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The Analysis of Deltas, State Prices and VaR: A New Approach

Suppose an asset's price follows a one-dimensional di®usion. Investors in that asset and

derivatives thereon face three related problems. The ¯rst concerns determining the Value at Risk

(VaR) in the event of a price collapse with, say, a 1-in-20 chance of occurrence.1 The VaR,

determined by the true price process, must often be estimated given only coarse knowledge of

the complex relation between the asset's volatility and its value. The valuation of contingent

claims requires the determination of the probability distribution of the asset's future returns under

the risk-neutral process. Although the drift of the risk-neutral process is known from the risk-

free rate, limited knowledge of the functional form of the volatility parameter of the true price

process implies only limited knowledge of that same parameter of the risk-neutral process. Hedging

that contingent claim requires the calculation of position deltas. Deltas are determined by the

probability distribution of the underlying asset's future returns under the delta process. Limited

knowledge of the functional form of the volatility parameter of the true price process implies only

limited knowledge of both the drift and the di®usion parameters of the delta process. Thus all

three problems involve the determination of probabilities of events given only limited knowledge

of the relevant di®usion.

This article shows how to use limited knowledge of the relation between an asset's volatility

and its price to bound the VaR associated with investing in the asset and bound the prices and

deltas of derivative claims thereon. The bounds we derive follow from two observations. First,

the probabilities of interest can be determined as the probabilities of the equivalent events under

any monotonic transformation of the original process. Second, in the setting considered in this

article, one can always monotonically transform an original di®usion process with a level-dependent

di®usion parameter into a second di®usion process with a deterministic di®usion parameter. While

the increased tractability due to a deterministic di®usion parameter comes at the expense of a more

complex drift parameter, limited knowledge of the functional form of the volatility parameter of the

1 See Linsmeier and Pearson (1996) and Du±e and Pan (1997) for reviews of techniques in
this area.
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original process can be used to place a deterministic bound on the drift of the transformed process.

Thus bounds on probabilities can be determined by calculating the probabilities of related events

under an arithmetic Brownian motion process, these bounds take the familiar form of cumulative

standardized normal density functions.

The Merton (1973) classic no-arbitrage bounds on option prices presume no knowledge

of the volatility parameter. The similarly \weak" bounds on contingent claims' deltas given in

Theorem 1 of Bergman, Grundy and Wiener (1996) presume only that the underlying asset's price

follows a di®usion process. Complete knowledge of that di®usion's volatility parameter would allow

one to price and hedge options exactly. This article considers a middle ground|what can one say

about pricing and hedging given some limited knowledge of the volatility parameter. Limited

knowledge could, in principal, take a myriad of forms. We determine the relevant bounds on

deltas, state prices and VaR when one knows, or can bound, volatility at the asset's current price

level and/or some alternate price level and, in addition, that the volatility parameter satis¯es one

or more of the following restrictions: (i) the elasticity of volatility with respect to the asset's

price is at least ¡1; (ii ) the volatility is non-decreasing in the asset's price; (iii ) the volatility is

non-increasing in the asset's price; and (iv) the volatility is everywhere bounded above and/or

below.

In order to derive bounds on VaR, options prices, and option deltas, it is ¯rst necessary

to characterize the source of any time-dependence in the volatility parameter. There are two

natural sources of time-dependence: time variation in the arrival rate of information concerning the

underlying asset; and in°ation. While the ¯rst source is obvious, the link between time-dependence

and in°ation is less familiar. Whenever an asset's volatility depends on its price, that dependence

will be on the real, and not the nominal, price. Thus when the di®usion describing changes in an

asset's value is written in terms of nominal prices, the volatility parameter thereof must depend on

both the nominal price and, in order to re°ect the appropriate in°ation adjustment, time as well.

The time-dependence in an asset's volatility parameter implies a natural choice from the large

set of functions that monotonically transform a general one-dimensional di®usion process into a
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process with a deterministic di®usion parameter. Distinguishing between real and nominal prices

allows us to establish that when restriction (i) is satis¯ed and the real interest rate is non-negative,

then the delta of a call option is at least 1/2 whenever the underlying asset's real price exceeds

the real value of the option's exercise price. We also demonstrate that this result need not be true

when the volatility parameter of the price process does not satisfy restriction (i). We do so by

deriving an analytic solution to a particular call option pricing problem in which the underlying

asset's di®usion parameter is ¯rst increasing and then, in violation of restriction (i ), decreasing in

the price of the underlying asset. For this particular process, the delta of an at-the-money call is,

in direct contrast to the result in a Black-Scholes setting, always less than 1/2.

Our work on analyzing probabilities by considering the equivalent event under a monotonic

transformation of the original di®usion process is an extension of results in two earlier papers.

Nelson and Ramaswamy (1990) use a speci¯c case of the transformation used in this article to

obtain the basis of their development of a computationally simple binomial approximation to a

di®usion process with a level-dependent volatility. The approach in our article is similar in spirit

to that of Goldenberg (1991). Goldenberg shows that when an initial one-dimensional risk-neutral

di®usion process can be transformed to obtain a second process with a known transition density

function, closed-form option pricing models can be determined from that known transition density.

Goldenberg uses this result to establish two new classes of closed-form option pricing models: The

class of residual volatility option pricing models corresponds to the set of risk-neutral processes

that can be transformed to yield arithmetic Brownian motion; and the class of generalized square

root option pricing models corresponds to the set of risk-neutral processes that can be transformed

to yield a standard Bessel di®usion. Unlike Goldenberg, our interest is in the case where the

absence of complete knowledge of the volatility parameter of the original process precludes, by

default, a transformation to a process with a known transition density. We show that limited

knowledge of the volatility parameter of the original process can still allow a transformation to a

second process whose transition density function can be bounded in terms of the transition density

of an arithmetic Brownian motion process.
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Section 1 contains the analysis of probabilities in di®usion settings and establishes the

set of transformations that yield a deterministic di®usion parameter process. The economics of

time-dependence in an asset's volatility parameter are used to select a particular transformation

from that set that is applied throughout the remainder of the article. Section 2 de¯nes the delta

process and shows that a call option's delta is equivalent to its probability of ¯nishing in-the-money

under the delta process. Bounds on deltas for broad classes of underlying stock price processes are

contained in Lemma 1. Tables are used to numerically illustrate the tightness of these bounds on

true deltas when the underlying asset follows a CEV process and when the underlying follows a

displaced di®usion process. Bounds on state prices are derived in Section 3 and set out in Lemma

2. Provided that restriction (i) is satis¯ed, we show that deltas can be bounded in terms of state

prices, and hence that the information about state prices implicit in even a coarse grid of observed

option prices can be used to place an empirical bound on deltas. Section 4 shows how to use

limited knowledge of the functional form of the volatility parameter to place bounds on the VaR

associated with investing in the underlying asset and provides a numerical illustration of these

bounds. Bounds on true probabilities and VaR are contained in Lemma 3 and 4 respectively.

Section 5 contains our conclusions and suggests extensions of this line of research.

1. Some Properties of Probabilities in Di®usion Settings

Let ξy,t
τ denote the time τ value of a di®usion that at time t < τ starts at the level y and

then obeys the stochastic di®erential equation (SDE)

dξτ = µ(ξτ , τ )dτ + σ(ξτ , τ )ξτ dBτ

= µ(ξτ , τ )dτ + z(ξτ , τ )dBτ .
(1)

We follow the ¯nance literature and refer to the function σ(¢) as the volatility parameter. Following

Karlin and Taylor (1981, p. 159) we refer to the product z(¢) := σ(¢)ξ as the di®usion parameter.

We use numerical subscripts to denote partial derivatives. Thus, for example z11(ξ, t) is the second

partial of the di®usion parameter with respect to its ¯rst argument, the level of the process. In

addition to imposing Lipschitz and growth restrictions on the parameters µ and z that assure the
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existence of a unique Ito process satisfying (1) for each possible starting value in IR+, whenever

we apply Theorem 1 (developed below) we will also assume that σ satis¯es:

Assumptions Set. (i) σ is once di®erentiable in ξ and once di®erentiable in t. (ii) σ(ξ, t) > 0 for

all ξ > 0 and all t. (iii) The function F given (below) in expression (2) is well de¯ned for all ξ ¸ 0.

Consider the probability of the event that at time T the process has reached a level above

k; Pr
¡
ξy,t

T
> k

¢
. The analysis of this probability is complicated by the dependence of the volatility

parameter on the level of the process. Hence our interest in transforming the original problem into

one involving a process whose di®usion parameter takes a particularly simple form. We ¯rst note

that the probability of interest is equal to the probability of the following equivalent event.

Observation 1. (Preservation of Probability) Suppose ξ starts at y and follows the dif-

fusion in (1). If the function F (ξ, t) is strictly increasing in ξ, then

Pr
¡
ξy,t

T > k
¢

= Pr
¡
F (ξy,t

T , T ) > F (k, T )
¢
.

When F is twice di®erentiable in ξ and once di®erentiable in t, the random variable F (ξ, t)

will follow a di®usion. Consider one such speci¯cation of the F function

F (ξ, t) :=

ξα(t)Z

A(t)

a(t)
σ(x/α(t), t)x

dx, (2)

where a(t), A(t) and α(t) are positive smooth functions of time. For this speci¯cation of the

F function, the transformed process has a deterministic di®usion parameter. A similar form

of simplifying transformation was used for reducing state dependence of volatility and drift by

Ricciardi (1976). In ¯nancial literature similar transformation has been used by Jamshidian (1991)

and Goldenberg (1991). In order to apply this transformation one has to know σ exactly, since it

appears in the denominator, however as we show below in some cases even qualitative information

about σ can be used for getting bounds on some economic variables.

Observation 2. (Transformation to a Deterministic Di®usion Parameter Process)

Suppose ξ starts at y at time t and follows the di®usion in (1), and the restrictions of the Assumption

Set are satis¯ed. For the function F (ξ, t) de¯ned in (2), the dynamic of F is given by

dFτ = ψ(Fτ , τ )dτ + a(τ )dBτ ,
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where the functional form of the drift parameter ψ is set out in Appendix A.

The straightforward application of Ito's Lemma that underlies Observation 2 is set out in Appendix

A. The transformation in (2) is a generalization of the familiar technique of using the natural log

to transform a process following geometric Brownian motion into a process following arithmetic

Brownian motion. Rather than transforming the drift while maintaining the di®usion parameter

at the expense of a change in the probability measure as in Girsanov's Theorem, one can transform

the di®usion parameter while maintaining the Wiener process at the expense of a change in the

drift. The functions a(t), A(t) and α(t) in (2) are choices to be made in de¯ning F . The choice of

the function a(t) is, e®ectively, the choice of the deterministic di®usion parameter in the dynamic

of F . Given the choice of the α(t) function, the choice of the function A(t) can be thought of as

the choice of the time t starting value of the F process. The choice of the α(t) function in°uences

the drift of the F process and, as will be seen, can be critical in analyzing certain interesting

economic settings. In particular, when the di®usion process describes the dynamic of an asset's

price and that asset's volatility is a function of its price, then the appropriate choice of α(t) will

prove useful in appropriately distinguishing its real price and its nominal price. One can also

consider an alternate transformation of the original process provided by the function F with the

property that the di®usion parameter of the dynamic of F is directly proportional to F ; i.e., the

volatility parameter of the dynamic of F is deterministic.

Observation 20. (Transformation to a Deterministic Volatility Parameter Process)

Suppose ξ starts at y at time t and follows the di®usion in (1), and the restrictions of the Assumption

Set are satis¯ed. For the function F de¯ned in

F(ξ, t) := exp

0
B@

ξα(t)Z

A(t)

a(t)
σ(x/α(t), t)x

dx

1
CA ,

the dynamic of F is given by

dFτ = λ(Fτ , τ )dτ + a(τ )FτdBτ ,

where the functional form of the drift parameter λ is set out in Appendix A.
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The F function of Observation 2 can be used along with Observation 1 to develop a new

expression for Pr
¡
ξy,t

T
> k

¢
that we state as Theorem 1. This new expression is an expression for

the probability of the equivalent event that F (ξy,t
T

, T ) > F (k, T ).

Theorem 1. Suppose ξ starts at y at time t and follows the di®usion in (1), and the restrictions

of the Assumption Set are satis¯ed. Let a(t), A(t) and α(t) be positive smooth functions of t.

De¯ne the function F as in (2) and let ψ(Fτ , τ ) denote the drift parameter of the dynamic of F .

The probability that ξy,t
T exceeds k can be expressed as

Pr
¡
ξy,t

T > k
¢

= Pr

0
@F (y, t) ¡ F (k, T ) +

R T

t ψ(Fτ , τ )dτqR T

t [a(τ )]2dτ
> X

1
A (3)

where the random variable X := ¡
R T
t a(τ )dBτqR T
t [a(τ )]2dτ

is distributed N (0, 1).

Theorem 1 is proved in Appendix A.

If one had complete knowledge of the functional form of the volatility parameter, one could

then use Theorem 1 to determine the relevant probability exactly. Our interest is in settings where

one has only limited knowledge of σ(ξ, t), yet that limited knowledge allows one to determine lower

and upper bounds on both ψ(F (ξ, t), t) and F (y, t) ¡ F (k, T ) such that, for all ξ and t,

l(t) ·ψ(F (ξ, t), t) · u(t),

and, for all y and t,

L(y, t) · F (y, t) ¡ F (k, T ) · U (y, t).

Given a deterministic bound on the drift of the F process, Proposition 2.18 of Chapter 5 of Karatzas

and Shreve (1991) implies a ¯rst-order stochastic dominance relation between the distribution of

random increments to F and the distribution of random increments over the same time interval

in an arithmetic Brownian motion process with a unit di®usion parameter and a drift parameter

equal to the deterministic bound.

Whenever our limited knowledge of the volatility parameter allows us to determine l(t) and
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L(y, t) and/or u(t) and U(y, t), Theorem 1 then implies

Pr
¡
ξy,t

T
> k

¢
¸ Pr

0
@L(y, t) +

R T

t l(τ )dτqR T

t [a(τ )]2dτ
> X

1
A (4a)

= N

0
@L(y, t) +

R T

t l(τ )dτqR T

t [a(τ )]2dτ

1
A , (4b)

and

Pr
¡
ξy,t

T
> k

¢
· Pr

0
@U (y, t) +

R T

t u(τ )dτqR T

t [a(τ )]2dτ
> X

1
A (5a)

= N

0
@U (y, t) +

R T

t u(τ )dτqR T

t [a(τ )]2dτ

1
A . (5b)

Even if one had complete knowledge of the functional form of the volatility parameter, and hence

could work directly with Theorem 1, the problem would be di±cult since the random variables on

each side of the inequality in (3) are not, in general, independent. But when our limited information

allows us to place a deterministic bound on ψ(F (ξ, t), t), then the left-hand-sides of the inequalities

in (4a) and (5a) are not random variables, and hence the simpli¯cation to (4b) and (5b). Consider

the problem of placing a deterministic bound on ψ(F (ξ, t), t). As shown in Appendix A,

ψ(F (ξ, t), t) = a(t)
µ

µ(ξ, t)
z(ξ, t)

¡ 1
2
z1(ξ, t)

¶
+ F2(ξ, t). (6)

One determinant of F2(ξ, t) is σ2(ξ, t), and hence placing a bound on ψ requires an understanding

of the economics of any time-dependence in the volatility parameter. As we now show, the nature

of this time-dependence implies natural choices for the functions a(t), A(t), and α(t), choices which

allow the F2 component of ψ to be bounded.

In what follows we consider several examples of how this result can be used. One is when

volatility is multiplicatively separable, then the transformation (2) takes simple form. Another case

is when the time dependence is due to in°ation only and also leads to signi¯cant simpli¯cations.

However we should notice that these are only examples one can not derive a general class of

processes when the transformation becomes simple. The existsing results provide a necessary and

su±cient conditions for a transformation that makes both drift and volatility state independent,
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see Ricciardi (1976) and Schuss (1980), our goal is di®erent since we do not have to make the drift

state independent.

1.1. The economics of a time-dependent volatility parameter

Let s denote the nominal price of an asset whose risk-neutral dynamic is given by:

dξτ = r(τ )ξτ dτ + σ(ξτ , τ )ξτdBτ

= r(τ )ξτ dτ + z(ξτ , τ )dBτ ,
(7)

where r(t) is the time t nominal risk-free rate. A dependence of σ(¢) on τ is often viewed as an

innocuous generalization of the volatility parameter to allow for time-varying information arrival.

There is a second and more important reason to work with a time-dependent σ(¢) function. When-

ever σ(¢) depends on s and in°ation is non-zero, then the volatility parameter must depend on

both s and time. The implications for option pricing are made clear in section 2.1.

1.1.A. Time-varying information arrival

The volatility of the price process is time-dependent when more information about the

underlying asset is released at some times than at other times|see Patell and Wolfson (1979) and

(1981). This is captured by modeling the volatility parameter as multiplicatively separable in its

time- and price-dependence.2

σ(s, t) := m(t)n(s).

For a(t) = m(t), A(t) = k and α(t) = 1, the function F takes the form

F (ξ, t) =
Z ξ

k

m(t)
m(t)n(x)x

dx =
Z ξ

k

1
n(x)x

dx,

with the immediate property that for all ξ and t,

F2(ξ, t) = 0.

1.1.B. In°ation and a price-dependent volatility parameter

2 This simple form includes two interesting special cases: volatility does not depend on time
when m(t) ´ 1; and volatility is a deterministic function of time when n(s) ´ 1 (a Black-Scholes
setting).
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For notational ease only, we assume henceforth that r(t) = r for all t. For similar notational

ease we also assume that the deterministic in°ation rate is a constant, i. The real risk-free rate

is then the constant φ = r ¡ i. Assume for the moment that information about the underlying

asset does arrive uniformly through time. Let q denote the real value of a stock. The risk-neutral

process describing changes in the real value of the stock is assumed to be:

dqτ = φqτ dτ + v(qτ )qτ dBτ .

Note that the volatility function v(q) is not time-dependent. Let pt denote the price level at time

t, with the price level normalized to unity at time 0. Let st = pt £ qt = eit £ qt denote the time t

nominal price of the stock. From Ito's Lemma we have that the nominal price of the stock follows

the di®usion:

dsτ = (φ + i)sτ dτ + v(qτ )sτ dBτ

= (φ + i)sτ dτ + v(e¡iτ sτ)sτ dBτ

= rsτ dτ + σ(sτ , τ )sτ dBτ .

Even though the volatility function v is not time-dependent, the volatility function σ is time-

dependent and, in this case, the volatility parameter in (7) will take the form:

σ(s, t) = v(se¡it).

As a further example of the need for care when working with a price-dependent volatility

function in a world of non-zero in°ation, suppose that the risk-neutral process for the nominal

price of a stock is given by:

dsτ = rsτ dτ + σ(sτ )sτdBτ .

Note that the function σ(s) is not time-dependent. This is a very common speci¯cation of the risk-

neutral process. But this speci¯cation is far from innocuous. The assumed lack of time-dependence

in the volatility function σ(¢) has the non-trivial economic implication that the constant in°ation

rate i must be i = 0 !
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In general, the time-dependence of volatility can re°ect both a non-zero in°ation rate and

a time varying rate of information release:

σ(s, t) = m(t)v(se¡it).

Without loss of generality, we assume in the remainder of the article that m(t) = 1 for all t.

In de¯ning F we always choose a(t) = 1, A(t) = k (later it will be used as a strike price) and

α(t) = ei(T¡t).3

F (ξ, t) =
Z ξei(T¡t)

k

1
σ(xe¡i(T¡t), t)x

dx

=
Z ξei(T¡t)

k

1
v(xe¡iT )x

dx,

and

F2(ξ, t) = ¡ iξei(T¡t)

v(ξei(T¡t)eiT )ξei(T¡t) = ¡ i
σ(ξ, t)

.

Armed with Theorem 1 and this speci¯cation of the F function we now turn to the analysis of

the problems of hedging and pricing derivatives and the determination of VaR when we have only

limited knowledge of the volatility parameter of the relevant di®usion.

2. Bounds on Deltas

In order to apply Theorem 1 to the analysis of position deltas, we must ¯rst demonstrate

that deltas are determined by the probability distribution of the realization of a di®usion process

at the position's terminal date. Let V (s, t) denote the nominal price of a European contingent

claim on an underlying asset whose risk-neutral process is given by (7). When, in particular, a

call option is considered, c instead of V will be used to denote its nominal price. The contractual

payo® function is g(¢), meaning that if the underlying price is s at the expiration date T , then the

contingent claim will pay o® g(s). Theorem 2 establishes that a contingent claim's delta can be

3 When m(t) 6= 1 for all t, the bounds developed in Lemmas 1, 2, 3 and 4 continue to apply
with T ¡ t replaced by

R T
t m(τ )dτ where appropriate.
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expressed as the expectation of its delta at maturity under a particular di®usion process for the

underlying asset.4

Theorem 2. (Bergman (1983)) Suppose the risk-neutral process for the underlying asset is given

by (7). Consider a European contingent claim on this asset whose time T contractual payo® is

g(¢). The delta of this claim is given by

V1(s, t) = Efg1(ξs,t
T )g,

where the dynamic of ξτ is described by

dξτ = (rξτ + z1(ξτ , τ )z(ξτ , τ )) dτ + z(ξτ , τ )dBτ .

Theorem 2 is proved in Appendix A. The stochastic process that determines a claim's delta, the

delta process, is neither the true process, nor the risk-neutral process.

De¯nition 1. (The Delta Process) When the risk-neutral process is given by (7), the fol-

lowing process will be said to be the corresponding delta process:

dξτ = (r(τ )ξτ + z1(ξτ , τ )z(ξτ , τ )) dτ + z(ξτ , τ )dBτ . (8)

The di®usion parameter of the delta process is common to the true process, the risk-neutral

process, and the delta process. The drift of the delta process is the sum of the risk-neutral drift

plus a term that depends on that common di®usion parameter, and will exceed (be less than)

the risk-neutral drift when z1(s, t) is positive (negative). In the case of a call option, Theorem 2

specializes to an equality between a call's delta and its probability of ¯nishing in-the-money under

the delta process. For a call option, c(s, T ) = g(s) = max[0, s ¡ k], and

g1(s) =
½ 1, if s > k;

0, if s < k.

Hence, for a call option, Theorem 2 specializes to:

c1(s, t) = Efg1(ξs,t
T

)g = Pr
¡
ξs,t

T
> k

¢
,

4 An extension of Theorem 2 to the case of a multi-dimensional di®usion setting (i.e., a
setting with stochastic volatility) can be found in the appendix to Bergman, Grundy and Wiener
(1996). An independent derivation of Theorem 2 in a deterministic volatility setting can be found
in Carr (1993).
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with the dynamic of ξτ given by the delta process in (8). Whenever a European-style contingent

claim is equivalent to a portfolio of call options, bounding the probability that the delta process

¯nishes above any given level allows one to place a bound on the delta of that contingent claim.

2.1. Theorems 1 and 2 and option deltas

When the F transform is applied to the delta process, the drift of the resultant F process

(given in general in (6)) specializes to:5

ψ(F (ξ, t), t) = a(τ )
µ

µ(ξ, τ )
z(ξ, τ )

¡ 1
2
z1(ξ, τ )

¶
+ F2(ξ, τ )

= 1 £
µ

rξ + z1(ξ, τ )z(ξ, τ )
z(ξ, τ )

¡ 1
2
z1(ξ, τ )

¶
¡ i

σ(ξ, τ )

=
r ¡ i

σ(ξ, τ )
+

1
2
z1(ξ, τ ). (9)

Substitution for F , ψ and a in (3) then gives6

c1(s, t) = Pr

0
@

R sei(T¡t)

k
1

σ(xe¡i(T¡t) ,t)xdx +
R T
t

³
r¡i

σ(ξτ ,τ ) + 1
2 z1(ξτ , τ )

´
dτ

p
T ¡ t

> X

1
A , (10)

where ξτ starts at s and time t and follows the delta process in (8), and X is determined by the

Wiener component of (8). With the aid of a change of variables, q := xe¡T , the call's delta can

be expressed entirely in terms of the real value of the underlying asset, se¡it, the real value of the

exercise price, ke¡iT , the function, v(¢), that relates the volatility to the real value of the underlying

asset, and the real risk-free rate, r ¡ i; i.e., entirely in real terms.

c1(s, t) = Pr

0
@

R se¡it

ke¡iT
1

v(q)q dq +
R T
t

³
r¡i

v(ξτe¡iτ ) + 1
2

¡
v1(ξτ e¡iτ)ξτe¡iτ + v(ξτ e¡iτ )

¢´
dτ

p
T ¡ t

> X

1
A .

5 In a Black-Scholes setting with a constant volatility, σ̂, z1(s, t) = σ̂ and expression (9)

simpli¯es to ψ(F (ξ, t), t) = r¡i+ 1
2 σ̂2

σ̂ .
6 In a Black-Scholes setting with a constant volatility, σ̂, evaluation of the integrals in (10)

yields the familiar Black-Scholes expression for the hedge ratio:

c1(s, t) = N

Ã
ln (s/k) +

¡
r + 1

2 σ̂
2¢ (T ¡ t)

σ̂
p

T ¡ t

!
.
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What is important is that when i 6= 0, expression (10) can not be re-expressed purely in terms of

nominal prices and nominal interest rates alone unless the volatility function σ(¢) does not depend

on the price level; i.e., it is only in a Black-Scholes type setting that option prices can be written

in terms of nominal prices and nominal interest rates without reference to the in°ation rate.

2.2. Bounds on deltas given only limited knowledge of the volatility parameter

Suppose that at some time t we know the underlying asset's current volatility, σ(s, t),

and/or σ(ke¡i(T¡t) , t). Suppose also that we have the additional knowledge that the volatility

parameter satis¯es one or more of the following restrictions for all s and t:

σ1(s, t)s
σ(s, t)

¸ ¡1.(i)

σ1(s, t) ¸ 0.(ii)

σ1(s, t) · 0.(iii)

σ · σ(s, t) · σ.(iv)

Clearly (iv) is always trivially satis¯ed with σ = 0 and σ in¯nite. Note that satisfaction of

restriction (ii) immediately implies that restriction (i ) is satis¯ed. Restriction (i) implies that the

di®usion parameter is non-decreasing in the asset price; i.e., z1(s, t) ¸ 0 for all s and t. Under

restriction (i), σ1 can be negative, but not `too' negative; e.g., restriction (i) is satis¯ed in the

constant elasticity of variance (CEV) setting studied in Cox (1975). In this CEV setting the

di®usion parameter takes the form z(s, t) := ·σ(t)sρ, where 0 · ρ · 1, ·σ(t) is the time t volatility

given a nominal stock price of unity, and the elasticity of volatility, ω(s, t), is ω(s, t) = ρ¡ 1. Since

ρ ¸ 0, ω(s, t) ¸ ¡1. Finally, note that since z(0, t) = 0 for all limited liability assets, a risky,

limited liability asset could never satisfy a restriction that z1(s, t) · 0 for all s and t.

How can we use our limited knowledge of the volatility parameter to bound the value for

delta given by (10)? As one illustration, suppose we know that the volatility parameter satis¯es

restriction (i). When z1(s, t) ¸ 0 for all s and t and r ¸ i, the drift of the F process given in (9)

is non-negative. A deterministic lower bound on the drift then takes the simple form l(t) := 0; i.e.,

14



when ξτ follows the delta process, the distribution of F (ξs,t
T , T ) ¡ F (s, t) ¯rst order stochastically

dominates the distribution of increments over an interval of length T ¡ t in a zero drift, unit

di®usion parameter, arithmetic Brownian motion process. Knowledge that z1(s, t) ¸ 0 for all s

and t also allows us to obtain a lower bound on F (s, t) ¡ F (k, T ).

L(s, t) :=
s ¡ ke¡i(T¡t)

σ(s, t)s

=
Z sei(T¡t)

k

1
σ(s, t)sei(T¡t) dx

·
Z sei(T¡t)

k

1
σ(xe¡i(T¡t), t)x

dx

= F (s, t) ¡ F (k, T ).

Substituting for l(t) and L(s, t) in (4) immediately provides a lower bound on an option's delta

that is satis¯ed whenever r ¸ i and z1(s, t) ¸ 0 for all s and t. This bound is the special case of

the ¯rst of the bounds set out in Lemma 1 below, applicable when σ is in¯nite and r ¸ i.

Lemma 1. (Bounds on Deltas) Suppose that the risk-neutral process for the underlying asset

starts at s at time t and follows the di®usion given in (7) with σ · σ(s, t) · σ for all s and t.

Suppose also that the restrictions of the Assumption Set are satis¯ed. Let M := max
h

r¡i
σ , r¡i

σ

i

and m = min
h

r¡i
σ , r¡i

σ

i
.

I. Suppose that z1(s, t) ¸ 0 for all s and t. A call's delta is then bounded below as:

c1(s, t) ¸ N

Ã
s¡ke¡i(T¡t)

s + m σ(s, t)(T ¡ t)
σ(s, t)

p
T ¡ t

!
. (11)

II. Suppose that σ1(s, t) ¸ 0 for all s and t. A call's delta is then bounded below as:

c1(s, t) ¸ N

Ã
ln

¡
s/ke¡i(T¡t)¢ +

¡
m + 1

2 σ
¢
σ(s, t)(T ¡ t)

σ(s, t)
p

T ¡ t

!
. (12)

III. Suppose that σ1(s, t) · 0 for all s and t. A call's delta is then bounded above as:

c1(s, t) · N

Ã
ln

¡
s/ke¡i(T¡t)¢ +

¡
M + 1

2σ
¢
σ(ke¡i(T¡t) , t)(T ¡ t)

σ(ke¡i(T¡t), t)
p

T ¡ t

!
. (13)

Lemma 1 is proved in Appendix A.
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The min[¢, ¢] and max[¢, ¢] functions in (11), (12) and (13) re°ect the fact that, in general,

the real risk-free rate, r ¡ i, could be either positive or negative.7 It is important to recognize how

σ(s, t) enters the right-hand-side on inequalities (11) and (12). Obviously, if one knew σ(s, t) for

all s and t, then one could determine option deltas and prices exactly and (11) and (12) would

be simply quick consistency checks on one's numerical solution technique. But, when one knows

only the volatility at the current price and time and that z1(s, t) ¸ 0 or σ1(s, t) ¸ 0 for all s and

t, then (11) and (12) become the focus. What if one does not know the volatility at the current

price and time? Then one uses the Lemma 1 precondition, that σ · σ(s, t) · σ for all s and t, to

substitute the appropriate bound on volatility for σ(s, t) in the right-hand-side of (11) and (12).

Even when the known bounds on volatilty are simply 0 · σ(s, t) · 1, expressions (11) and (12)

are not without content. For example, as shown in detail in the following subsection, whenever

the real risk-free rate is non-negative and z1(s, t) ¸ 0 for all s and t, then both (11) and (12) state

that the delta of a call is at least 1/2 provided the real value of the underlying exceeds the real

value of the option's exercise price.

Tables IA and IB demonstrate that the bounds in Lemma 1 can be quite tight in interesting

settings. Table IA compares the true deltas of call options in a CEV world to the lower bound

given in (11).8 The bound in (11) is relevant since in a CEV world, z1(s, t) ¸ 0 for all s and t.

The risk-neutral CEV process for the asset's nominal price is assumed to take the form

dξτ = rξτ dτ + ·σξρ
τ dBτ

which, given the Section 1.1. discussion of the time-dependence of volatility, implies that the

in°ation rate must be zero. Since σ is in¯nite in a CEV setting, a positive nominal risk-free rate

7 Note that a Black-Scholes setting simultaneously satis¯es both the restriction that σ1(s, t) ¸
0 for all s and t and that σ1(s, t) · 0 for all s and t, with σ̂ = σ = σ(s, t) = σ(ke¡i(T¡t) , t) = σ.
Substituting σ̂ into the right-hand-sides of inequalities (12) and (13) gives

c1(s, t) = N

Ã
ln (s/k) +

¡
r + 1

2 σ̂
2¢ (T ¡ t)

σ̂
p

T ¡ t

!
.

8 The Mathematica 3.0 program that calculates the true deltas is available upon request.
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implies that the min[¢, ¢] term in (11) is zero, and the inequality in (11) simpli¯es to

c1(s, t) ¸ N
µ

s ¡ k
sσ(s, t)

p
T ¡ t

¶
.

The ¯rst column of Table IA reports this lower bound. The remaining columns report the options'

true deltas for various values of the elasticity parameter ρ. As ρ varies, the value of ·σ is altered so

that the current volatility is held constant at its assumed known value.

Table IB compares the true deltas of call options in a displaced di®usion world to the lower

bound given in (12). The calls are assumed to be written on a non-dividend-paying, unlevered

¯rm that has both a riskless and a risky division. The volatility of the risky division's assets is

a constant, σ̂. The fraction of the ¯rm's assets currently held in the riskless division is f, and

no transfers between the two divisions will occur during the life of the option. In this displaced

di®usion world, σ1(s, t) ¸ 0 for all s and t and hence the bound in (12) is relevant. When i = r

the bound simpli¯es to

c1(s, t) ¸ N

Ã
ln

¡
s/ke¡r(T¡t)¢

σ(s, t)
p

T ¡ t

!
.

The ¯rst column on Table IB reports this lower bound. The remaining columns report the options'

true deltas for various values of f . As f varies, the value of σ̂ is altered so that the ¯rm's current

volatility is held constant at its assumed known value.9

We now turn to the implications of Lemma 1 for the deltas of in-the-money options.

2.3. Deltas of `In-the-Money' Options

In the familiar Black-Scholes setting, the delta of any option with ke¡r(T¡t) · s is at least

1/2. In this section we show that this result need not extend beyond a Black-Scholes setting. There

are two reasons for this. The ¯rst is that when volatility does depend on the price level, then one

must be careful to relate the properties of option to real prices and real interest rates. The second

9 If r 6= i, σ is a determinant of the lower bound in (12). In this displaced di®usion setting
σ = σ̂ . For comparability across columns we adjust the value of σ̂ so as to hold constant the ¯rm's
current volatility. Absent the simplifying assumption that i = r, a di®erent lower bound would be
applicable for each column.
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reason is that even when i = 0, if the asset's volatility declines fast enough as its price increases,

then the delta of an at-the-money option can be less than 1/2.

We ¯rst use the F transform of the delta process to establish that given a one-dimensional

di®usion process with z1(s, t) ¸ 0 for all s and t and non-negative real interest rates, then the delta

of an option is always at least 1/2 provided that the real value of the underlying asset, se¡it, is at

least equal to the real exercise price, ke¡iT ; i.e., provided s ¸ ke¡i(T¡t). We then show by example

that when z1(s, t) 6¸ 0 for all s and t, then the delta of an at-the-money option can be less than

1/2 even if r ¸ i.

De¯nition 2. (At-the-Real-Money) An option will be said to be at-the-real-money if s =

ke¡i(T¡t).

Corollary. (Deltas of At-the-Real-Money Calls) When the risk-neutral process is given

by (7), r ¸ i and z1(s, t) ¸ 0 for all s and t, then the delta of an at-the-real-money call option is

always at least 1/2.

Proof: In the de¯nition of F in (2), set α(t) = ei(T¡t) and A(t) = k. For s = ke¡i(T¡t), we have

F (s, t) = 0 and F (k, T ) = 0. The probability that, starting from s, the delta process ¯nishes above

k = sei(T¡t) is therefore the same as the probability that the F transform of the delta process

¯nishes above zero when it starts from zero. When r ¸ i and z1(s, t) ¸ 0 for all s and t, the drift

of the F transform of the delta process (given in (9)) is always non-negative. Thus the distribution

of F (ξs,t
T , T ) ¡ F (s, t) ¯rst-order stochastically dominates the distribution of the increment over

the same interval in a mean zero, unit di®usion parameter, Brownian motion process. Hence the

probability that F ¯nishes above its starting value is at least 1/2.

It is important to note that the delta of an at-the-real-money option is not always at least

1/2, even when r ¸ i. The restriction that z1(s, t) ¸ 0 for all s and t is an important precondition

of the above Corollary. When this restriction is not satis¯ed, the delta of an at-the-real-money

option can be less than 1/2. We demonstrate this result by example. Suppose r = i = 0, and
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consider an asset price process that at all times in the interval [T ¡ 0.1, T ] follows the di®usion

dsτ = σ(sτ , τ )sτ dBτ ,

with (14)

[σ(s, t)]2 =
e2(1¡s)

1 + s2(T ¡ t)e2(1¡s) + 2s ln(s) ¡ s(T ¡ t)e2(1¡s) + s2[ln(s)]2 ¡ 1
4s

2(T ¡ t)2e4(1¡s) .

We show in Appendix B that this process is well de¯ned for τ 2 [T ¡ 0.1, T ].10 Figure 1a depicts

the volatility as a function of s for a ¯xed t. For su±ciently high values of s, the volatility declines

faster than 1/s, and hence the di®usion parameter depicted in Figure 1b is decreasing in s.

Consider a call option on this asset with an exercise price k = 1 and a date T maturity.

The price of this option is given by the solution of the p.d.e.

c2(s, t) +
1
2
[σ(s, t)]2s2c11(s, t) = 0,

subject to the terminal condition c(s, T ) = max[0, s ¡ 1]. An analytical solution for the value of

this call exists and is given by

c(s, t) = sN (d1) ¡ N (d2),

where

d1 :=
ln(s) + 1

2e
2(1¡s)(T ¡ t)

e1¡s
p

T ¡ t

and

d2 := d1 ¡ e1¡spT ¡ t.

Thus we can determine analytically that when this call option is at-the-real-money, its delta is

given by

c1(s, t)
¯̄
¯
s=k=1

= N
µp

T ¡ t
2

¶
¡

p
T ¡ tp
2π

e¡(T¡t)/8. (15)

Figure 2 graphs the right-hand-side of (15) as a function of T ¡ t: For all t 2 [T ¡0.1, T ), the delta

of this at-the-money call option is strictly less than 1/2.

10 The volatility parameter in (14) does not take the form σ(s, t) = m(t)v(se¡it).
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3. Bounds on State Prices

In this section we show how to use limited information about an asset's volatility parameter

to bound state prices in a one-dimensional di®usion world.11 Let π(s, t, k, T ) denote the time t

price of a state claim written on a non-dividend-paying asset worth s at time t, with that claim

paying one dollar at date T if and only if the asset's date T nominal value exceeds k. The price of

a state claim is simply the discounted expectation that the underlying asset's nominal price will

¯nish above k under the risk-neutral process; i.e.,

π(s, t, k, T ) = e¡r(T¡t) Pr
¡
ξs,t

T
> k

¢
,

where ξ follows the di®usion in (7).

Suppose that we have limited information about σ(s, t), as in (i ), (ii ), or (iii). We can

apply Theorem 1 to the problem of bounding the prices of state-contingent claims. When the F

transform is applied to the risk-neutral process, the drift of the resultant F process (the general

form of which is given in (6)) specializes to:

ψ(F (ξ, t), t) =
r ¡ i

σ(ξ, τ )
¡ 1

2
z1(ξ, τ ). (16)

Following arguments analogous to those in the proof of Lemma 1, we obtain:12

Lemma 2. (Bounds on State Prices) Suppose that the risk-neutral process for the underly-

ing asset starts at s at time t and follows the di®usion given in (7) with σ · σ(s, t) · σ for all s and

11 Recent theoretical and empirical work on state prices includes Bick and Reisman (1994),
Derman and Kani (1994), Dupire (1994), Rubinstein (1994), AÄ³t-Sahalia and Lo (1995), Rady
(1995), Jackwerth and Rubinstein (1996), Dumas, Fleming and Whaley (1996), and Jackwerth
(1997).

12 Note that a Black-Scholes setting simultaneously satis¯es both the restriction that σ1(s, t) ¸
0 for all s and t and that σ1(s, t) · 0 for all s and t, with σ̂ = σ = σ(s, t) = σ(ke¡i(T¡t) , t) = σ.
Substituting the Black-Scholes volatility parameter into the right-hand-sides of inequalities (18)
and (19) gives the familiar Black-Scholes result:

π(s, t, k, T ) = e¡r(T¡t)N

Ã
ln (s/k) +

¡
r ¡ 1

2 σ̂
2¢ (T ¡ t)

σ̂
p

T ¡ t

!
.
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t. Suppose also that the restrictions of the Assumption Set are satis¯ed. Let M := max
h

r¡i
σ , r¡i

σ

i

and m := min
h

r¡i
σ , r¡i

σ

i
.

I. Suppose that z1(s, t) ¸ 0 for all s and t. State prices are then bounded above as:

π(s, t, k, T ) · e¡r(T¡t)N

Ã
s¡ke¡i(T¡t)

ke¡i(T¡t) + M σ(ke¡i(T¡t) , t)(T ¡ t)

σ(ke¡i(T¡t), t)
p

T ¡ t

!
. (17)

II. Suppose that σ1(s, t) ¸ 0 for all s and t. State prices are then bounded above as:

π(s, t, k, T ) · e¡r(T¡t)N

Ã
ln

¡
s/ke¡i(T¡t)

¢
+

¡
M ¡ 1

2σ
¢
σ(ke¡i(T¡t), t)(T ¡ t)

σ(ke¡i(T¡t), t)
p

T ¡ t

!
. (18)

III. Suppose that σ1(s, t) · 0 for all s and t. State prices are then bounded below as:

π(s, t, k, T ) ¸ e¡r(T¡t)N

Ã
ln

¡
s/ke¡i(T¡t)

¢
+

¡
m ¡ 1

2σ
¢

σ(s, t)(T ¡ t)
σ(s, t)

p
T ¡ t

!
. (19)

Corollary. (State Prices) When the risk-neutral process is given by (7), r ¸ i and z1(s, t) ¸ 0

for all s and t, then the price of a state claim paying one dollar if and only if the underlying ¯nishes

above its in°ation-adjusted starting value (i.e., above sei(T¡t)) is never greater than the discounted

value of ¯fty cents.

The observation that the drift of the delta process di®ers from the drift of the risk-neutral

process by z1(ξ, t)z(ξ, t), suggests the possibility of bounding option deltas in terms of state prices

whenever z1(s, t) ¸ 0 for all s and t.

3.1. A Relation Between Deltas and State Prices

We introduce the notation c(s, t, k, T ) to make explicit the dependence of the option's value

on its exercise price.

Theorem 3. Suppose that the risk-neutral process for the underlying asset starts at s at time

t and follows the di®usion in (7). Suppose also that the restrictions of the Assumption Set are

satis¯ed. If z1(s, t) ¸ 0 for all s and t, then a call's delta exceeds er(T¡t) times the corresponding

state price; i.e.

c1(s, t, k, T ) ¸ er(T¡t)π(s, t, k, T ). (20)
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Proof: Compare the drift of the risk-neutral process in (7) and the drift of the delta process in

(8). Given the restriction on the sign of z1, the drift in (8) exceeds that in (7). The result then

follows from Proposition 2.18 of Chapter 5 of Karatzas and Shreve (1991).

Theorem 3 can be applied whenever observed option prices provide a lower bound on

π(s, t, k, T ). Bick and Reisman (1994), Derman and Kani (1994), Dupire (1994), Rubinstein (1994),

and Jackwerth and Rubinstein (1996) show that, in the one-dimensional di®usion setting of interest

here, a rich enough set of observed option prices could be used to exactly determine an option's

delta. But what if one can only observe the prices of two otherwise identical calls with di®ering

exercise prices?13 Breeden and Litzenberger (1978) show that

π(s, t, k, T ) = ¡c3(s, t, k, T ). (21)

Since a call's price is a convex function of its exercise price, the observed prices of two otherwise

identical calls with exercise prices k0 and k00 > k0 yield

¡c3(s, t, k0, T ) ¸ c(s, t, k0, T ) ¡ c(s, t, k00, T )
k00 ¡ k0

. (22)

This bound on the state price is depicted in Figure 3. Combining (20), (21) and (22) we can

translate the bound on the relevant state price into an empirical bound on the delta of the lower

exercise price call whenever z1(s, t) ¸ 0 for all s and t:

c1(s, t, k0, T ) ¸ er(T¡t) c(s, t, k0, T ) ¡ c(s, t, k00, T )
k00 ¡ k0

.

4. Bounds on VaR

A natural application of Theorem 1 is to the analysis of the true likelihood that a portfolio's

value will exceed some critical level on a future date T . To illustrate this application suppose that

the true price process for the underlying portfolio is a di®usion of the form

dξτ = θ(¢)ξτ dτ + σ(ξτ , τ )ξτdBτ , (23)

13 One immediate bound on the delta of a call given only its observed price is provided by
Proposition 2 of Bergman, Grundy and Wiener (1996). Proposition 2 establishes that when the
underlying asset follows a one-dimensional di®usion (as in the setting considered in this article),
then c(s, t)/s · c1(s, t) · (c(s, t) + e¡r(T¡t)K)/s for all s and t.
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and an investor is con¯dent that θ · θ(¢) · θ. The investor plans to hold the portfolio from t to

T , and is interested in determining the size of the possible losses that have, say, at least a 1-in-20

chance of occurrence. In addition to the true price process, it is useful to consider the following

two di®usion processes for ξ0 and ξ00, de¯ned respectively as

dξ0τ = θξ0τ dτ + σ(ξ0τ , τ )ξ0τdBτ , (24a)

and

dξ00τ = θξ00τ dτ + σ(ξ00τ , τ )ξ00τ dBτ . (24b)

From Proposition 2.18 of Chapter 5 of Karatzas and Shreve (1991), ξ00 s,t
T ¯rst-order stochastically

dominates ξs,t
T , which in turn ¯rst-order stochastically dominates ξ0 s,t

T . Using (24) and arguments

analogous to those in the proof of Lemma 2, limited information about the volatility parameter

can be used to obtain bounds on the probabilities of events under the true price process. These

bounds are set out in Lemma 3.

Lemma 3. (Bounds on True Probabilities) Suppose that the true process for the under-

lying asset starts at s at time t and follows the di®usion given in (23), with θ · θ(¢) · θ and

σ · σ(s, t) · σ for all s and t. Suppose also that the restrictions of the Assumption Set are

satis¯ed. Let M := max
h

θ¡i
σ , θ¡i

σ

i
and m := min

h
θ¡i
σ , θ¡i

σ

i
.

I. Suppose that z1(s, t) ¸ 0 for all s and t.

Pr(ξs,t
T > k) · N

Ã
s¡ke¡i(T¡t)

ke¡i(T¡t) + M σ(ke¡i(T¡t), t)(T ¡ t)

σ(ke¡i(T¡t), t)
p

T ¡ t

!
.

II. Suppose that σ1(s, t) ¸ 0 for all s and t.

Pr(ξs,t
T > k) · N

Ã
ln

¡
s/ke¡i(T¡t)¢ +

¡
M ¡ 1

2σ
¢
σ(ke¡i(T¡t) , t)(T ¡ t)

σ(ke¡i(T¡t), t)
p

T ¡ t

!
.

III. Suppose that σ1(s, t) · 0 for all s and t.

Pr(ξs,t
T > k) ¸ N

Ã
ln

¡
s/ke¡i(T¡t)

¢
+

¡
m ¡ 1

2σ
¢
σ(s, t)(T ¡ t)

σ(s, t)
p

T ¡ t

!
.
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Each of Lemmas 1, 2 and 3 presume knowledge of the current volatility, σ(s, t), and/or

what the current volatility would be if the asset's current real value were equal to the real value of

the future critical level k; i.e., σ(ke¡i(T¡t), t). Weaker bounds apply absent this knowledge. As an

illustration of these weaker bounds, continue to consider the investor's problem of bounding the

VaR associated with investing in the portfolio whose dynamic is given by (23).

De¯nition 3. (Value-at-Risk) VaR(κ) is the negative of the κ% quantile of the portfolio's

return distribution; i.e., the size of the percentage loss with the property that losses of that size or

greater have a 1-in-100
κ chance of occurrence.

Bounds on VaR(κ) are set out in Lemma 4 and the proof contained in Appendix A.

Lemma 4. (Bounds on VaR) Suppose that the true process for the underlying asset starts at

s at time t and follows the di®usion given in (23), with θ · θ(¢) · θ and σ · σ(s, t) · σ for all s and

t. Suppose also that the restrictions of the Assumption Set are satis¯ed. Let M := max
h

θ¡i
σ , θ¡i

σ

i

and m := min
h

θ¡i
σ , θ¡i

σ

i
. Let ©(κ) denote the (1 ¡ κ)% quantile of the standard normal density

function.

I. Suppose that z1(s, t) ¸ 0 for all s and t.

VaR(κ) ¸
(

1 ¡ exp
¡
(i + Mσ) (T ¡ t) ¡ ©(κ)σ

p
T ¡ t

¢
, if M

p
T ¡ t · ©(κ);

1 ¡ exp
¡
(i + Mσ) (T ¡ t) ¡ ©(κ)σ

p
T ¡ t

¢
, if M

p
T ¡ t > ©(κ).

(25)

II. Suppose that σ1(s, t) ¸ 0 for all s and t.

VaR(κ) ¸
(

1 ¡ exp
¡¡

i +
¡
M ¡ 1

2σ
¢
σ
¢

(T ¡ t) ¡ ©(κ)σ
p

T ¡ t
¢
, if

¡
M ¡ 1

2σ
¢p

T ¡ t · ©(κ);

1 ¡ exp
¡¡

i +
¡
M ¡ 1

2σ
¢
σ
¢

(T ¡ t) ¡ ©(κ)σ
p

T ¡ t
¢
, if

¡
M ¡ 1

2σ
¢p

T ¡ t > ©(κ).
(26)

III. Suppose that σ1(s, t) · 0 for all s and t.

VaR(κ) ·
(

1 ¡ exp
¡¡

i +
¡
m ¡ 1

2σ
¢
σ
¢

(T ¡ t) ¡ ©(κ)σ
p

T ¡ t
¢
, if

¡
m ¡ 1

2σ
¢ p

T ¡ t · ©(κ);

1 ¡ exp
¡¡

i +
¡
m ¡ 1

2σ
¢
σ
¢

(T ¡ t) ¡ ©(κ)σ
p

T ¡ t
¢
, if

¡
m ¡ 1

2σ
¢ p

T ¡ t > ©(κ).
(27)

Percentage losses with a 1-in-20 chance of occurrence can be bounded by setting ©(κ) =

1.645 in Lemma 4. Losses with a 1-in-100 chance of occurrence correspond to ©(κ) = 2.326. Table

II reports one application of the bounds in Lemma 4. Given some limited information about an
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asset's price di®usion, an investor is assumed to be interested in determining bounds on the size

of the percentage loss with the property that losses of that size or greater have a 1-in-20 chance

of occurrence; i.e., Table II reports bounds on VaR(5). An investor believes that θ = θ and that

this instantaneous expected rate of return is 10% per annum. The in°ation rate is 5% per annum.

The investor also believes that the volatility parameter satis¯es restrictions (i), (iii ) and (iv) for

all s and t; i.e., for all s and t, z1(s, t) ¸ 0, σ1(s, t) · 0, and σ(s, t) 2 [σ, σ]. The Table reports

upper and lower bounds on VaR(5) for three sets of [σ, σ] values. Each pair of columns reports the

lower bound given in (25) and the upper bound given in (27) for a particular value of [σ, σ ]. The

rows correspond to holding periods of 1 trading day, 1 week, 1 month, 1 quarter and 1 year. To

read the Table, focus on the pair in the upper-left-hand corner: If the annual volatility is known

to be between 10% and 20%, then overnight losses of 0.995% or more will occur at least 5% of

the time, while overnight losses of 2.028% or more will occur at most 5% of time. Clearly, tighter

bounds on VaR could be obtained if the investor knew more; e.g., if the investor knew the asset's

current volatility. The bounds on true probabilities given in Lemma 3 imply bounds on VaR that

are tighter than the bounds of Lemma 4.
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5. Summary and Extensions

Theorem 1 establishes the existence of a monotonic function that when applied to an initial

one-dimensional di®usion process with a level-dependent volatility parameter yields a new di®usion

with a deterministic di®usion parameter. Limited knowledge of the relation between the volatility

and the level of the original process is then shown to imply a deterministic bound on the drift of the

transformed process. Hence the probability of events under the original process can be bounded in

terms of the probability of related events under an arithmetic Brownian motion process. This result

is used to provide bounds on deltas (Lemma 1), state prices (Lemma 2), true probabilities (Lemma

3), and VaR (Lemma 4) given only limited knowledge of the functional form of an underlying asset's

volatility parameter. In deriving these bounds we recognize that an asset's volatility depends on

its real price, and not its nominal price. Hence our bounds are in terms of nominal prices, nominal

interest rates and the in°ation rate. Direct application of Lemma 1 allows us to generalize the

familiar Black-Scholes result that the delta of an at-the-money option is always at least 1/2 to all

settings where the di®usion parameter is non-decreasing in the underlying's value, the real interest

rate is non-negative, and the option is at-the-real-money. At-the-real-money means that the real

value of the underlying asset is equal to the real value of the option's exercise price. We show

that the restriction that the di®usion parameter be non-decreasing in the underlying's value can

be critical. We provide a zero in°ation rate example in which the stock's volatility decreases so

quickly with an increase in its price that, in direct contrast to the result in a Black-Scholes setting,

the delta of an at-the-money call is always less than 1/2. We also show how the bounds on state

prices implied by even a coarse grid of observed option prices can be used to bound option deltas

whenever the underlying asset's di®usion parameter is non-decreasing in the asset's value.

There are many possible extensions of this line of research. One concerns using the bounds

on deltas and state prices to derive bounds on option prices. For example, given that

c(s, t, k, T ) =
Z s

0
c1(x, t, k, T )dx,

result III of Lemma 1 can be used to place an upper bound on call prices whenever σ1(s, t) · 0 for
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all s and t. Similarly, given that

c(s, t, k, T ) =
Z 1

k
π(s, t, x, T )dx,

result III of Lemma 2 can be used to place a corresponding lower bound on call prices whenever

σ1(s, t) · 0 for all s and t. A second extension involves combining Theorem 7 of Bergman, Grundy

and Wiener (1996) (BGW) and Chebyshev's inequality to bound deltas, state prices and VaR. For

example, consider bounding state prices. It follows from BGW Theorem 7 that if ξτ starts at s at

time t and follows the risk-neutral price process in (7) with σ(s, t) · σ for all s and t, then

Variance
n

ξs,t
T

o
· s2e2r(T¡t)

³
eσ2(T¡t) ¡ 1

´
.

For s < ke¡r(T¡t), Chebyshev's inequality can then be used to bound state prices as:

π(s, t, k, T ) · e¡r(T¡t) eσ2(T¡t) ¡ 1
³

ke¡r(T¡t)

s ¡ 1
´2 .

The bounds on deltas developed in Lemma 1 apply to European-style calls. Bounds

on the values and deltas of American-style options can also be developed. For example, let

C(s, t, k, T : δ, T 0) denote the value of an American-style call option written on a stock that will

pay a proportional dividend of δ of the stock's value at time T 0 < T . Immediately prior to the

ex-dividend date, at time T 0¡ we have

C(s, T 0¡, k, T : δ, T 0) = max
£
s ¡ k, c

¡
s(1 ¡ δ), T 0, k, T

¢¤
.

Suppose that limited information about the functional form of the volatility parameter can be

used to place lower bounds on state prices and let ¦ denote the lower bound on π. These lower

bounds on state prices can be used to place a lower bound on c(s(1 ¡ δ), T 0, k, T ). (Alternately,

if σ · σ(s, t) · σ for all s and t, then after allowing for the time T 0 dividend, BGW Theorem 8

can be used to bound c (s(1 ¡ δ), T 0, k, T ).) One can use the lower bound on c (s(1 ¡ δ), T 0, k, T )

to place a lower bound on C (s, T 0¡, k, T : δ, T 0). Let C(s, T 0¡, k, T : δ, T 0) denote this lower bound.

Thus we have

C (s, t, k, T : δ, T 0) ¸
Z 1

0

∂C(x, T 0¡, k, T : δ, T 0)
∂x

£ π(s, t, x, T 0) dx

¸
Z 1

0

∂C(x, T 0¡, k, T : δ, T 0)
∂x

£ ¦(s, t, x, T 0) dx .
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Finally, El Karoui, Jeanblanc-Picque and Shreve (1995) and Bergman (1998) establish that, given

an underlying di®usion, American call prices are convex in the value of the underlying asset, and

hence

C1(s, t, k, T : δ, T 0) ¸ C(s, t, k, T : δ, T 0)
s

¸
R1
0

∂C(x,T 0¡ ,k,T :δ,T 0)
∂x £ ¦(s, t, x, T 0) dx

s
.

Another natural extension of this line of research concerns the issue of bounding option

deltas and state prices when one has only limited information about a stock's stochastic volatility.

Bakshi, Cao and Chen (1997) demonstrate that hedging errors based on an empirically determined

stochastic volatility model can be only one half those of, say, a Black-Scholes-based hedge. When

a stock's volatility is stochastic, it is common to model the price process as a two-dimensional

di®usion. Transformations of a two-dimensional process that yield a second two dimensional process

with deterministic di®usion parameters and analytically tractable drift parameters are the subject

of our ongoing research.
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Appendix A: Observations, Theorems, and Lemmas

Observation 2

The partial derivatives of F are given by

F1(ξ, t) =
a(t)

z(ξ, t)
,

F11(ξ, t) = ¡ a(t)z1(ξ, t)
[z(ξ, t)]2

,

and

F2(ξ, t) =
α1(t)a(t)
σ(ξ, t)α(t)

¡ A1(t)a(t)
σ(A(t)/α(t), t)A(t)

+
Z ξα(t)

A(t)

0
@

a1(t)σ(x/α(t), t) + a(t)
³
σ1(x/α(t), t) x

[α(t)]2α1(t) ¡ σ2(x/α(t), t)
´

[σ(x/α(t), t)]2x

1
A dx.

Applying Ito's Lemma to F we have

dF (ξτ , τ ) = F1(ξτ , τ )dξτ +
1
2
F11(ξτ , τ )[dξτ ]2 + F2(ξτ , τ )dτ

=
µ

a(τ )
µ

µ(ξτ , τ )
z(ξτ , τ )

¡ 1
2
z1(ξτ , τ )

¶
+ F2(ξτ , t)

¶
dτ + a(τ )dBτ . (A1)

Since F (ξ, t) is strictly increasing in ξ for all t, there exists an inverse function γ such that ξ =

γ(F (ξ, t), t) for all ξ and t. Thus the drift parameter in (A1) can be expressed as ψ(Fτ , τ ). The

di®usion parameter of the Fτ process is the deterministic value a(τ ).

Observation 20

Applying Ito's Lemma to F we have

dF(ξτ , τ ) =
µ

a(τ )F(ξτ , τ )
µ

µ(ξτ , τ )
z(ξτ , τ )

+
1
2

(a(τ ) ¡ z1(ξτ , τ ))
¶

+ F2(ξτ , t)
¶

dτ + a(τ )F(ξτ , τ )dBτ .

Proof of Theorem 1

Pr
¡
ξy,t

T > k
¢

= Pr
¡
F

¡
ξy,t

T , T
¢

> F (k, T )
¢

= Pr

Ã
F (y, t) +

Z T

t
dFτ > F (k, T )

!

= Pr

Ã
F (y, t) +

Z T

t
ψ(F (ξτ , τ ), τ )dτ +

Z T

t
a(τ )dBτ > F (k, T )

!

= Pr

0
@F (y, t) ¡ F (k, T ) +

R T

t ψ(F (ξτ , τ ), τ )dτqR T

t [a(τ )]2dτ
> X

1
A ,
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where the random variable X := ¡
R T
t a(τ )dBτqR T
t [a(τ )]2dτ

is distributed N (0, 1).

Note that the random variables compared in the inequality are not independent.

Proof of Theorem 2

Assume that g is di®erentiable on its domain. Under mild regularity conditions the claim's

price, V (s, t), solves the p.d.e.:

rV1(s, t)s ¡ rV (s, t) + V2(s, t) +
1
2

[z(s, t)]2V11(s, t) = 0 (A2)

subject to the terminal condition V (s, T ) = g(s). Taking the partial of (A2) with respect to s gives

rV11(s, t)s + V12(s, t) + z1(s, t)z(s, t)V11(s, t) +
1
2
[z(s, t)]2V111(s, t) = 0. (A3)

Let f be the ¯rst partial of the contingent claim's value with respect to the value of the underlying;

f (s, t) := V1(s, t). The p.d.e. in (A3) can then be rewritten as

(rs + z1(s, t)z(s, t)) f1(s, t) + f2(s, t) +
1
2

[z(s, t)]2f11(s, t) = 0.

Assuming that rs + z1(s, t)z(s, t) and z(s, t) each satisfy Lipschitz and growth conditions, the

Feynman-Kac Theorem can be used to express V1(s, t) as

V1(s, t) = Efg1(ξs,t
T

)g,

where the dynamic of ξτ is described by

dξτ = (rξτ + z1(ξτ , τ )z(ξτ , τ )) dτ + z(ξτ , τ )dBτ .

The generalization to the case where the payo® function g has a left and a right derivative every-

where on its domain, where the two need not be equal, and where one of them may be plus in¯nity

or minus in¯nity, follows the Generalization of Theorem 1 in the Appendix to Bergman, Grundy

and Wiener (1996).
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Proof of Lemma 1 (Bounds on Deltas)

I. We ¯rst consider the case where z1(s, t) ¸ 0 for all s and t. The drift of the F process

obtained when the F transformation in (2) is applied to the delta process is given in (9) as

ψ(F (ξ, t), t) =
r ¡ i

σ(ξτ , τ )
+

1
2
z1(ξτ , τ ).

ψ(F (ξ, t), t) is bounded below for all ξ and t by m de¯ned in Lemma 1. As shown in section 2.2.,

F (s, t) ¡ F (k, T ) is bounded below by

L(s, t) :=
s ¡ ke¡i(T¡t)

σ(s, t)s
.

Substituting for a(t), and L(s, t) in (4) gives result I of Lemma 1:

c1(s, t) ¸ N

0
@

s¡ke¡i(T¡t)

σ(s,t)s +
R T
t mdτ

p
T ¡ t

1
A

= N

Ã
s¡ke¡i(T¡t)

s + mσ(s, t)(T ¡ t)
σ(s, t)

p
T ¡ t

!
.

II. Now consider the case where σ1(s, t) ¸ 0 for all s and t. Rewrite the drift of the F process as

ψ(F (ξ, t), t) =
r ¡ i

σ(ξτ , τ )
+

1
2

(σ1(ξτ , τ )ξτ + σ(ξτ , τ )) .

ψ(F (ξ, t), t), is bounded below for all ξ and t by m + 1
2σ. Also F (s, t) ¡ F (k, T ) is bounded below

by

L(s, t) :=
ln

¡
s/ke¡i(T¡t)¢

σ(s, t)

=
Z sei(T¡t)

k

1
σ(s, t)x

dx

·
Z sei(T¡t)

k

1
σ(xe¡i(T¡t), t)x

dx

= F (s, t) ¡ F (k, T ).

Substituting for a(t), l(t) and L(s, t) in (4) gives result II of Lemma 1:

c1(s, t) ¸ N

0
@

ln(s/ke¡i(T¡t))
σ(s,t) +

R T
t

¡
m + 1

2σ
¢
dτ

p
T ¡ t

1
A

= N

Ã
ln

¡
s/ke¡i(T¡t)

¢
+

¡
m + 1

2 σ
¢
σ(s, t)(T ¡ t)

σ(s, t)
p

T ¡ t

!
.
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III. Finally consider the case where σ1(s, t) · 0 for all s and t. ψ(F (ξ, t), t), is bounded above

for all ξ and t by M + 1
2σ (M de¯ned in Lemma 1). F (s, t) ¡ F (k, T ) is bounded above by

U(s, t) :=
ln

¡
s/ke¡i(T¡t)

¢

σ(ke¡i(T¡t), t)

=
Z sei(T¡t)

k

1
σ(ke¡i(T¡t), t)x

dx

¸
Z sei(T¡t)

k

1
σ(xe¡i(T¡t), t)x

dx

= F (s, t) ¡ F (k, T ).

Substituting for a(t),and U(s, t) in (4) gives result III of Lemma 1:

c1(s, t) · N

0
B@

ln(s/ke¡i(T¡t))
σ(ke¡i(T¡t),t) +

R T
t

¡
M + 1

2σ
¢

dτ
p

T ¡ t

1
CA

= N

Ã
ln

¡
s/ke¡i(T¡t)¢ +

¡
M + 1

2σ
¢
σ(ke¡i(T¡t), t)(T ¡ t)

σ(ke¡i(T¡t) , t)
p

T ¡ t

!
.
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Proof of Lemma 4 (Bounds on VaR)

I. We ¯rst consider the case where z1(s, t) ¸ 0 for all s and t. When ξτ follows the di®usion in

(23), and ξ00τ follows the di®usion in (24b),

Pr(ξs,t
T > k) · Pr(ξ00 s,t

T > k). (A4)

The drift of the F process obtained when the F function in (2) is applied to the process in (24b) is

ψ(F (ξ00, t), t) =
θ ¡ i

σ(ξ00, τ )
¡ 1

2
z1(ξ00, τ ).

ψ(F (ξ00, t), t) is bounded above for all ξ and t by M (de¯ned in Lemma 4). Also F (s, t) ¡ F (k, T )

is bounded above by

U(s, t) :=

8
<
:

ln(s/ke¡i(T¡t))
σ , if s ¸ ke¡i(T¡t);

ln(s/ke¡i(T¡t))
σ , if s < ke¡i(T¡t).

Noting (A4) and substituting for a(t), and U(t) in (5) gives

Pr(ξs,t
T > k) ·

8
>><
>>:

N
µ

ln(s/ke¡i(T¡t))+Mσ(T¡t)
σ
p

T¡t

¶
, if s ¸ ke¡i(T¡t);

N
µ

ln(s/ke¡i(T¡t))+Mσ(T¡t)
σ
p

T¡t

¶
, if s < ke¡i(T¡t).

(A5)

Let φ(κ) denote the critical value of k/s such that the right-hand-side of (A5) is equal to 1 ¡ κ
100 .

From the de¯nition of VaR(κ), we have that

VaR(κ) ¸ 1 ¡ φ(κ).

Solving for φ(κ) gives

φ(κ) =

(
exp

¡
(i + Mσ) (T ¡ t) ¡ ©(κ)σ

p
T ¡ t

¢
, if M

p
T ¡ t · ©(κ);

exp
¡
(i + Mσ) (T ¡ t) ¡ ©(κ)σ

p
T ¡ t

¢
, if M

p
T ¡ t > ©(κ).

This establishes result I of Lemma 4. The proof of results II and III is left to the interested reader.

Appendix B: Demonstration that the SDE in (14) satis¯es both a Lipschitz and a

Growth Condition

Note ¯rst that [σ(s, t)]2 as de¯ned in (14) is positive and ¯nite for all s ¸ 0 and all

t 2 [T ¡ 0.1, T ]. This follows from the fact that the denominator in (14) is always positive. In fact,
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the denominator is always greater than 0.026. To demonstrate this lower bound on the denominator

we introduce a new variable T .

T = T (s, t) := (T ¡ t)e2(1¡s) .

We denote the denominator by Q and rewrite it as

Q(s, T ) = 1 + s2T + 2s ln(s) ¡ sT + s2[ln(s)]2 ¡ 1
4
s2T 2.

We can bound the sum of the three terms involving T as

s2T ¡ sT ¡ 1
4
s2T 2 = sT

µ
s ¡ 1 ¡ 1

4
sT

¶

= sT
µ

s
µ

1 ¡ T
4

¶
¡ 1

¶
= sT 4 ¡ T

4

µ
s ¡ 4

4 ¡ T

¶

¸ 2T
4 ¡ T

4 ¡ T
4

¡2
4 ¡ T = ¡ T

4 ¡ T > ¡ 1
3
,

since 0 · T · 0.1e2 < 1 and the function ¡T
4¡T is monotonically decreasing in this region. Thus

Q(s, T ) >
2
3

+ 2s ln(s) + s2[ln(s)]2.

Using the fact that s ln(s) > ¡0.4 for all values of s we have Q(s, T ) > 0.026.

Now note that the di®usion parameter, z(s, t) = σ(s, t)s, must satisfy Lipschitz and growth

conditions. Consider the respective Lipschitz and growth conditions given in conditions (E.2)

and (E.3) of Du±e (1992, p. 240). That a growth condition of the form (E.3) is satis¯ed for all

t 2 [T ¡0.1, T ] follows immediately from the twin observations that the numerator of the expression

for [σ(s, t)]2 in (14) is a decreasing function of s, while the denominator is bounded from below.

To demonstrate that a Lipschitz condition of the form in (E.2) is satis¯ed for all t 2 [T ¡ 0.1, T ],

we demonstrate that there exists a constant K such that

z1(s, t) · K.

First we write

σ(s, t)s =
P (s)p

Q(s, T (s, t))
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where P (s) := se1¡s . Then

∂[σ(s, t)s]
∂s

=
P1Q1/2 ¡ 1

2PQ¡1/2 ∂Q(s,T (s,t))
∂s

Q . (B1)

Recalling that Q(s, T ) is positive and bounded from below, we have that the ¯rst term in the

expression in (B1),
P1(s)p
Q(s, T )

=
e1¡s(1 ¡ s)p

Q(s, T )
,

is bounded. The second term in (B1),

P (s)
2[Q(s, T )]3/2

∂Q(s, T (s, t))
∂s

can be rewritten as

se1¡s

2[Q(s, T )]3/2
(4sT + 2 ln(s) + 2 ¡ T + 2s[ln(s)]2 + 2s ln(s) ¡ 1

2
sT 2 ¡ 2s2T + s2T 2),

This expression is a continuous function that tends to zero when s ! +1 and is bounded

when s ! 0. Thus it is bounded from above and below. The di®erence between the two terms

comprising (B1) is then a continuous function that is bounded from above and below, and the

Lipschitz condition is satis¯ed. Thus we have established that the SDE in (14) is well-de¯ned over

the relevant time horizon.
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Figure 1a. A volatility function, σ(s, t), such that the di®usion parameter, z(s, t) = σ(s, t) s, is not
everywhere non-decreasing in s. Volatility depicted at time t = T ¡ 0.05, when σ(s, t) is de¯ned by

[σ(s, t)]2 =
e2(1¡s)

1 + s2(T ¡ t)e2(1¡s) + 2s ln(s) ¡ s(T ¡ t)e2(1¡s) + s2[ln(s)]2 ¡ 1
4s

2(T ¡ t)2e4(1¡s) .
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Figure 1b. Di®usion parameter, z(s, t), that is not everywhere non-decreasing in s. z(s, t) = σ(s, t) s,
where σ(s, t) is as depicted in Figure 1a.
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Figure 2. Delta of an at-the-money call with s = k = 1. The risk-free rate is zero. The call
with maturity date T is written on an asset whose price st at all times t 2 [T ¡ 0.1, T ] follows the
risk-neutral di®usion:

dsτ = σ(sτ , τ )sτ dBτ ,

whose squared volatility parameter is given by

[σ(s, t)]2 =
e2(1¡s)

1 + s2(T ¡ t)e2(1¡s) + 2s ln(s) ¡ s(T ¡ t)e2(1¡s) + s2[ln(s)]2 ¡ 1
4s

2(T ¡ t)2e4(1¡s) .

40



k0 k00 k

c00

c0

s

c(s, t, k, T )

..................................... ...............

.........

.........

...................

...............

slope= c3(s, t, k, T )jk=k0

²

²

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .

................................

...............

........................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................
..................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 3. Illustration of the bound on c3(s, t, k, T )jk=k0 implied by (i) the no-arbitrage relation that
an option's price must be a convex function of its exercise price and (ii) the observed prices of options
with exercise prices of k0 and k00 > k 0. c(s, t, k, T ) is the time t price of a call option with a date T
maturity and exercise price of k written on an asset worth s.

¡c3(s, t, k, T )jk=k0 ¸ c(s, t, k0, T ) ¡ c(s, t, k00, T )
k00 ¡ k0

.
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Table I

Comparison of the Lower Bound on a Call's Delta and its True Delta

A. The Underlying Asset's Di®usion Parameter is Non-Decreasing in the Asset's Value.

Lower
True Delta

k ρ = 0 ρ = 1/2 ρ = 1ρ = 1/4 ρ = 3/4Bound
(Absolute) (Square Root) (Black-Scholes)

$25 0.993790 0.994566 0.997321 0.998823 0.999552 0.999857
$35 0.933193 0.939804 0.950381 0.959551 0.967440 0.974165
$40 0.841345 0.854574 0.866998 0.878570 0.889357 0.899414
$45 0.691462 0.712048 0.723329 0.734173 0.744614 0.754684
$50 0.5 0.524918 0.534901 0.544820 0.554695 0.564544
$55 0.308538 0.332007 0.342746 0.353768 0.365092 0.376741
$60 0.158655 0.175860 0.187703 0.200135 0.213187 0.226896
$65 0.066807 0.076627 0.087263 0.098871 0.111501 0.125212
$75 0.006210 0.007720 0.011474 0.016472 0.022939 0.031103

The risk-neutral process for the nominal price of the underlying asset is the CEV process,

dsτ = rsτdτ + ·σsρ
τ dBτ .

Such a process implies that the in°ation rate must be zero. As ρ varies, the value of ·σ is altered so that the current
volatility is held constant at 40% per annum; i.e., ·σ = 0.4/sρ¡1. The current stock price is $50, r = 0.05, and the
option matures 3 months hence. The option's exercise price is denoted by k. The lower bound follows from result I
of Lemma 1.

B. The Underlying Asset's Volatility Parameter is Non-Decreasing in the Asset's Value.

Lower
True Delta

k f = 0 f = 1/4Bound
(Black-Scholes)

$25 0.999736 0.999857 0.999993
$35 0.962737 0.974165 0.983085
$40 0.867728 0.899414 0.913841
$45 0.700835 0.754684 0.768837
$50 0.5 0.564544 0.577681
$55 0.316841 0.376741 0.391560
$60 0.180988 0.226896 0.243899
$65 0.094790 0.125212 0.142239
$75 0.021314 0.031103 0.042179

The risk-neutral process for the nominal price of the underlying stock is the displaced di®usion process,

dsτ = rsτ dτ + σ̂
³
1¡ Rerτ

sτ

´
sτ dBτ .

The fraction of the underlying stock's value that represents a claim on riskless assets is f := Rerτ
sτ

. As f varies, the
value of σ̂ is altered so that the current volatility is held constant at 40% per annum; i.e., σ̂ = 0.4/(1 ¡ f). The
current stock price is $50, r = 0.05, the in°ation rate is also 5% per annum, and the option matures 3 months hence.
The option's exercise price is denoted by k. The lower bound follows from result II of Lemma 1.
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Table II

Upper and Lower Bounds on VaR(5) when the Asset's Di®usion Param-
eter is Non-Decreasing in the Asset's Value and its Volatility Parameter
is Non-Increasing in the Asset's Value. VaR(5) is the negative of the 5%
quantile of the asset's return distribution.

Lower and Upper Bounds on VaR(5) (in percent)

T ¡ t [σ , σ ]
[0.1, 0.2] [0.5, 1]

[0.25, 0.5]

1/250 0.995 2.028 2.529 5.079 5.031 10.025

1/50 2.067 4.313 5.362 10.823 10.608 21.007

1/12 3.840 8.452 10.451 21.299 20.475 39.843

1/4 5.564 13.454 16.525 34.131 32.040 60.248

1 6.246 22.042 26.747 57.152 51.446 87.062

The in°ation rate is 0.05 per annum. The asset's nominal price dynamic is

dsτ = 0.1sτdτ + σ(sτ , τ)sτ dBτ,

with, for all s and t, z1(s, t) ¸ 0, σ1(s, t) · 0 and σ(s, t) 2 [σ,σ]. Each pair reports the lower bound on VaR given
in result I of Lemma 4 and the upper bound on VaR given in result III of Lemma 4. The length of the investment
horizon (measured in years) is T ¡ t. The pair in the upper-left-hand corner reports that if the annual volatility is
known to be between 10% and 20%, then overnight losses of 0.995% or more will occur at least 5% of the time, while
overnight losses of 2.028% or more will occur at most 5% of time.
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