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In this work the instability of a degenerate equilibrium position is studied
through the formal series solutions. The inversion of the Lagrange-Dirichlet
stability theorem is proved in the case of two zero eigenvalues and a nondegenerate
Newton’s diagram. This case includes all singularities appearing in a nonremovable
way in families depending on not more than 16 parameters. ¢ 1993 Academic

Press. [nc.

I. NOTATIONS

Let us consider the system of ordinary differential equations near the
equilibrium position:

F(& &) =0. (1)

Here &=(&', .., &7 e R, &= (d/di) E(t), F: R"xR" - R" is analytic, and
F(0,0)=0, F=(F', .., F")".

Choosing the quasihomogenity index x=(«,, .., 2,}€ Q", 2,> 0, defines
(in the fixed coordinate system) weights (or degrees):

deg[(£")"1--- (&) =Y wk,.
1

Having attached to the operator d/dr the weight 1 we can decompose F to
quasihomogeneous components, using its Maclaurin series

Fe =Y Fi&n),

i=0

where F, is ax-quasihomogeneous vector-function of degree o+ ju,
o6=1{0,,..,0,)eQ", and u is the smallest rational number generated by 1,
oy, .., &, (their greatest common divisor). In other words for every 4> 0,

F;(/...ilél, . /:1,,&:"; /].1‘ + Inl’ s A::,,+ lnn)
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All functions F{ (1 <i<n) are assumed not identically zero. The vector-
function Fy is also called x-cut of (1).
Example:

R+ —yz?=0
2407 =0.

Let 2=(1,2); then deg yy’=5, deg:z’=10, deg(—yvz?)=5, degs=3,
deg 17 =2,

yy? — yz? 0 23
F0=<" s > Fl=<~,>, F5=<O), 6=(52), u=1.

2. FORMAL SOLUTIONS

We introduce the space Rj, of all vector-polynomials of In ¢ of finite
degree and consider formal series solutions of (1) in the form

L
Cot *+ Y Cur (2)
j=t
where & M=(Ef o L& M) and £ eR" or ¢ eRp,
E=%io0 é:kxln"’l (this sum has only a finite number of terms). The
operator d/dr corresponds to the set of linear operators on R :

d
0= )
dint

%, =diag(—ao — ju) + &,

The second derivative corresponds to C,= 4%, -+ Z,.

THEOREM 1. If for (1) there exists a multiindex o and a vector £ e R”
such that

1. FO(CV(” 9050):0

2. For every jz1, det[(d/dg) Fo(S, %) | ey oen] 00 then there
exists a formal solution in the form (2), where all £,e R".

Proof. Let us substitute (2) into (1). Equating terms of smallest degree
gives the system Fy(¢, %,&)=0; it takes place at the point £,. The
subsequent terms are found inductively. At the jth step all £, ..., &, 1 are
already known; then for ¢, we have the system of linear algebraic equations

d

il £ ¥ __ ¥
[d&: FU(‘” Jlf) |(§0~‘J\J§OiJ 5T 6
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Vector { depends only on &, .., ;. Since here we consider ;e R” the
operator on the left side is an # x n matrix (nondegenerated by assumption
2). So this equation is solvable for every j. The proof is completed.

THEOREM 2. If for (1) there exists a multiindex « and a vector-
polynomial e Ry such that
L Fo(é()sgﬂé()):o'

2. For every j21, Im[(d/dl) Fo(&, ZE) sy sy ] = Rin, then there
exists a formal solution in the form (2), ¢, e Ry,.

THEOREM 3. If for the system F(& & E)=0 (F:R"xR"xR" - R"
analytic; F(0,0,0) = 0) there exists « and £,e R} such that
1. Fn(éu, 90‘5(» Coéo):O

2. For every j> 1, Im[(d/dE) Fol&, ¢, C,%)
there exists a formal solution (2), ;e R},

1=Ry}, then

(Z0. Z0&0. Codo)

Remark. 1f Fis a sum of three terms, linear by & quadratic by ¢, and
a term not containing time derivative (this is the case considered later),
then u can be chosen as the smallest common divisor of 2, «,, ..., «,,.

The proof of Theorems2 and 3 is completely analogous to the first
proof. It is worth emphasizing that the existence of formal solution is
claimed here (the series can diverge). The connection between formal
solution and the actual one is given by the following Kuznetsov’s theorem

[17.

THEOREM. If for (1) there exists a formal solution of the type (2) with
£,e Ry then there exists an actual solution such that it has the formal one
as an asymptotic expansion.

3. INSTABILITY PROBLEM

Consider a mechanical system in a potential field of external forces near
the equilibrium position which is not a local energy minimum. The case
when the quadratic part of the potential is nonnegative but degenerate is
considered. Under some assumptions instability of such equilibrium is
proved. We find a formal asymptotic solution in the form (2). It is called
asymptotic since each term tends to zero when time goes to infinity.
According to Kuznetsov’s theorem an actual solution exists and has the
same asymptotic expansion. Using invertability of time we get instability
immediately.
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Applying the splitting lemma [2] in the normal system of coordinates
[3] we can write the system of Euler-Lagrange equations in the form
cL d éL
=t (3)
6 dr o0&

Here ¢ e R”, vector from the configuration space, the Lagrangian takes the
form
LEH=TE O VE =3 3 ()
i=1+1
Here T stands for the kinetic energy, being quadratic by the velocities, and
positively defined for every position ¢, also T(0,&)=137 (&) The
nondegenerate quadratic part of the potential is 1 Y7, | (£')% to simplify
calculations we assume all eigenvalues equal to one. The rest of the
potential is ¥ its Maclaurin expansion starts with terms of degree at least
three and the origin is not a local minimum of ¥. So, the coordinate form
of (3) is
e — V@, L KEHHCOE 1<i<],
¢!

4)

&= -+ KE O+ ) I+1<i<n.

T eH

Here and later K(-,-) stands for any (different in different formulas)
analytic function, quadratic in the second argument, and ((£) is a linear
operator such that ||¢'(&)]| € ¢ || for some constant ¢ and small [&].

Further we consider the case /=2 and to simplify formulas we also
assume n =3, but the same reasoning is true for any n. We denote ¢' by
X, £2 by z, and & by p.

Let us study Newton’s diagram of the function V (all necessary
definitions are in [4]). Since the origin is not a local minimum of potential
energy, there are nonpositive' edges of the diagram [5]. Our first assump-
tion is that there exists at least one negative edge (of any dimension). The
nearest to the homogeneous form negative edge we denote /" and function
generated by I” by W. The case when I is a homogeneous form is studied
in [3], so the quasihomogeneity index is (B, f,) (B, # 5. say f§, <f,); it
is a vector with rational positive components, orthogonal to 7. For any
420,

W(ilx, iPzy= ' Wix, z);

" A cluster of monomials is called positive if the function defined by them is strictly positive
everyhwere near the origin outside the coordinate surfaces (3e>0:V | < &' #0Q,
1 <i<n= f{{)>0). A cluster of monomials is called negative if the function defined by them
can have negative values in any neighbourhood of the origin. The cluster is called degenerated
if it concerns neither of these two classes.
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se@ is a f-quasidegree of W. Now the function V is decomposed to
quasihomogeneous components:
Vix,z)y= Wi(x, z)+ Z Vix, z)
j=1

- } _ - f:" _ - Y -
Vi(Ahx, aPzy =30l (x, z).

Since f is defined up to multiplication by some constant, one can choose
it so that s — fi;, =2+ f,. As a multiindex from Theorem 3 we take, a e @3,
ay=f, 2= B,, ay=f,. As will be seen later, it is possible to choose any
o, greater than or equal to f§, less than or equal to 2 + 28, since the first
nontrivial term in the p(¢) expansion is of the type ¢t *, k=24 28,.

ExampLes. 1. The function F(x, z)= xz7+ 2x?z2 + 4x%z has a negative
homogeneous zero-dimensional edge (case studied in [3]). Here 8, = 8.,
Wi(x, z)=xz%

-1

X

——

2. The function V(x, z}=3x"z?+ x*z + 5x? satisfies our conditions,
because its one-dimensional (1, 2)-quasihomogeneous edge I is negative.
Here W(x, z)=3x:%+ x':.

-1
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3. The function V{x, z) = (x — z)* — x*z? does not satisfy the assump-
tion because its Newton diagram has only positive (zero-dimensional) and
degenerate (one-dimensional) edges.

.

(8]

Nt

| X
In the new notations Eqs. (4) read for & = (x, y, p)’,
e= - (x,_,-)—é SV )+ K(E 8+ ()
= —%(Y,z)— 5 (i Vi(x, 2)+ K(& O+ C(E)E (5)

p=—p+KEEH+C(E)E

To find its a-cut we build the table of degrees: deg ¥ =s5—a, =2+ u,;
deg(é/éx) W =s—u,; deg(8/éx) V,=s—a, + j; deg K> 2+ 2a,; deg ((¢)E >
242, degi=2+u,; deg(é/iz)W=5—2a,; degp=2+40;=2+u;
deg p=a,=2x,. So the x-cut is

~

é
$= —— W(x,z
* Ox (. )

0= - wix, - (6)
oz
0= —p

Consider the function W on the cylinder |x| =1. There exists a point
e=(e', e?)7 such that
1. W(e)<0
2. (8/0x) W(e)-e' <0, |e'| =1
3. (8/éz) W(e)=0
4. (¢¥éz?) W(e)=0.

505/103/1-5
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It follows from the conditions that the left vertex of I"is a positive edge;
hence lim ., , W(e',z)= +oc.

Our second assumption is that (0%/éz*) W(e) > 0.

Let us choose an initial vector ¢, in the form &,= (1*e', i*%¢2 0). The
first condition of Theorem 3 has the form

é
afa, +1) A%, = =47 — W(e)
0x

2
0= —i*"* = W(e)

ox
0=0.
It is satisfied by choosing
_[—al(al + l)e']”“ "2
(CW]/ox)(e) '

The operator from the second condition of Theorem 3 has the form
JTEL(3YaxT) Wie) AN n(8Ydx dz) W(e) O
A T3 dz ox) W(e) AT E(dYaztyW(e) 0
0 0 1

+
=
c o o
o o o

9

A (EYoxY) Wiey+ ¢, ATT% (8%ox dz) W(e) 0
=| i m@Yox 6z) Wie) A 2(0%0z%) Wie) O

0 0 1
&Gé+a* 0 0
+ 0 0 0|=B,+8B,
0 0 0

Here ¢;=(a,+ )@, +uj+1); ¢=2a,+2u,+1. The operator B+ B,
maps R} to R} . Observe that if det B,#0 then Im(B;+ B;)= R{ . But
det B, depends linearly on ¢;, which is monotonically increasing in j. So
there exists not more than one critical number j° such that det B,o=0.
Straightforward calculations show that the critical value is j®=p ' If it
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is not a natural number then the determinant is never equal to zero and the
formal solution can be found in the form (2) with &, R” (without In). It
takes place for example when s is an odd number. Otherwise the following
propositions are true:

1. dimKer Bp=1 and (1, z, 0)" € Ker B,o for some -.
2. (1,0,0)"¢Im B

Hence Im Bp-}-E(Ker By)=Rj,. More details can be found in [6]. All
conditions of Theorem 3 are checked. So we have proved the existence of
a formal solution. Thanks to Kuznetsov’s theorem there exists also an
actual asymptotic solution. Since time is invertible in such systems, the
instability of equilibrium is proved. Now we can formulate.

THEOREM 4.  The equilibrium position with the following three conditions
is unstable.

1. There are not more than two zero eigenfrequencies.

2. The absence of the local minimum at the equilibrium position can be
established through Newton's diagram.

3. The “direction of the fastest descent of the potential’’ is not
degenerated (i.e., (*W/3z*)(e) #0).

4. APPENDIX

For degenerate critical points of smooth real functions of many variables
the normal forms (which are unremovable in smooth families with not too
great a number of parameters) have been computed [4].

THEOREM 5. If the equilibrium position is a simple or uni- or bimodal
singularity of the potential, with no local minimum at this point, then the
motion equations have a solution, asymptotically approaching this equilibrium
position.

In the classes of functions of codimension not greater than 16, only these
types of singularities can appear in an unremovable way. For simple and
unimodal cases this theorem has been proved in [3]. The proof in bimodal
cases uses the table of normal forms of germs of smooth functions,
composed by Zakalukin. All the forms can be analyzed through Newton's
diagram since they have either cubic terms or not more than two zero
eigenfrequencies.
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ExaMpLE. To demonstrate the work of the algorithm let us apply it to
the analysis of the singularity of the W, , type (of [4]). The corresponding
potential is V' =z*+ z2x* + x(a+ bx) X* + (p*) + -+ +(p")~

Newton’s diagram has the form

N ]

Ty

The first nontrivial form is the fourth one (dotted line). The corre-
sponding edge consists of the only monomial z* and is positive. So the
results of [3] cannot be used. The four edges I', = {z*, z2x*}, I, = {z2x°},
Iy={z2x" ax®*%), I,={ax®***} (when a is negative or k odd) are
negative. We must choose, however, only I for only its left end is a
positive edge. The corresponding indices are o, =3, a,=2; s=3. After
finding these numbers the following steps are simple. To shorten all the
computations let us assume a=1, =0, n=3, €(&)E=0, K(& &)=
(0, —¥2, —x)7.

The system (5) has the form

¥= —3z2x*—7x®
F= 4t —2zxP 4 2
p=—p+x°.
The a-cut (6) after substituting the series is given by
Coxo= —3z5x?
0= —d4zy—2z4x}

0= —p,.

Its solution x,, z4, po can be easily obtained. Afterward, at each step only
a linear system with nondegenerate (when p '3 j) matrix B; will appear.
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At the fourth (u =) step det B,=0. Thus, starting from this step &(-) is
no longer a vector but rather a vector-polynomial of In 7. In such a way the
whole formal solution can be constructed.
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