
Introduction

BIS 1998 is now in place, with internal models for market risk, both general and specific risk, implemented at the major G-10 banks, and used every day to report regulatory capital for the trading book. The next step for those banks is to extend the VaR framework for credit risk in the banking book.
 The current BIS requirements for “specific risk” are quite loose, and subject to broad interpretation (See Chapter 4). To qualify as an internal model for specific risk, the regulator should be convinced that “concentration risk”, “spread risk”,  “downgrade risk” and “default risk” are appropriately captured, the exact meaning of “appropriately” being left to the appreciation of both the bank and the regulator. The capital charge for specific risk is then the product of a multiplier, whose minimum value has currently been set to 4, times the sum of the VaR at the 99% confidence level for spread risk, downgrade risk and default risk over a 10 day horizon. 


There are several issues with this piecemeal approach to credit risk. First, spread risk is related to both market risk and credit risk. Spreads fluctuate either, because equilibrium conditions in capital markets change, which in turn affect credit spreads for all credit ratings, or because the credit quality of the obligor has improved or deteriorated, or because both conditions have occurred simultaneously. In addition, actual spreads depend on the liquidity of the market for corporate bonds. Downgrade risk is a pure credit spread risk. When the credit quality of an obligor deteriorates then the spread relative to the Treasury curve widens, and vice versa when the credit quality improves. Simply adding spread risk to downgrade risk may lead to double counting. In addition, the current regime incorporates the market risk component of spread risk to credit risk, for which the regulatory capital multiplier is 4 instead of 3. 

Second, this issue of disentangling the market risk and credit risk driven components in spread changes is further obscured by the fact that often market participants anticipate forthcoming credit events before they actually happen. Therefore, spreads already reflect the new credit status when the rating agencies effectively downgrade an obligor, or put him on “credit watch”. 

Third, default is just a special case of downgrade, when the credit quality has deteriorated to the point where the obligor cannot service anymore its debt obligations. An adequate credit VaR model should therefore address both migration risk, i.e. credit spread risk, and default risk in a consistent and integrated framework. 

Finally, changes in market and economic conditions, as reflected by changes in interest rates, the stock market indexes, exchange rates, unemployment rates, etc. may affect the overall profitability of firms. As a result, the exposures of the various counterparties to each obligor, as well as the probabilities of default and of migrating from one credit rating to another. In fact, the ultimate framework to analyze credit risk calls for the full integration of market risk and credit risk. So far no existing practical approach has yet reached this stage of sophistication.


During the last two years a number of initiatives have been made public. CreditMetrics from JP Morgan, first published and well publicized in 1997, is reviewed in the next section. CreditMetrics’ approach is based on credit migration analysis, i.e. the probability of moving from one credit quality to another, including default, within a given time horizon, which is often taken arbitrarily as one year. CreditMetrics models the full forward distribution of the values of any bond or loan portfolio, say one year forward, where the changes in values are related to credit migration only, while interest rates are assumed to evolve in a deterministic fashion. Credit-VaR of a portfolio is then derived in a similar fashion as for market risk. It is simply the distance from the mean of the quintile of the forward distribution, at the desired confidence level. This definition applies to all credit risk models, and is independent of the underlying theoretical framework.

Tom Wilson (1997a, 1997b) proposes an improvement to the credit migration approach by allowing default probabilities to vary with the credit cycle. They are function of macro-variables like, unemployment, the level of interest rates, the growth rate in the economy, government expenses, foreign exchange rates, which also drive, to a large extent, credit cycles. Tom Wilson methodology is reviewed in Section 3.

KMV Corporation, a firm specialized in credit risk analysis, has developed over the last few years a credit risk methodology, as well as an extensive database, to assess default probabilities and the loss distribution related to both default and migration risks. KMV’s methodology differs somewhat from CreditMetrics as it relies upon the “Expected Default Frequency”, or EDF, for each issuer, rather than upon the average historical transition frequencies produced by the rating agencies for each credit class. KMV is based on the asset value model originally proposed by Merton (1974), although it differentiates itself by the simplifying assumptions it requires in order to facilitate its implementation. How damaging are, in practice, these compromises to a satisfactory capture of the actual complexity of credit measurement stays an open issue. It will undoubtedly attract many new academic developments in the years to come. KMV’s methodology together with the contingent claim approach to measuring credit risk is reviewed in Chapter 9. 

At the end of 1997, Credit Suisse Financial Products (CSFP) released an actuarial science based approach, CreditRisk+, which only focuses on default. Chapter 10 examines briefly this model. CreditRisk+ assumes default for individual bonds, or loans, follows a Poisson process. Finally, what is known as the “reduced form” approach, and which is currently the foundation of credit derivatives pricing models, is reviewed in Chapter 11. These models allow one to derive the term structure of default probabilities from credit spreads, while assuming an exogenous and somewhat arbitrary recovery rate.


In Chapter 12, we compare CreditMetrics, KMV, CreditRisk+ and the BIS 1988 standardized approach for a benchmark portfolio composed of more than 1800 bonds, diversified across 13 currencies, covering North America, Europe and Asia, across various maturities, and across the whole spectrum of credit qualities. It appears that credit-VaR numbers according to these 3 models fall in a narrow range, with a ratio of 1.5 between the highest and the lowest values. In fact this result is not that surprising since the main risk factor is default. Although default is modeled differently, and in some instances like CreditRisk+ downgrade risk is ignored, when those models are run using consistent data they produce close results for the same portfolio. It is also interesting to note that when the portfolio contains a large proportion of bonds from OECD banks, then the standardized approach produces a lower capital charge than the credit models, since the standardized risk weights for those institution is very low, and not always reflect their actual credit risk exposure.  But if we assume that all bonds are investment grade corporate bonds, the credit models generate less capital charge than the charge based on the 1988 BIS Accord. 

It seems that any of these three models can be considered as a reasonable internal model to assess regulatory capital related to credit risk for straight bonds and loans without option features. All these models have in common that they assume deterministic interest rates. While, apparently, it is not too damaging for simple “plain vanilla” bonds and loans, these models are inappropriate to measure credit risk for swaps and other derivative products like loan commitments
 and credit derivatives. Indeed, for these instruments we need to propose an integrated framework that allows to derive, in a consistent manner, both the credit exposure and the loss distribution. Currently, none of the proposed models offers such an integrated approach. In order to measure credit risk of derivative securities, the next generation of credit models should allow at least for stochastic interest rates, and possibly default and migration probabilities which depend on the state of the economy.  In Figure 1 we present the record of defaults from 1985 to 1997.  It shows that in 1990 and 1991, when the world economies were in recession, the frequency of defaults had increased substantially. In recent years characterized by a sustained growth economy the default rate has declined dramatically.
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Figure 1: Corporate defaults worldwide (number of firms and the amount defaulted)

2. 
CreditMetrics Framework 
 

CreditMetrics is a methodology based on the estimation of the forward distribution of the changes in value of a portfolio of loan and bond type products at a given time horizon, usually one year. 
 The changes in value are related to the eventual migration in credit quality of the obligor, both up and downgrades, as well as default.


In comparison to market-VaR, credit-VaR poses three new challenging difficulties. First, the portfolio distribution is far from being normal. Second, measuring the portfolio effect due to credit diversification is much more complex than for market risk. Third, the information on loans is not as complete as for traded instruments like bonds.
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While it is reasonable to assume normality of the portfolio changes due to market risk, it is no longer the case for credit returns which are by nature highly skewed and fat-tailed as shown in Figure 2. Indeed, there is limited upside to be expected from any improvement in credit quality, while there is substantial downside consecutive to downgrading and default.  The percentile levels of the distribution cannot be any longer estimated from the mean and variance only. The calculation of VaR for credit risk requires simulating the full distribution of the changes in portfolio value.

Figure 2: Comparison of the probability distributions of credit returns and market returns

To measure the effect of portfolio diversification we need to estimate the correlations in credit quality changes for all pairs of obligors. But, these correlations are not directly observable. CreditMetrics bases its evaluation on the joint probability of asset returns, which itself results from strong simplifying assumptions on the capital structure of the obligor, and on the generating process for equity returns. This is clearly a key feature of CreditMetrics on which we will elaborate in the next sections.


Finally, CreditMetrics, as KMV and CreditRisk+, assume no market risk since forward values and exposures are simply derived from deterministic forward curves. The only uncertainty in CreditMetrics relates to credit migration, i.e. the process of moving up or down the credit spectrum. In other words, credit risk is analyzed independently of market risk, which is another limitation of this approach.

CreditMetrics risk measurement framework is best summarized by Figure 3 which shows the two main building blocks, i.e. “value-at-risk due to credit” for a single financial instrument, then value-at-risk at the portfolio level which accounts for portfolio diversification effects (“Portfolio Value-at-Risk due to Credit”). There are also two supporting functions, “correlations” which derives the asset return correlations used to generate the joint migration probabilities, and “exposures” which produces the future exposures of derivative securities, like swaps.

3. Credit-VaR for a bond (building block #1)

The first step is to specify a rating system, with rating categories, together with the probabilities of migrating from one credit quality to another over the credit risk horizon. This transition matrix is the key component of the credit-VaR model proposed by JP Morgan. It can be the rating system of Moody’s, or Standard & Poor’s, or the proprietary rating system internal to the bank. A strong assumption made by CreditMetrics is that all issuers are credit-homogeneous within the same rating class. They have the same transition probabilities and the same default probability. KMV departs from CreditMetrics in the sense that in KMV’s framework each issuer is specific, and is characterized by his own asset returns distribution, its own capital structure and its own default probability.

Second, the risk horizon should be specified and is usually one year. When one is concerned by the risk profile over a longer period of time, as for long dated illiquid instruments, multiple horizons could be chosen, like 1 to 10 years. The third step consists of specifying the forward discount curve at the risk horizon(s) for each credit category.  In the case of default, the value of the instrument should be estimated in terms of the “recovery rate”, which is given as a percentage of face value or “par”. In the final step, this information is translated into the forward distribution of the changes in portfolio value consecutive to credit migration.
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Figure 3:  CreditMetrics framework: the 4 building blocks

The following example taken from the technical document of CreditMetrics illustrates the four steps of the credit-VaR model. In this example we calculate Credit-VaR for a senior unsecured BBB rated bond maturing exactly in 5 years, and paying an annual coupon of 6%. 

Step 1:  Specify the transition matrix.  

The rating categories, as well as the transition matrix, are chosen from a rating system (Table 1).


Initial
Rating at year-end (%)

Rating
AAA
AA
A
BBB
BB
B
CCC
Default

AAA
90.81
8.33
0.68
0.06
0.12
0
0
0

AA
0.70
90.65
7.79
0.64
0.06
0.14
0.02
0

A
0.09
2.27
91.05
5.52
0.74
0.26
0.01
0.06

BBB
0.02
0.33
5.95
86.93
5.30
1.17
1.12
0.18

BB
0.03
0.14
0.67
7.73
80.53
8.84
1.00
1.06

B
0
0.11
0.24
0.43
6.48
83.46
4.07
5.20

CCC
0.22
0
0.22
1.30
2.38
11.24
64.86
19.79

Source:  Standard & Poor’s CreditWeek (April 15, 1996)


Table 1: Transition matrix: probabilities of credit rating migrating from one rating quality to another, within one year.
In the case of Standard & Poor’s there are 7 rating categories, the highest credit quality being AAA, and the lowest, CCC; the last state is default.  Default corresponds to the situation where an obligor cannot make a payment related to a bond or a loan obligation, whether it is a coupon or the redemption of principal. “Pari passu” clauses are such that when an obligor defaults on one payment related to a bond or a loan, he is technically declared in default on all debt obligations.

The bond issuer has currently a BBB rating, and the shaded line in Table 1 shows the probabilities estimated by Standard & Poor’s for a BBB issuer to be, in one of the 8 possible states, including default, in one year from now. Obviously, the most probable situation is for the obligor to stay in the same rating category, i.e. BBB, with a probability of 86.93%. The probability of the issuer defaulting within one year is only 0.18%, while the probability of being upgraded to AAA is also very small, i.e. 0.02%. Such transition matrix is produced by the rating agencies for all initial ratings, based on the history of credit events which have occurred for the firms rated by those agencies. Default is an absorbing state, i.e. when an issuer is in default, he stays in default.

Moody’s also publishes similar information. These probabilities are based on more than 20 years of history of firms, across all industries, which have migrated over a one year period from one credit rating to another. Obviously, this data should be interpreted with care since it represents average statistics across a heterogeneous sample of firms, and over several business cycles. For this reason many banks prefer to rely on their own statistics which relate more closely to the composition of their loan and bond portfolios.

Moody’s and Standard & Poor’s also produce long term average cumulative default rates, as shown in Table 2 in a tabular form and in Figure 4 in a graphical form.  For example, a BBB issuer has a probability of 0.18% to default within one year, 0.44% to default in 2 years, 4.34% to default in 10 years.



Term
1
2
3
4
5…
7…
10…
15

AAA
0.00
0.00
0.07
0.15
0.24…
0.66…
1.40…
1.40

AA
0.00
0.02
0.12
0.25
0.43…
0.89…
1.29…
1.48

A
0.06
0.16
0.27
0.44
0.67…
1.12…
2.17…
3.00

BBB
0.18
0.44
0.72
1.27
1.78…
2.99…
4.34…
4.70

BB
1.06
3.48
6.12
8.68
10.97…
14.46…
17.73…
19.91

B
5.20
11.00
15.95
19.40
21.88…
25.14…
29.02…
30.65

CCC
19.79
26.92
31.63
35.97
40.15…
42.64…
45.10…
45.10

Source:  Standard & Poor’s CreditWeek April 15, 1996





Table 2: Average cumulative default rates (%)

Tables 1 and 2 should in fact be consistent with one another. From Table 2 we can derive the transition matrix which best replicates the average cumulative default rates. Indeed, assuming that the process for default is Markovian and stationary, then multiplying the one-year transition matrix n times generates the n-year matrix. The n-year default probabilities are simply the values in the last default column of the transition matrix, and should match the column in year n of Table 2. 

Actual transition and default probabilities vary quite substantially over the years, depending whether the economy is in recession, or in expansion.  (See Figure 1 for default rates.)  When implementing a model which relies on transition probabilities, one may have to adjust the average historical values as shown in Table 1, to be consistent with one’s assessment of the current economic environment.  Moody’s study by Carty and Lieberman (1996) provides historical default statistics, both the mean and standard deviation, by rating category for the population of obligors they have rated during the period 1920 – 1996 (see Table 3).


One year default rate

Credit Rating
Average (%)
Standard deviation (%)

Aaa
0.00
0.0

Aa
0.03
0.1

A
0.01
0.0

Baa
0.13
0.3

Ba
1.42
1.3

B
7.62
5.1


Source:  Carty and Lieberman (1996)

Table 3:  One year default rates by rating, 1970-1995


[image: image11.wmf]1

3

5

7

9

11

13

15

0

10

20

30

40

50

AAA

AA

A

BBB

BB

B

CCC

Maturity of debt, years

B

y

 

r

a

t

i

n

g

 

o

v

e

r

 

1

5

-

y

e

a

r

 

p

e

r

i

o

d

,

 

%


Source:  Standard & Poor’s CreditWeek April 15, 1996
Figure 4: Average cumulative default rates (%)

Step 2:  Specify the credit risk horizon.
The risk horizon is usually one year, and is consistent with the transition matrix shown in Table 1. But this horizon is purely arbitrary, and is mostly dictated by the availability of the accounting data and financial reports processed by the rating agencies. In KMV’ s framework, which relies on market data as well as accounting data, any horizon can be chosen from a few days to several years. Indeed, market data can be updated daily while assuming the other characteristics of the borrowers stay constant until new information becomes available.

Step 3:  Specify the forward pricing model. 

The valuation of a bond is derived from the zero-curve corresponding to the rating of the issuer. Since there are 7 possible credit qualities, 7 “spread” curves are required to price the bond in all possible states. All obligors within the same rating class are then marked-to-market with the same curve. The spot zero curve is used to determine the current spot value of the bond. The forward price of the bond in one year from now is derived from the forward zero-curve, one year ahead, which is then applied to the residual cash flows from year one to the maturity of the bond. Table 4 gives the one-year forward zero-curves for each credit rating.



Category
Year 1
Year 2
Year 3
Year 4

AAA
3.60
4.17
4.73
5.12

AA
3.65
4.22
4.78
5.17

A
3.72
4.32
4.93
5.32

BBB
4.10
4.67
5.25
5.63

BB
5.55
6.02
6.78
7.27

B
6.05
7.02
8.03
8.52

CCC
15.05
15.02
14.03
13.52

Source: CreditMetrics, J.P. Morgan

Table 4: One year forward zero-curves for each credit rating (%)

Empirical evidence shows that for high grade investment bonds the spreads tend to increase with time to maturity, while for low grade, like CCC the spread tends to be wider at the short end of the curve than at the long end, as shown in Figure 5.
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Figure 5: Spread curves for different credit qualities

The one-year forward price, VBBB, of the 5-year, 6% coupon bond, if the obligor stays BBB, is then:
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where the discount rates are taken from Table 3 above.

If we replicate the same calculations for each rating category we obtain the values shown in Table 5.




Year-end rating
Value ($)

AAA
109.37

AA
109.19

A
108.66

BBB
107.55

BB
102.02

B
98.10

CCC
83.64

Default
51.13

Source: CreditMetrics, J.P. Morgan

Table 5: One-year forward values for a BBB bond
As can be seen in Table 5, if the issuer defaults at the end of the year, we assume that not everything is lost. Depending on the seniority of the instrument, a recovery rate of par value is recuperated by the investor. These recovery rates are estimated from historical data by the rating agencies. Table 6 shows the expected recovery rates for bonds by different seniority classes as estimated by Moody’s.
 In our example the recovery rate for senior unsecured debt is estimated to be 51.13%, although the estimation error is quite large and the actual value lies in a fairly large confidence interval.



Seniority Class
Mean (%)
Standard Deviation (%)

Senior Secured
53.80
26.86

Senior Unsecured
51.13
25.45

Senior subordinated
38.52
23.81

Subordinated
32.74
20.18

Junior subordinated
17.09
10.90

Source:  Carty & Lieberman [1996]

Table 6:  Recovery rates by seniority class (% of face value, i.e., “par”)

When the loss distribution is derived from a Monte-Carlo simulation it is generally assumed that the recovery rates are distributed according to a beta distribution with the same mean and standard deviation as shown in Table 6.

Step 4:  Derive the forward distribution of the changes in portfolio value.

The distribution of the changes in the bond value, at the one-year horizon, due to an eventual change in credit quality is shown Table 7 and Figure 6.

Year-end rating
Probability of state:        p(%)
Forward price: V ($)
Change in value: V         ($)

AAA

0.02

109.37

1.82

AA

0.33

109.19

1.64

A

5.95

108.66

1.11

BBB

86.93

107.55

0

BB

5.30

102.02

-5.53

B

1.17

98.10

-9.45

CCC

0.12

83.64

-23.91

Default

0.18

51.13

-56.42

Source: CreditMetrics, J.P. Morgan

Table 7: Distribution of the bond values, and changes in value of a BBB bond, in one year




Figure 6: Histogram of the one year forward prices and changes in value of a BBB bond

This distribution exhibits long downside tail. The first percentile of the distribution of V, which corresponds to credit-VaR at the 99% confidence level is - 23.91. It is a much lower value than if we computed the first percentile assuming a normal distribution for V. In that case credit-VaR at the 99% confidence level would be only - 7.43.

4.  Credit-VaR for a loan or bond portfolio (building block #2)

First, consider a portfolio composed of 2 bonds with an initial rating of BB and A, respectively. Given the transition matrix shown in Table 1, and assuming no correlation between changes in credit quality, we can then derive easily the joint migration probabilities shown in Table 8. Each entry is simply the product of the transition probabilities for each obligor. For example, the joint probability that obligor #1 and obligor #2 stay in the same rating class is the product of the probability of bond A remaining at its current rating at the end of the year, 91.05%, and the probability of bond BB remaining as BB, 80.53%: 


73.32% = 80.53% 
[image: image15.wmf]´

 91.05%


Obligor #2 (single-A)

Obligor #1
AAA
AA
A
BBB
BB
B
CCC
Default

(BB)
0.09
2.27
91.05
5.52
0.74
0.26
0.01
0.06

AAA
0.03
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00

AA
0.14
0.00
0.00
0.13
0.01
0.00
0.00
0.00
0.00

A
0.67
0.00
0.02
0.61
0.40
0.00
0.00
0.00
0.00

BBB
7.73
0.01
0.18
7.04
0.43
0.06
0.02
0.00
0.00

BB
80.53
0.07
1.83
73.32
4.45
0.60
0.20
0.01
0.05

B
8.84
0.01
0.20
8.05
0.49
0.07
0.02
0.00
0.00

CCC
1.00
0.00
0.02
0.91
0.06
0.01
0.00
0.00
0.00

Default
1.06
0.00
0.02
0.97
0.06
0.01
0.00
0.00
0.00

Table 8: Joint migration probabilities (%) with zero correlation for 2 issuers rated BB and A

 Unfortunately, this table is not very useful in practice when we need to assess the diversification effect on a large loan or bond portfolio. Indeed, the actual correlations between the changes in credit quality are different from zero. And it will be shown in Section 5 that the overall credit-VaR is in fact quite sensitive to these correlations. Their accurate estimation is therefore one of the key determinant in portfolio optimization from a risk-return perspective.

Correlations are expected to be higher for firms within the same industry or in the same region, than for firms in unrelated sectors.  In addition, correlations vary with the relative state of the economy in the business cycle. If there is a slowdown in the economy, or a recession, most of the assets of the obligors will decline in value and quality, and the likelihood of multiple defaults increases substantially. The contrary happens when the economy is performing well: default correlations go down. Thus, we cannot expect default and migration probabilities to stay stationary over time. There is clearly a need for a structural model which bridges the changes of default probabilities to fundamental variables whose correlations stay stable over time. Both CreditMetrics and KMV derive the default and migration probabilities from a correlation model of the firm’s assets, which will be detailed in the next chapter.

Contrary to KMV, and for the sake of simplicity, CreditMetrics has chosen the stock price as a proxy for the asset value of the firm, which is not directly observable.  This is another strong assumption in CreditMetrics that may affect the accuracy of the method. 

CreditMetrics estimates the correlations between the equity returns of various obligors, then the model infers the correlations between changes in credit quality directly from the joint distribution of equity returns. 

The proposed framework is the option pricing approach to the valuation of corporate securities initially developed by Merton (1974). It is described in details in Chapter 9 and is also the basis for the KMV approach. The basic model is presented in the Appendix of this chapter. It is assumed that the firm has a very simple capital structure, as it is financed only by equity, St, and a single zero-coupon debt instrument maturing at time T, with face value F, and current market value Bt. The firm’s balance sheet can be represented as follows, where Vt is the value of all the assets and 
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Table 9: Balance sheet of  Merton’s firm
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Figure 7:  Distribution of the firm’s assets value at maturity of the debt obligation

In this framework, default only occurs at maturity of the debt obligation, when the value of assets is less than the promised payment, F, to the bondholders. Figure 7 shows the distribution of the assets’ value at time T, the maturity of the zero-coupon debt, and the probability of default that is the shaded area on the left hand side of the default point, F.

Merton’s model is extended by CreditMetrics to include changes in credit quality as illustrated in Figure 8. This generalization consists of slicing the distribution of asset returns into bands in such a way that, if we draw randomly from this distribution, we reproduce exactly the migration frequencies as shown in the transition matrix. Figure 8 shows the distribution of the normalized assets’ rates of return, one year ahead, which is normal with mean zero and unit variance. The credit rating “thresholds” correspond to the transition probabilities in Table 1 for a BB rated obligor. The right tail of the distribution down to ZAAA corresponds to the probability for the obligor of being upgraded from BB to AAA, i.e. 0.03%. Then, the area between ZAA and ZAAA corresponds to the probability of being upgraded from BB to AA, etc.  The left tail of the distribution, on the left-hand side of ZCCC, corresponds to the probability of default, i.e. 1.06%.
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Figure 8: Generalization of the Merton model to include rating changes


Rated-A obligor
Rated-BB obligor

Rating in one year
Probabilities

(%)
Thresholds: Z

(()
Probabilities

(%)
Thresholds: Z

(()

AAA
0.09
3.12
0.03
3.43

AA
2.27
1.98
0.14
2.93

A
91.05
-1.51
0.67
2.39

BBB
5.52
-2.30
7.73
1.37

BB
0.74
-2.72
80.53
-1.23

B
0.26
-3.19
8.84
-2.04

CCC
0.01
-3.24
1.00
-2.30

Default
0.06

1.06


Table 10: Transition probabilities and credit quality thresholds for rated BB and A obligors

Table 10 shows the transition probabilities for two obligors rated BB and A respectively, and the corresponding credit quality thresholds. The thresholds are given in normalized standard deviation terms. For example, for a BB rated obligor the default threshold is –2.30 standard deviations from the mean rate of return.

This generalization of Merton’s model is quite easy to implement. It assumes that the normalized log-returns over any period of time are normally distributed with mean 0 and variance 1, and it is the same for all obligors within the same rating category.  If pDef denotes the probability for the BB-rated obligor of defaulting, then the critical asset value VDef  is such that:
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which can be translated into a normalized threshold ZCCC, such that the area in the left tail below ZCCC is pDef.. 
 ZCCC is simply the threshold point in the standard normal distribution, N(0,1), corresponding to a cumulative probability of pDef,. Then, based on the option pricing model, the critical asset value 
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 which triggers default is such that 
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and is also called “distance to default”.
  Note that only the threshold levels are necessary to derive the joint migration probabilities, and they are calculated without the need to observe the asset value, and to estimate its mean and variance. To derive the critical asset value 
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we only need to estimate the expected asset return 
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 and asset volatility 
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. Accordingly ZB is the threshold point corresponding to a cumulative probability of being either in default or in rating CCC, i.e., pDef +pccc, etc.

Further, since asset returns are not directly observable, CreditMetrics chooses equity returns as a proxy, which is equivalent to assume that the firm’s activities are all equity financed. This can be a major drawback of the approach, especially for highly levered companies. For those companies equity returns are substantially more volatile, and possibly less stationary, than the volatility of the firm’s assets.



Rating 
Rating of second company (A)

of first company (BB)
AAA
AA
A
BBB
BB
B
CCC
Def
Total

AAA
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.03

AA
0.00
0.01
0.13
0.00
0.00
0.00
0.00
0.00
0.14

A
0.00
0.04
0.61
0.01
0.00
0.00
0.00
0.00
0.67

BBB
0.02
0.35
7.10
0.20
0.02
0.01
0.00
0.00
7.69

BB
0.07
1.79
73.65
4.24
0.56
0.18
0.01
0.04
80.53

B
0.00
0.08
7.80
0.79
0.13
0.05
0.00
0.01
8.87

CCC
0.00
0.01
0.85
0.11
0.02
0.01
0.00
0.00
1.00

Def
0.00
0.01
0.90
0.13
0.02
0.01
0.00
0.00
1.07

Total
0.09
2.29
91.06
5.48
0.75
0.26
0.01
0.06
100

Source: CreditMetrics, J.P. Morgan
Table 11: Joint rating probabilities (%) for BB and A rated obligors when 
correlation between asset returns is 20%

Now, assume that the correlation between assets’ rates of return is known, and is denoted by 
[image: image25.wmf]r

, which is assumed to be equal to 0.20 in our example.  The normalized log-returns on both assets follow a joint normal distribution as described in the Appendix. We can then compute the probability for both obligors of being in any combination of ratings, e.g. that they remain in the same rating classes, i.e. BB and A, respectively:
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where rBB and rA are the instantaneous rates of return on the assets of obligors BB and A, respectively. If we implement the same procedure for the other 63 combinations we obtain Table 11. We can compare Table 11 with Table 8, the later being derived assuming zero correlation, to notice that the joint probabilities are different. 
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Source: CreditMetrics, J.P. Morgan 

Figure 9:  Probability of joint defaults as a function of asset return correlation
Figure 9 illustrates the effect of asset return correlation on the joint default probability for the rated BB and A obligors. If the probabilities of default for obligors rated A and BB are Pdef(A) = 0.06% and Pdef(BB) = 1.06%, respectively, and the correlation coefficient between the rates of return on the two assets is (  = 20%, it can be shown that the probability of default is:
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The correlation coefficient between the two default events is:
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The ratio of asset returns correlations to default correlations is approximately 10 to 1 for asset correlations in the range of 20% to 60%. This shows that the joint probability of default is in fact quite sensitive to pair-wise asset return correlations, and it illustrates the necessity to estimate correctly these data to assess the diversification effect within a portfolio. In Section 5 we show that, for the benchmark portfolio we selected for the comparison of credit models, the impact of correlations on credit-VaR is quite large. It is larger for low credit quality than for high-grade portfolios. Indeed, when the credit quality of the portfolio deteriorates the expected number of defaults increases, and this number is magnified by an increase in default correlations.

The statistical procedure to estimate asset return correlations is discussed in the next Chapter dedicated to KMV.

5.  Analysis of credit diversification (building block #2, continuation)

The analytic approach that we just sketched out for a portfolio with bonds issued by 2 obligors is not doable for large portfolios. Instead, CreditMetrics implement a Monte Carlo simulation to generate the full distribution of the portfolio values at the credit horizon of one year. The following steps are necessary:

1.  Derivation of the asset return thresholds for each rating category.

2.  Estimation of the correlation between each pair of obligors’ asset returns.
3.  Generation of asset return scenarios according to their joint normal distribution. A standard technique to generate correlated normal variables is the Cholesky decomposition.
 Each scenario is characterized by n standardized asset returns, one for each of the n obligors in the portfolio. 
4.  For each scenario, and for each obligor, the standardized asset return is mapped into the corresponding rating, according to the threshold levels derived in step 1.
5.  Given the spread curves, which apply for each rating, the portfolio is revalued.
6.  Repeat the procedure a large number of times, say 100,000 times, and plot the distribution of the portfolio values to obtain a graph, which looks like Figure 2.
7.  Then, we can derive the percentiles of the distribution of the future values of the portfolio
6.  Credit VaR and calculation of the capital charge

Economic capital stands as a cushion to absorb unexpected losses related to credit events, i.e. migration and/or default. Figure 10 shows how to derive the capital charge related to credit risk:

P(p) =  value of the portfolio in the worst case scenario at the p% confidence level,

FV = forward value of the portfolio = V0 (1+ PR),

V0 = current mark-to-market value of the portfolio,

PR = promised return on the portfolio
,

EV = expected value of the portfolio = V0 (1+ ER),

ER = expected return on the portfolio,

EL = expected loss = FV - EV.

The expected loss doesn’t contribute to the capital allocation, but instead goes into reserves and is imputed as a cost into the RAROC calculation.
  The capital charge comes as a protection against unexpected losses:

Capital = EV – P(p)

The bank should hold reserves against unexpected losses at a given confidence level, p%, say 1%, so that there is only a probability of 1% that the bank will incur losses above the capital level over the period corresponding to the credit risk horizon, say one year.
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Figure 10: Credit VaR and calculation of economic capital

7.  CreditMetrics as a Loan/Bond Portfolio Management Tool: Marginal Risk Measures (building block #2, continuation)

In addition to the overall credit-VaR analysis for the portfolio, CreditMetrics offers the interesting feature of isolating the individual marginal risk contributions to the portfolio. For example, for each asset, CreditMetrics calculates the marginal standard deviation, i.e. the impact of each individual asset on the overall portfolio standard deviation. By comparing the marginal standard deviation to the stand-alone standard deviation for each loan, one can assess the extent of the benefit derived from portfolio diversification when adding the instrument in the portfolio. Figure 11 shows the marginal standard deviation for each asset, expressed in percentage of the overall standard deviation, plotted against the marked-to-market value of the instrument.


This is an important pro-active risk management tool as it allows one to identify trading opportunities in the loan/bond portfolio where concentration, and as a consequence overall risk, can be reduced without affecting expected profits. Obviously,

for this framework to become fully operational it needs to be complemented by a [image: image81.wmf]0
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RAROC model, which provides information on the adjusted return on capital for each deal. 
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The same framework can also be used to set up credit risk limits, and monitor credit risk exposures in terms of the joint combination of market value and marginal standard deviation, as shown in Figure 12. 
8.  Estimation of asset correlations (building block #3)

As we discussed in Section 2.3 default correlations are derived from asset returns correlations. Since asset values are not directly observable, stock prices for publicly traded firms are used as a proxy to calculate asset returns correlations. For a large portfolio of bonds and loans, with thousand of obligors, it would still require the computation of a huge correlation matrix for each pair of obligors. To reduce the dimensionality of this estimation problem, CreditMetrics uses a multi-factor analysis. This approach maps each obligor to the countries and industries that most likely determine its performance. Equity returns are correlated to the extent that they are exposed to the same industries and countries. In CreditMetrics the user specifies the industry and country weights for each obligor, as well as the “firm specific risk”, which is idiosyncratic to each obligor and neither correlated to any other obligor nor any index.
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Source:  CreditMetrics, J.P. Morgan
Figure 12:  Possible risk limits for an example portfolio

9.  Exposures (building block #4)

What is meant by “exposures” in CreditMetrics is somewhat misleading since market risk factors are assumed constant. This building block is simply the forward pricing model that applies for each credit rating. For bond type products like bonds, loans, receivables, commitments to lend, letters of credit, exposure simply relates to the future cash flows at risk, beyond the one year horizon. Forward pricing is derived from the present value model using the forward yield curve for the corresponding credit quality. The example presented in Section 2.2 illustrates how the exposure distribution is calculated for a bond.


For derivatives, like swaps and forwards, the exposure is conditional on future interest rates. Contrary to a bond, there is no simple way to derive the future cash flows at risk without making some assumptions on the dynamics of interest rates. In Chapter 12 we propose an integrated model of market risk and credit risk, and discuss how to derive the distribution of future exposures for a swap when interest rates are stochastic. 

The complication arises since the risk exposure for a swap can be either positive if the swap is in-the-money for the bank, or negative if it is out-of-the money. In the later case it is a liability and it is the counterparty who is at risk. Figure 13 shows the average and maximum exposure profiles of an interest rate swap as a function of time, assuming no change in the credit ratings of the counterparty, and of the bank. The bank is at risk only when the exposure is positive.

Figure 13: Risk exposure of an interest rate swap
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At this stage we assume given the average exposure of a swap, and it is supposed to have been derived from an external model.

In CreditMetrics/CreditVaR I interest rates being deterministic, the calculation of the forward price distribution relies on an ad-hoc procedure:

Value of swap in 1 year, in rating R = Forward risk-free value in 1 year -


(8)
Expected loss in years 1 to maturity for the given rating R,

where

Expected loss in years 1 to maturity for the given rating R = Average exposure from year 1 to maturity * 

Probability of default in years 1 through maturity for the given rating R * (1 - recovery rate)
(9)
The forward risk-free value of the swap is calculated by discounting the future net cash flows of the swap, based on the forward curve, and discounting them using the forward Government yield curve. This value is the same for all credit ratings.

The probability of default in year 1 through maturity either comes directly from Moody’s or Standard & Poor’s, or can be derived from the transition matrix as previously discussed in Section 1.1.  The recovery rate comes from the statistical analyses provided by the rating agencies.

As an example, consider a 3-year interest rate swap with a $10 million notional value. The average expected exposure between year 1 and 3 is supposed to be $61,627.  Given the two-year probability of default, the distribution of one-year forward values for the swap can be calculated according to the above formulas (4) and (5). The results are shown in Table 12, where FV denotes the forward risk-free value of the swap and EL the expected loss.

Year-end rating
Two-year default likelihood (%)
Value ($)

FV - EL

AAA
0.00
FV-1

AA
0.02
FV-6

A
0.15
FV-46

BBB
0.48
FV-148

BB
2.59
FV-797

B
10.41
FV-3,209

CCC
33.24
FV-10,304

Default
-
FV-50,860

Table 12: Distribution of the one-year forward values of a 3-year interest rate swap where FV denotes the forward value and EL is the expected loss



Source: CreditMetrics, J.P. Morgan


Obviously, this ad-hoc calculation of the exposure of an interest rate swap is not satisfactory.  Only a model with stochastic interest rates will allow a proper treatment of exposure calculations for swaps as well as other derivative securities.

10.
Conditional Transition Probabilities: CreditPortfolioView

CreditPortfolioView is a multi-factor model that is used to simulate the joint conditional distribution of default and migration probabilities for various rating groups in different industries, for each country, conditional on the value of macroeconomic factors like the unemployment rate, the rate of growth in GDP, the level of long-term interest rates, foreign exchange rates, government expenditures and the aggregate savings rate.
  

CreditPortfolioView is based on the casual observation that default probabilities, as well as migration probabilities, are linked to the economy.  When the economy worsens both downgrades as well as defaults increase.  It is the contrary when the economy becomes stronger.  In other words, credit cycles follow business cycles closely.  Since the shape of the economy is, to a large extent, driven by macro-economic factors, CreditPortfolioView proposes a methodology to link those macro-economic factors to the default and migration probabilities.

Provided that data are available this methodology can be applied in each country, to different sectors and various classes of obligors which react differently over the business cycle like construction, financial institutions, agriculture, services, etc.  

Default probabilities are modeled as a logic function where the independent variable is a country speculative grade specific index which depends upon current and lagged macro- economic variables:
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where


Pj,t is the conditional probability of default in period t, for speculative grade obligors in country/industry j

In order to derive the conditional transition matrix we use the (unconditional Markov) transition matrix based on Moody’s or Standard & Poor’s historical data, which we denote by M.  Transition probabilities are unconditional in the sense that they are historical averages based on more than 20 years of data covering several business cycles, across many different countries and industries.


As we discussed earlier, default probabilities for non-investment grade obligors is higher than average during a period of recession.  Also downgrade migrations increase, while upward migrations decrease.  It is the opposite during a period of economic expansion (see Figure 14):
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(3)

where


SDPt is the simulated default probability for a speculative grade obligor, based on equation (1);


SDPt is the unconditional (historical average) probability of default for a speculative grade obligor.


CreditPortfolioView proposes to use these ratios (3) to adjust the migration probabilities in M in order to produce a transition matrix, M, conditional on the state of the economy: 


Mt=M(Pj,t/SDP)

where the adjustment consists in shifting the probability mass into downgraded and defaulted states when the ratio Pj,t/SDP is greater than one, and vice versa if the ratio is less than one.  Since one can simulate Pj,t over any time horizon t=1, …, T, this approach can generate multi-period transition matrices:
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One can simulate many times the transition matrix (4) to generate the distribution of the cumulative conditional default probability for any rating, over any time period, as shown Figure 15.


    Figure 15:  
Distribution of the cumulative conditional default probability, for a given rating, over a given time horizon, T.

The same Monte Carlo methodology can be used to produce the conditional cumulative distributions of migration probabilities over any time horizon.

KMV (See Chapter 9) and CreditPortfolioView base their approach on the same empirical observation that default and migration probabilities vary over time.  KMV adopts a microeconomic approach that relates the probability of default of any obligor, to the market value of its assets.  CreditPortfolioView proposes a methodology that links macroeconomics factors to default and migration probabilities.  The calibration of this model necessitates reliable default data for each country, and possibly for each industry sector within each country.  Another limitation of the model is the ad-hoc procedure to adjust the migration matrix.  It is not clear that the proposed methodology performs better than a simple Bayesian model where the revision of the transition probabilities would be based on the internal expertise accumulated by the credit department of the bank, and the internal appreciation of where we are in the credit cycle given the quality of the bank’s credit portfolio.  These two approaches are somewhat related since the market value of the firms’ assets depends on the shape of the economy.  It would then be interesting to compare the transition matrices produced by both models.

11. Stress Testing and Scenario Analysis

The key parameters which affect Credit VaR are the transition matrix, the asset return correlations which drive the default correlations, the spread curves and the recovery factors (see Chapter 10nn).


Assumptions are needed on the values of these parameters to run a credit model. As for Market VaR models the assumptions characterize “normal” market conditions. Capital plays the role of a buffer against unexpected losses, not only during uneventful periods, but also during extreme market conditions. It is therefore critical to run credit risk models under alternative sets of assumptions that describe periods at the bottom of the credit cycle when default rates are at a historical high.


The basic scenario to run corresponds to the worst case historical period for default rates. Moody’s database includes all the obligors and facilities which have been rated by Moody’s over the last 25-year period, with all the credit events which have affected them well documented, i.e. change of rating as well as default, and the dates at which they occurred.
 From this database we can extract, for example, the average transition matrix over the entire universe covered by the database, and consider this matrix as a proxy for transition probabilities under normal market conditions (Table 13). 

Normal Market








End-Period Rating









Initial

Rating
Aaa
Aa
A
Baa
Ba
B
Caa
D

Aaa
0.9338
0.0594
0.0064
0
0.0002
0
0
0.0002

Aa
0.0161
0.9055
0.0746
0.0026
0.0009
0.0001
0
0.0002

A
0.0007
0.0228
0.9242
0.0463
0.0045
0.0012
0.0001
0.0002

Baa
0.0005
0.0026
0.0551
0.8848
0.0476
0.0071
0.0008
0.0015

Ba
0.0002
0.0005
0.0042
0.0516
0.8691
0.0591
0.0024
0.0129

B
0
0.0004
0.0013
0.0054
0.0635
0.8422
0.0191
0.0681

Caa
0
0
0
0.0062
0.0205
0.0408
0.6919
0.2406

D
0
0
0
0
0
0
0
1

Note: The minimum default probabilities have been set to 2bp.


Table 13: 25-year average transition matrix from Moody’s

Figure 1 shows the default rates for corporations worldwide during the period 1985 - 1997.  The period 1990 - 1991 is clearly the worst case historical scenario both, in terms of the number of firms that defaulted, and the amount defaulted.  The average transition matrix derived from Moody’s is given in Table 14.

Historical worst case (90-91)







End-Period Rating









Initial

Rating
Aaa
Aa
A
Baa
Ba
B
Caa
D

Aaa
0.5210
0.3950
0.0672
0.0084
0.0084
0
0
0.0002

Aa
0.0242
0.5086
0.3754
0.0727
0.0081
0.0040
0
0.0070

A
0
0.0332
0.6737
0.2083
0.0465
0.0222
0.0022
0.0138

Baa
0.0038
0
0.1803
0.5754
0.1496
0.0460
0.0077
0.0372

Ba
0
0.0035
0.0244
0.1397
0.4320
0.1536
0.0105
0.2353

B
0
0
0.0120
0.0420
0.1379
0.3716
0.0360
0.4007

Caa
0
0
0.1184
0
0.1184
0.1184
0.5327
0.1122

D

0
0
0
0
0
0
1

Note: The minimum default probabilities have been set to 2bp.


Table 14: Worst case average transition matrix: 1990 - 1991

To illustrate the scenario analysis we have run our own internal CreditVaR model at CIBC on a benchmark portfolio composed of 1,200 bonds of different maturities, issued by obligors in 9 different countries, covering the whole spectrum of credit qualities from Aaa to Caa, and well diversified across various industrial sectors. Table 15 presents the results for Credit VaR at the 99% confidence level, over a one-year horizon. 


Transition matrices based on


25 year average
worst case  average:

1990 - 1991

Credit VaR



  99% confidence level
$525 million
$1,175 million

  (in % of MTM)
(4.2%)
(9.4%)





Note: The mark-to-marker (MTM) value of the bond portfolio is $12,501 million

Table 15: Scenario analysis: Worst case transition matrix


The impact on credit VaR of switching transition matrices is substantial since credit VaR more than double when the “normal” transition matrix is replaced by the one corresponding to the worst case 5-year credit cycle.

Scenario analysis should be complemented by stressing one by one the other key parameters, such as the asset return correlations, the idiosyncratic risk component of the multi-factor asset return model (see Chapter 9), the recovery rate and the credit spreads. The results of the stress testing exercise for the benchmark portfolio are reported in Table 16.


Credit VaR @ 99% confidence level

Asset correlation = 0
$255
(2.0%)

Asset correlation = 1
$2,559
(20.5%)

Idiosyncratic risk: -10% from base case
$698
(5.6%)

Recovery rate: -10% from base case
$611
(4.9%)

Spreads: x2
$504
(4.1%)

Base case (normal markets)
$525
(4.2%)





Table 16: Stress testing

These results illustrate the sensitivity of credit VaR to asset return correlations. The lower the asset return correlation the more diversified is the portfolio and lower is the risk. For zero correlation credit VaR moves down from 4.2% of the mark-to-market value of the portfolio to 2.0%. The higher are the asset return correlation the more concentrated is the portfolio and higher is the risk. When the correlations are forced to one credit VaR increases from 4.2 % for the base case to 20.5%. 

When the idiosyncratic risk component is reduced, say by 10% from the base case, then the concentration of the portfolio increases and higher is the risk (see Chapter 9, the section on the asset return correlation model).  When the recovery rate decreases the risk of the portfolio increases. Finally, when credit spreads increase, say double, the impact on credit VaR is not significant since the whole loss distribution is shifted, and both the mean and the percentiles are affected in the same direction. This leaves credit VaR more or less unaffected in percentage of the mark-to-market value of the portfolio.


Stress testing and scenario analysis can be performed once a week given that the composition of the bank’s corporate bond and loan portfolio doesn’t change dramatically from one week to the other.

Appendix 1: Elements of Merton’s Model

In this appendix we provide the basis of Merton’s (1974) model of the firm’s debt, as applied by CreditMetrics. Additional development of the Merton’s model is contained in Chapter 9.

The firm’s assets value, Vt, is assumed to follow a standard geometric Brownian motion,  i.e.:
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(1)  with 
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It is assumed that the firm has a very simple capital structure, as it is financed only by equity, St, and a single zero-coupon debt instrument maturing at time T, with face value F, and current market value Bt. (See table 9). The value of the assets of the firm is denoted by Vt and:
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Denote by pDef the probability of default, i.e.:
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where VDef  is the critical asset value below which default occurs. According to (1), default occurs when 
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where the normalized return:
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(3)

is 
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(4)

and is also called “distance to default”.

If we denote by rBB and rA the instantaneous rates of return on the assets of obligors rated BB and A, respectively, and by ( the instantaneous correlation coefficient between rA and rBB, then the normalized log-returns on both assets follow a joint normal distribution:
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This joint normal distribution is useful in calculating the joint-migration matrix for the two obligors initially rated A and BB. Consider two obligors whose probabilities of default are Pdef1 and Pdef2, respectively.  Their asset return correlation is 
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. The events of default for obligors 1 and 2 are denoted def1 and def2 , respectively, and P(def1,def2) is the joint probability of default. Then, it can be shown that the default correlation is: 
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(5)

The joint probability of both obligors defaulting is, according to Merton’s model:
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(6)

where  
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 and  
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 denote the asset values for both obligors at time t, and Vdef1 and Vdef2 are the corresponding critical values which trigger default. Expression (6) is equivalent to:


[image: image58.wmf][

]

(

)

P

def

def

r

d

r

d

N

d

d

(

,

)

Pr

,

,

,

1

2

1

2

1

2

2

2

2

2

1

2

2

=

£

£

=

-

-

r




(7)

where r1 and r2 denote the normalized asset returns as defined in (3) for obligors 1 and 2, respectively, and  
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  and 
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  are the corresponding distant to default as in (4).  
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Appendix 2: Default Prediction - The Econometric Model

Default probabilities are modeled as a logit function as follows:
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(1)

where


Pj,t is the conditional probability of default in period t, for speculative grade obligors in country/industry j. Yj,t is the index value derived from a multi-factor model described below. Note that the logit transformation ensures that the probability (1) takes a value between 0 and 1.

The macro-economic index, which captures the state of the economy in each country, is determined by the following multi-factor model:
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(2)

where


Yj,t is the index value in period t for the jth country/industry/speculative grade;


j,0, j,1, j,2, … j,m are coefficients to be estimated for the jth country/industry/speculative grade;


Xj,1,t, Xj,2,t, …, Xj,m,t are period t values of the macro-economic variables for the jth country/industry;


j,t is the error term assumed to be independent of Xj,t, and identically normally distributed. 

The macro-economic variables are specified for each country.  When sufficient data are available the model can be calibrated at the country/industry level.  Both the probability of default Pj,t, and the index, Yj,t, are then defined at the country/industry level, and the coefficient j,i are calibrated accordingly.

In the proposed implementation, each macro-economic variable is assumed to follow a univariate, auto-regressive model of order two (AR2):


Xj,i,t=j,i,0+j,i,1 Xj,i,t-1+j,i,2 Xj,i,t-2+ej,i,t





(3)

where


Xj,i,t-1, Xj,i,t-2 denote the lagged values of the macroeconomic variable Xj,i,t,

j=(j,i,0, j,i,1 j,i,2) are coefficients to be estimated,


ej,i,t is the error term assumed to be independent and identically distributed, i.e.
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where


et denotes the vector of stacked error terms ej,i,t, of the jxi AR(2) equations


e is the (jxi) (jxi) covariance matrix of the error terms et.

To calibrate the default probability model defined by (1), (2) and (3), one has to solve the system:
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(4)

where the vector of innovations Et is
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where ,e and e, denote the cross correlation matrices.

Once the system (4) has been calibrated, then one can use the Cholesky decomposition of , i.e:


=AA’









(5)

to simulate the distribution of speculative default probabilities.  First, draw a vector of random variables Zt, ~N(0,I) where each component is normally distributed N(0,1).  Then, calculate


Et=A’Zt
which is the stacked vector of error terms j,t and ej,i,t.  Using these realizations of the error terms one can derive the corresponding values for Yj,t and Pj,t.
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Figure 11:  Risk versus size of exposures within a typical credit portfolio
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Note:  The arrows show the direction of the shift in the probability mass for each economic scenario.





	Figure 14:  Conditional Transition Matrix








� See in Chapter 2 the section on BIS 2000+.


� See also Vasicek (1997).


� For a loan commitment the borrower as the option to draw down on its credit line. He is more likely to exercise this option when his credit standing is deteriorating.


� CreditMetrics is a trademark of JP Morgan & Co. Incorporated. The technical document, CreditMetrics (1997) provides a detailed exposition of the methodology, illustrated with  numerical examples. 


� CreditVaR is CIBC’s proprietary credit value at risk model, which is based on the same principles as CreditMetrics for the simple version implemented at CIBC, CreditVaR I, to capture specific risk for the trading book. A more elaborate version, CreditVaR II, extends CreditMetrics framework to allow for stochastic interest rates in order to address credit risk for derivatives including loan commitment and credit derivatives (see footnote 6).


� CreditMetrics’ approach applies primarily to bonds and loans which are both treated in the same manner, and it can be easily extended to any type of financial claims as receivables, financial letters of credit for which we can derive easily the forward value at the risk horizon, for all credit ratings. For derivatives, like swaps or forwards, the model needs to be somewhat twisted, since there is no satisfactory way to derive the exposure, and the loss distribution, in the proposed framework which assumes deterministic interest rates.


� The transition matrix derived from Table 2 is calibrated in the least square sense, i.e. to minimize the sum of squares of the errors in the cumulative default rates.


� CreditMetrics calculates the forward value of the bonds, or loans, cum compounded coupons paid out during the year.


� Cf. Carty and Lieberman (1996). See also Altman and Kishore (1996, 1998) for similar statistics.


�  The mean, m, and the variance, (2 , of the distribution for (V can be calculated from the data in Table 5 as follows: 


�EMBED Equation.2����EMBED Equation.2���


The first percentile of a normal distribution  N (m, (2) is (m – 2.33 (), i.e. –7.43.


� See Appendix for the derivation of the proof.


�  Note that �EMBED Equation.2��� is different from its equivalent in the Black-Scholes formula since, here, we work with the “actual” instead of the “risk neutral” return distributions, so that the drift term in �EMBED Equation.2��� is the expected return on the firm’s assets, instead of the risk-free interest rate as in Black-Scholes. See Chapter 1 for the definition of d2 in Black-Scholes and in the Appendix for d2 in the above derivation.


� The mathematical presentation of the joint probabilities and correlation of defaults is given in the Appendix.


� The correlation models for CreditMetrics and KMV are different but the approaches being similar, we detail only KMV’s model which is more elaborated.


� A good reference on Monte Carlo simulations and the Cholesky decomposition is Fishman (1997, p. 223)


� If there were only one bond in the portfolio, PR would simply be the one year spot rate on the corporate curve corresponding to the rating of the obligor.


� See Chapter 14.


� The RAROC concept will be presented and analyzed in Chapter 14.





� See also KMV’s correlation model presented in the next chapter.


� CreditPortfolioView is a risk measurement model developed by Tom Wilson (1997a, 1997b) and proposed by McKinsey & Company.


� This model applies best to speculative grade obligors for which default probabilities are more sensitive to the credit cycle than investment grade obligors.


� Standard & Poor’s offer a similar service with CreditProTM.


�  Note that �EMBED Equation.2��� is different from its equivalent in the Black-Scholes formula since, here, we work with the “actual” instead of the “risk neutral” return distributions, so that the drift term in �EMBED Equation.2��� is the expected return on the firm’s assets, instead of the risk-free interest rate as in Black-Scholes.


� See Lucas (1995).


� See footnote 12.





Crouhy – Galai – Mark
08/15/99
1
Chapter 8: Credit Migration Approach to Measuring Credit Risk

_959548989.unknown

_959780072.unknown

_983220372.unknown

_983289953.unknown

_995441556.unknown

_995804003.doc






























Probability of default















































VT







F







Default point
































































































































_995981290.unknown

_983301621.unknown

_983301702.unknown

_983301526.unknown

_983278658.unknown

_983278752.unknown

_983277830.unknown

_963837695.unknown

_963839142.unknown

_963841442.unknown

_967021358.unknown

_963839277.unknown

_963838323.unknown

_962624482.doc


Spread Curve







Time to maturity







CCC







B







A







Treasuries












_963836383.unknown

_963824483.unknown

_960119066.doc


0







0.01







0.02







0.03







0.04







0.05







0.06







0.0







0.1







0.2







0.3







0.4







0.5







0.6







0.7







0.8







0.9







1.0







Correlation







Joint default probability












_962452139.unknown

_962608853.unknown

_960115030.unknown

_960117247.unknown

_959548997.unknown

_959549005.unknown

_959549008.unknown

_959693090.unknown

_959549006.unknown

_959549004.unknown

_959548993.unknown

_959548996.unknown

_959548990.unknown

_959548972.unknown

_959548986.unknown

_959548987.unknown

_959548988.unknown

_959548976.unknown

_959548978.unknown

_959548983.unknown

_959548984.unknown

_959548980.unknown

_959548977.unknown

_959548974.unknown

_959548975.unknown

_959548973.unknown

_959548960.unknown

_959548969.unknown

_959548970.unknown

_959548967.unknown

_959548966.unknown

_959548958.unknown

_959548959.unknown

_959548949.unknown

_959548948.unknown

