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Statistical Power and Confidence Regions

The significance level is the determining factor in the specification of the
rejection region of a statistical test. Only the distribution under the null as-
sumption of no signal plays a role in setting the level of the threshold, once
the test statistic and the general form of test are decided upon. However,
after setting that threshold, one can examine other statistical properties of
the resulting test. A central property is statistical power of the test – the
probability to reject the null hypothesis when a signal is present. Since this
probability depends on the values of the parameters, one often speaks of the
power function to emphasize this dependence. For a test at a single marker,
this probability is obtained approximately from the normal distribution; it is
a function of the noncentrality parameter given by (??). In this chapter we
will examine the concept of power for a whole-genome scan.

The primary interest is now focused on the case where the null hypothesis
is false. Statisticians define the power of an hypothesis test as the probability
of concluding correctly the falsity of the null hypothesis. However, the case of
a genome scan is more subtle than a simple test of hypothesis. There exists
the possibility that due to random fluctuations the significance threshold is
exceeded on a chromosome that does not actually contain a QTL. Unless
the threshold is also crossed on a chromosome containing a QTL, one would
correctly conclude that the simple null hypothesis of no QTL anywhere in
the genome is false, but would identify the chromosomal location of the QTL
incorrectly. We are particularly interested in the probability of exceeding the
threshold on a chromosome containing a QTL, or perhaps even at some marker
close to the QTL, say within 20 cM. Although any definition of power in this
context is somewhat arbitrary, in this book the power to detect a particular
QTL will refer to the probability of correctly identifying the chromosome
inhabited by the QTL. This means that when there is more than one QTL,
power refers to specific QTL and can vary from one to another, depending on
the effect of the QTL on the phenotype. In the case that multiple QTL lie
on the same chromosome, one might want to make more subtle distinctions.
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While keeping this possibility in mind, we shall for the most part ignore it in
our statistical analysis.

At one end of the spectrum, when there is no QTL or only very weak
QTL on a given chromosome, the power function is essentially equal to the
(chromosome specific) significance level. At the other extreme are parameter
values which correspond to a signal that is so large as to make the power
approximately equal to one. We will mainly be interested in interim parameter
values, values for which the power function is in the range 50%–95%.

The main application of the power function is to help us choose an exper-
imental design – especially the breeding design, marker density, and sample
size. The significance level is set to be some fixed value – typically 5% – re-
gardless of the design. The differences between designs will be reflected in
their power to detect the signal. Thus, for example, a sample size which is too
small, or a collection of markers which is not dense enough, may compromise
the chances of successful detection of a QTL. On the other hand, it is neither
economically efficient nor ethical to use more animals then needed. Moreover,
since genotyping is an expensive component in a genome scan, using more
markers than needed is a waste of time and money that can be used for other
purposes. Careful planning of an experiment can ensure efficient distribution
of resources, without a substantial reduction in power. In the body of the
text we focus on issues of sample size determination and the selection of the
inter-marker spacing in the context of the backcross design. The power of
other breeding designs is left to exercises in the problem set at the end of the
chapter.

In the first section we identify the terms that affect the power of detection
in a whole-genome scan. In the second section we introduce analytic formulas
for the power. These formulas, like the formulas used for the computation
of the significance level, are given in the context of the Ornstein-Uhlenbeck
process. They will allow us to analyze the power function and to examine the
effect of changing the values of various parameters. Consequently, in the third
section we apply these formulas to select a good experimental design for the
detection of a QTL. In the last two sections we deal with issues related more
to estimation. In the fourth section we consider the construction of confidence
intervals for the location of a QTL and in the last section the construction of
a lower confidence bound for the effect of the QTL.

1.1 The Power to Detect a QTL

In this section we identify the parameters that determine the statistical prop-
erties of the monitoring process in the presence of a QTL. The examina-
tion is carried out in the context of local alternatives. In the case of a single
marker, which was analyzed in Chap. ??, this corresponded to considering a
shifted normal distribution. Similarly, for the multi-marker process, where the
null distribution corresponded to the Gaussian Ornstein-Uhlenbeck process,
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the computation under the alternative will involve the same process with a
shifted mean function. Since we deal with local alternatives, the correlation
structure is not affected. The power to detect a signal is the probability that
the maximum absolute value of the process, with the shifted mean, exceeds
the threshold.

Recall that for the single marker process the expected value under the
alternative of the test statistic at a marker equals its expectation at the QTL
multiplied by the correlation between the marker and the QTL (see ??). For
the backcross design and the simple model of QTL, we use the expectation at
the QTL itself, which equals ξ = (α0 + δ0)/(2σy). Here α0 corresponds to the
(local) parameter of additive effect, δ0 is the (local) parameter of dominance
effect, and σy is the standard deviation of the phenotype. In terms of the
original parameters of the model, α0 = n1/2α and δ0 = n1/2δ. The correlation
between marker and QTL for a backcross design, under the Haldane model
of recombination, is equal to 1− 2 θ = exp{−0.02 |t− τ |}. Here |t− τ | corre-
sponds to the distance between a QTL located τ cM from the telomere, and
a marker located t cM from the telomere. This information is summarized by
the formula

E(Zt) =
α0 + δ0
2σy

(1− 2 θ) = ξ exp(−0.02 |t− τ |) . (1.1)

If the marker and the QTL are not on the same chromosome, then θ = 1/2,
the genetic distance from the QTL is defined to be infinite, and the expectation
is equal to 0.

Equation (1.1) gives a complete description of the mean function of the
multi-marker process under the model of a single QTL. The QTL is located
on some chromosome, τ cM from the telomere. The mean function for the
markers on the same chromosome is a function of their distance from the QTL.
It decreases exponentially fast, on both sides of the QTL, as the distance from
the QTL increases. The mean function of the multi-marker process over the
other 19 chromosomes, which do not contain the QTL, is identically equal to
0. The covariance structure of the process under the alternative is identical
to the covariance structure under the null assumption. Thus, the standard
deviation of the test statistics Zt is equal to one, regardless of the location
of the marker and its distance from the QTL. The correlation between any
pair of markers is a function of the genetic distance between them. If the
two markers are located on different chromosomes, then the genetic distance
between them is infinite, and the two markers are uncorrelated. If the markers
are located on the same chromosome, s and t cM from the telomere, then the
correlation between them equals exp{−0.02 |t− s|}.

The distribution of the multi-marker process can be generated under the
alternative similarly to the way it is generated under the null. The basic ran-
dom process in both cases is the Ornstein-Uhlenbeck process. This processes
describes the stochastic element in the behavior of markers for each chromo-
some. The deterministic element in the behavior is the mean function. This
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deterministic element is the difference between the null distribution and the
distribution under the alternative. For the latter case a non-zero mean func-
tion is added for any chromosome carrying a QTL. Consequently, one can
use the R function “OU.sim” that we wrote in the previous chapter in order
to simulate the multi-marker process on a given chromosome. The vector of
means may be added to the simulated process of marker-specific test statis-
tics. We implement this approach in the function “add.qtl”. This function
takes as an input the matrix produced by “OU.sim”, the location of markers,
the coefficient of recombination β, and two new parameters: “q”, the location
on the first chromosome of the QTL (measured in cM from the telomere); and
“xi”, the noncentrality parameter. The mean vector is added and the altered
scanning process is returned:

> add.qtl <- function(Z,beta,markers,q,xi)

+ {

+ d <- dim(Z)

+ if (length(markers) != d[2])

+ stop("Number of columns of simulated matrix

+ does not match the number of markers")

+ mu <- xi*exp(-beta*abs(markers - q))

+ Z <- sweep(Z,2,mu,"+")

+ return(Z)

+ }

The function “stop” may be used in order to stop a function in the case of
a fatal error. The argument of the function is printed out if the error occurs.
Similarly, a warning may be produced, in the case of a nonfatal errors, with
the function “warning”.

The function “sweep” returns a matrix obtained from an input matrix by
sweeping the elements of a vector. The first argument is the input matrix.
The second argument is the margin over which the elements of the vector
should be applied. The third argument is the vector, and the fourth argument
is the binary function that produces the elements of the output matrix from
the application of the binary function to the element of the input matrix and
the appropriate element of the vector. More generally, this function may be
applied to arrays, which are higher-dimension extension of matrices.

Let us generate some paths of the resulting multi-marker process:

> markers <- seq(0,80,by=10)

> beta <- 0.02; q <- 40; xi <- 4

> Z <- NULL

> for (i in 1:20) Z <- cbind(Z,OU.sim(beta,markers,n.iter=5))

Loading required package: MASS

> chr1 <- 1:length(markers)

> Z[,chr1] <- add.qtl(Z,beta,markers,q,xi)

Error in add.qtl(Z, beta, markers, q, xi) :
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Fig. 1.1. Sample paths of the absolute value of the Ornstein-Uhlenbeck process
under the alternative.

Number of columns of simulated matrix

does not match the number of markers

> Z[,chr1] <- add.qtl(Z[,chr1],beta,markers,q,xi)

Note an erroneous application of the function “add.qtl” resulted in an error
message, which helped us to detect the source of the error and debug the
mistake. The function “OU.sim” did not produce an error message since we
added to its definition the expression “require(MASS)”.

The paths of the scanning process are plotted in Fig. 1.1. The paths for
chromosome 1 are shown on the left plot and the paths of chromosomes 2–20
are shown on the right plot. Observe that the values of the test statistics in
the middle of chromosome 1 have levels which are consistently large. However,
occasional extreme values can occur also in other chromosomes. The code that
produces the two plots is:

> plot(c(0,80),range(abs(Z)),type="n",xlab="chr 1",ylab="")

> for(i in 1:5) lines(markers,abs(Z[i,chr1]),col=gray(i/7))

> plot(c(0,80),range(abs(Z)),type="n",xlab="chrs 2-20",
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+ ylab="")

> for(j in 2:20)

+ {

+ chr = chr1+(j-1)*length(chr1)

+ for(i in 1:5) lines(markers,abs(Z[i,chr]),col=gray(i/7))

+ }

We detect a QTL if the maximum absolute value of the multi-marker pro-
cess exceeds the significance threshold. Let us examine the distribution of this
maximum, both when the signal is absent and when it is present. However, for
the sake of determining the significance level we simulate these distributions
for a whole-genome scan with markers at 0, 10, 20, . . . , 80 cM. The power is
considered only in the context of the chromosome that contains a QTL. Specif-
ically, the QTL is located 40 cM from the telomere on chromosome 1. Note
that a marker happens to be located right at that spot. The noncentrality
parameter at the QTL equals 4 in our simulations.

> Z0 <- NULL

> for (i in 1:20) Z0 <- cbind(Z0,OU.sim(beta,markers))

> Z1 <- add.qtl(Z0[,chr1],beta,markers,q,xi)

> d0 <- density(apply(abs(Z0),1,max),from=1,to=7)

> d1 <- density(apply(abs(Z1),1,max),from=1,to=7)

> plot(d0,main="Densities of maximal statistics",

+ xlab="max |Z|")

> lines(d1,lty=2)

> legend(4.7,1,legend=c("Under H0","Under H1"),lty=1:2)

Examine the distributions of the test statistic under the two scenarios
(Fig. 1.2). Note that although the distribution of the test statistic under the
alternative tends to get higher values, still the two distributions cannot be
separated perfectly. Any reasonable threshold that eliminates most of the ex-
ceedences of the test statistic under the null distribution must eliminate some
occurrences of the test statistic under the alternative distribution as well. The
traditional way to resolve this difficulty is to set a threshold with an acceptable
proportion of the null distribution above it. This proportion is the significance
level of the test – the probability of falsely rejecting the null hypothesis – and
is typically set to be equal to 5%. The proportion of the distribution under
the alternative that is below the threshold corresponds to the probability of
falsely accepting the null hypothesis, and is called the probability of a type II
error. Under the alternative the statistical power corresponds in the plot to
the portion above the threshold, i.e., one minus the probability of a type II
error. The larger this probability the better.

In order to determine the power, one must specify the threshold. In the
previous chapter the value of 3.56 was suggested as a threshold for a genome
scan in the backcross design with inter-marker spacing of 10 cM. This thresh-
old was derived from an analytical formula for the significance value. Let us
see the actual significance level and power via simulations.
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Fig. 1.2. The distribution of the test statistic under the null and under the alter-
native hypotheses.

> mean(apply(abs(Z0),1,max) >= 3.56)

[1] 0.0482

> mean(apply(abs(Z1),1,max) >= 3.56)

[1] 0.7044

It follows that the power to detect a QTL, located 40 cM from the telomere
and with an (asymptotic) noncentrality parameter of 4, is about 70%.

What would be the power if the QTL happened to be between two mark-
ers? near the end of the chromosome, rather than near the center? for a smaller
value of the noncentrality parameter? a larger value? We can obtain answers
to these questions using simulations. For example:

> q <- 35; xi <- 4

> Z1 <- add.qtl(Z0[,chr1],beta,markers,q,xi)

> mean(apply(abs(Z1),1,max) >= 3.56)

[1] 0.6482

> q <- 5; xi <- 4

> Z1 <- add.qtl(Z0[,chr1],beta,markers,q,xi)
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> mean(apply(abs(Z1),1,max) >= 3.56)

[1] 0.6455

> q <- 40; xi <- 3

> Z1 <- add.qtl(Z0[,chr1],beta,markers,q,xi)

> mean(apply(abs(Z1),1,max) >= 3.56)

[1] 0.343

> q <- 40; xi <- 5

> Z1 <- add.qtl(Z0[,chr1],beta,markers,q,xi)

> mean(apply(abs(Z1),1,max) >= 3.56)

[1] 0.9363

The task of exploring these question can be carried out much more effi-
ciently once we have formulas for the statistical power, similarly to the for-
mulas we have for the significance level. In the next section we describe such
formulas.

1.2 An Analytic Approximation of the Power

As we saw, the power can be affected quite heavily by the location of the QTL
on the chromosome. The probability of detecting a QTL may be substantially
reduced if the QTL is located midway between markers, compared to the case
where the QTL is located at the same location of a marker in the middle of
the chromosome, and even more so if it is near an end of the chromosome.
Since the formulas for approximating the power for the case when the QTL
is between markers are substantially more complex than the formula when it
is located exactly at a marker, we will present here only the formula for the
latter case. For the former case, however, we do provide an R function, but
not an explicit display of the formula. The interested reader may extract the
mathematical expression from the code of the function.

When a marker is located at a QTL, detection occurs on that chromo-
some if either (i) the test statistic associated with the QTL/marker or (ii)
the process associated with the flanking markers exceeds the threshold. The
test statistic at the QTL has a normal distribution with mean ξ. Thus, the
probability of the first case is simply the probability that such normal vari-
able exceeds a threshold z. The mathematical derivation of the second case
proceeds by conditioning on the value of the test statistic at the QTL, and
analyzing the asymptotic conditional distribution of the process at the other
markers. The resulting formula for a QTL not near either end of a chromosome
is:

Pr
(
max

i
|Zi∆| ≥ z

)
≈ 1−Φ(z− |ξ|)+ϕ(z− |ξ|)

[
2 ν/|ξ| − ν2/(z+ |ξ|)

]
, (1.2)

where ν = ν
(
z{2β∆}1/2

)
. The first term, 1 − Φ(z − |ξ|), is the probability

that the test statistic associated with the QTL/marker exceeds the threshold
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z. The second term corresponds to the probability of crossing the threshold by
one or the other of the two flanking processes when the value of the statistic
at the QTL is below the threshold.

Remark 1.1. Recall that for ∆ ≈ 0, i.e., when the distribution of markers on
the chromosome is very dense, the correction term ν is close to one.

Remark 1.2. When the QTL is located at the first or last marker on a chro-
mosome, there are flanking markers only to one side. Then the approximation
becomes

Pr
(
max

i
|Zi∆| ≥ z

)
≈ 1− Φ(z − |ξ|) + ϕ(z − ξ)ν/|ξ| . (1.3)

The function “power.marker” implements Formula (1.2):

> power.marker <- function(z,beta,Delta,xi)

+ {

+ nu <- Nu(z*sqrt(2*beta*Delta))

+ return(1-pnorm(z-xi) +

+ dnorm(z-xi)*(2*nu/xi-(nu/(z+xi))^2))

+ }

Applying this approximation we get:

> z <- 3.56; beta <- 0.02; Delta <- 10;

> xi <- 4

> power.marker(z,beta,Delta,xi)

[1] 0.7194996

Compare this to the probability of 0.7044, which was obtained via simulation.
The worst case scenario is to have a QTL midway between markers. The

formula corresponding to (1.2) is much more complex since it involves con-
ditioning on the values of the process Zi∆ at both flanking markers. The
expression is omitted, but we use the function power.midway in order to ap-
proximate the power in this case.

> power.midway <- function(z,beta,Delta,xi)

+ {

+ ul <- 5

+ nu <- Nu(z*sqrt(2*beta*Delta))

+ zz <- z - xi*exp(-beta*Delta/2)

+ cc <- sqrt(1 - exp(-2*beta*Delta))

+ fun1 <- function(x,beta,Delta,zz,cc) dnorm(zz-x)*

+ pnorm((zz-exp(-beta*Delta)*(zz-x))/cc)

+ term1 <- integrate(fun1,0,ul,beta=beta,

+ Delta=Delta,zz=zz,cc=cc)

+ fun2 <- function(x,z,beta,Delta,zz,cc) exp(-z*x)*
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+ dnorm(zz-x)*pnorm((zz-exp(-beta*Delta)*(zz-x))/cc)

+ term2 <- integrate(fun2,0,ul,z=z,beta=beta,

+ Delta=Delta,zz=zz,cc=cc)

+ fun3 <- function(x,z,beta,Delta,zz,cc) dnorm(zz-x)*

+ exp(-z*x-z*(zz-exp(-beta*Delta)*(zz-x))+z^2*cc/2)*

+ pnorm((zz-exp(-beta*Delta)*(zz-x))/cc-z*cc)

+ term3 <- integrate(fun3,0,ul,z=z,beta=beta,

+ Delta=Delta,zz=zz,cc=cc)

+ return(1-term1$value+2*nu*term2$value-nu^2*term3$value)

+ }

The analytical expression involves an integral. Numerical integrals of func-
tions with respect to their first argument can be computed with the function
“integrate”. The output is a list, with the component “value” containing
the result of the integration.

In the simulations we obtained a power of 0.6482 when ξ = 4, ∆ = 10,
and the QTL is located halfway between markers. Compare this probability
to the analytical approximation:

> power.midway(z,beta,Delta,xi)

[1] 0.6498196

The power function involves the evaluation of the statistical power over
the range of parameters under the alternative distribution. In the case of
a whole-genome scan using the backcross and a given set of markers, these
parameters are the location of the QTL and the strength of the signal, i.e.,
the noncentrality parameter ξ. Let us evaluate the analytical approximations
over the range of the power function.

We start with the case of a QTL, which is located next to a marker in the
middle of a chromosome. We consider here the case of the backcross design
(β = 0.02), and an inter-marker spacing of 10 cM:

> q <- 40

> xi <- seq(0,6,by=0.1)

> n <- length(xi);

> ap.marker <- p.marker <- vector(mode="numeric")

> for (i in 1:n)

+ {

+ Z1 <- add.qtl(Z0[,chr1],beta,markers,q,xi[i])

+ p.marker[i] <- mean(apply(abs(Z1),1,max)>=z)

+ ap.marker[i] <- power.marker(z,beta,Delta,xi[i])

+ }

> plot(c(0,6),c(0,1),type="n",xlab="xi",ylab="Power")

> lines(xi,p.marker)

> lines(xi,ap.marker,lty=2)



1.2 An Analytic Approximation of the Power 11

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xi

P
ow

er

on marker,simulate
on marker,approx.
midway,simulate
midway,approx.

Fig. 1.3. The power function when the QTL is next to a marker and when it is
midway between markers.

Next, let us consider the case of a QTL midway between markers:

> q <- 35

> ap.midway <- p.midway <- vector(mode="numeric")

> for (i in 1:n)

+ {

+ Z1 <- add.qtl(Z0[,chr1],beta,markers,q,xi[i])

+ p.midway[i] <- mean(apply(abs(Z1),1,max)>=z)

+ ap.midway[i] <- power.midway(z,beta,Delta,xi[i])

+ }

> lines(xi,p.midway,col=gray(0.5))

> lines(xi,ap.midway,lty=2,col=gray(0.5))

> legend(0,1,legend=c("on marker,simulate",

+ "on marker,approx.","midway,simulate","midway,approx."),

+ lty=c(1,2,1,2),col=gray(c(0,0,0.5,0.5)))

The resulting plot is displayed in Fig. 1.3. Note the reduction in power
when the QTL is not perfectly linked to a marker. Observe good agreement
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between the analytical approximation and the simulated value. This agree-
ment is destroyed when the QTL is between markers for values of ξ less than
one. Luckily, the exact evaluation of the power for such low values of the
noncentrality parameter is of little practical interest.

1.3 Designing an Experiment

Experiments aimed at the dissection of the genetic component of traits in
mice require substantial investment. It is unadvisable, therefore, to start such
an effort, unless one is likely to obtain a successful outcome. The careful
planning of the experiment is key in this regard. It ensures, on the one hand,
that sufficient resources are devoted for the task. On the other hand, the
optimal distribution of these resources lowers the chance of wasting both time
and money.

The role of statistical experimental design is to identify the minimal re-
quirements needed in order to be able to extract scientifically significant sig-
nals in the presence of background noise. It helps to use separate terminology
in order to distinguish between statistical significance and scientific signifi-
cance. Statistical significance is a formal term associated with the properties
of the random mechanism underlying the background noise. It contrasts the
strength of the observed signal in light of what could have been produced
in a scenario where no real signal is present. The statistical significance is
computed in the context of a null hypothesis, which assumes the absence of
any signal. An observed signal can turn out to be statistically significant even
if the underlying true signal is very weak. This can occur if the level of the
background noise is low relative the amount of data gathered. The scientific
significance, on the other hand, is not determined by statistical considerations.
It reflects the specifics of the particular scientific discipline, and is given in
terms of the strength of the underlying signal. Thus, in experimental genetics
we may aim at detecting QTLs which have a strong enough effect on the phe-
notypic variance. This corresponds to large enough values of the locus specific
heritability. The experiment is designed to discover genetic terms that have
an effect above a given threshold.

To be more specific, let us consider an experiment using the backcross
design. The strength of the genetic effect is given in terms of the locus specific
heritability (see Chap. ??):

h2 =
(α+ δ)2/4

σ2
y

.

In order to design the experiment, we may set a minimal level of this quan-
tity. Based on this level, the specifications of the trials can be determined.
In this section we will describe the computations which identify the density
of the genotyped markers and the sample size required in order to ensure a
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reasonably large chance to detect this minimal level of signal. We will carry
these computations backwards. First, we will determine, for each inter-marker
spacing, the appropriate noncentrality parameter which ensures the minimal
statistical power. Second, we will determine the sample size associated with
this noncentrality parameter. Finally, we will select the design which mini-
mizes the overall cost.

Determining the Noncentrality Parameter

Thousands of polymorphic markers, scattered throughout the mouse genome,
are available for use. Hundreds of thousands, and even millions more, are
expected with the identification of more and more SNP markers. Although
not all markers are polymorphic between a given pair of inbred strains, the
availability of genetic markers is typically not a limiting factor. Consequently,
in principle, we can consider any density of markers. However, in order to
simplify the computations, we will analyze here only four different possibilities
of inter-marker spacings: ∆ = 20, 10, 5, or 1 cM.

In order to have a fair comparison, we will require that all cases pos-
sess the same significance level – 5%. Consequently, the thresholds will vary
with the spacing. From the computations we made when dealing with the
significance level, we found that these thresholds were approximately equal to
z = 3.46, 3.56, 3.65, and 3.78, respectively.

Let us use the root finder “uniroot” and apply it to the function
“power.midway” in order to identify the value of the noncentrality param-
eter that produces a power of 85% for each one of the designs. Note that the
power is computed for a QTL between markers. This makes the conditions
less favorable for designs with larger inter-marker spacings:

> delta <- c(20,10,5,1)

> z <- c(3.46,3.56,3.65,3.78)

> xi <- vector(mode="numeric")

> ap <- function(xi,z,beta,Delta,p=0)

+ power.midway(z,beta,Delta,xi)-p

> for (i in 1:length(z))

+ {

+ xi[i] <- uniroot(ap,interval=c(4,6),z=z[i],beta=beta,

+ Delta=delta[i],p=0.85)$root

+ }

> names(xi) <- delta

> round(xi,2)

20 10 5 1

4.97 4.71 4.64 4.65

The last row gives target values for the noncentrality parameter for each of
the indicated inter-marker spacings.
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Determining the Sample Size

Next we turn to the determination of the sample sizes. Recall the definition
of the noncentrality parameter:

ξ =
n1/2(α+ δ)/2

σ2
y

.

Simple algebra can be used in order to express n in terms of the other param-
eters (ξ, α, δ, and σy):

n =
ξ2σ2

y

(α+ δ)2/4
.

Thus, one can easily compute the required sample size for each combination
of parameters. In order to give an example, let α = δ = 0.5, and σ2

y = 1.25.
Then

> a <- 0.5; d <- 0.5; ss <- 1.25

> n <- xi^2*ss^2/((a+d)^2/4)

> round(n)

20 10 5 1

154 139 135 135

The increase in the required sample size in going from ∆ = 1 to ∆ = 20 is
not as extreme as one might have suspected.

Selecting the Design

One would like to select the best of the alternative designs. However, a design
that involves the use of fewer animals will require more extensive genotyping,
and vice versa. A way to evaluate the balance between these competing re-
sources is via analysis of cost effectiveness. For the sake of the comparison we
assume here that the expense per animal is $30, including purchase, mainte-
nance, and phenotyping. For the genotyping one must order a set of primers
for each marker. The actual genotyping is then carried out for each marker,
across all the animals. We take the price of the set of primers to be $70, and
the price of a genotype reaction to be $2. This leads to the figures:

> Pheno <- 30; Primers <- 70; Geno <- 2;

> cost <- n*Pheno + (1600/delta)*(Primers + n*Geno)

> round(cost)

20 10 5 1

34925 59695 112732 549005

According to these calculations, if judged only by the power to detect a
QTL, the sparsest design is the most efficient. In the following sections we
discuss problems of estimating the location and effect of a QTL, for which
denser markers promise greater accuracy.
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1.4 Confidence Sets

Statistical power refers to the probability of detecting a QTL anywhere on
a chromosome. It is also important to estimate the genomic location of the
detected QTL as precisely as possible. A confidence interval is a range of
parameter values that depend on the data and contain the unknown actual
value of the parameter with high probability. In this section we will discuss
briefly the issue of the construction of confidence interval for the genomic
location of the QTL. We will assume that a QTL has been detected on some
chromosome. We will also assume that additional markers have been typed in
the region suspected to contain the QTL, so the inter-marker spacing is small,
say 1 cM.

For markers in the neighborhood of a detected QTL, the values of |Zt|
will be substantially higher than the values for markers in other regions of the
genome. Indeed, if we seek to guess the actual location of a QTL, the marker,
say t̂, where |Zt| assumes its maximum value is a reasonable choice. Because of
random fluctuations, however, this guess will probably not be exactly correct.
Consequently, we may want to incorporate the possibility that the QTL is
somewhere in the neighborhood of t̂. It seems intuitively clear that if |Zt| is
almost as large at nearby markers as at t̂, then the QTL might also be close
to those markers, while markers where |Zt| is much smaller are unlikely to be
close to the QTL.

To make this idea more precise, we assume that there are several markers in
the neighborhood of t̂, so to a rough approximation it is reasonable to assume
that the QTL coincides with some marker locus. The procedure we propose
is to determine a suitable constant c2, so that the QTL might reasonably be
located at any marker locus τ (on the same chromosome as t̂) such that

max
t

Z2
t − Z2

τ < c2 . (1.4)

Suppose we can choose c2 to have the property that

Prτ,ξ
(
max

t
Z2
t − Z2

τ ≥ c2
)
≤ p , (1.5)

where Prτ,ξ denotes that the probability is calculated under the condition that
the true QTL is at the marker locus τ , and ξ is the noncentrality parameter
at that locus. The traditional values for p are 0.1, 0.05, or some other small
probability. The set of all marker loci τ satisfying (1.4) where c2 satisfies (1.5),
say Q, is called a (1−p)-confidence set for the QTL. Note that Q is a random
set, since it is a function of maxt Z

2
t , Z

2
τ , and c2. It can be shown to have the

property that for the true QTL q itself Prq{q ∈ Q} ≥ 1− p, hence the name
“confidence set”.

Unfortunately, there is a technical complication to this approach: the prob-
ability on the left-hand side of (1.5) depends both on τ and on the value of
the noncentrality parameter ξ, which is unknown. Hence we cannot compute
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the left-hand side of (1.5), even in principle. However, this probability is fairly
constant over a reasonably wide range of plausible values of ξ, so knowing ξ
exactly is not of critical importance. One can select a representative value for
the noncentrality parameter, and use that value in the computation.

Let us demonstrate the approach in an example. Consider an inter-marker
spacing of 1 cM. Let us select a critical value c2 that satisfies (1.5) for p = 0.1
and ξ = 6:

> markers <- 0:80

> Z <- OU.sim(beta,markers)

> q <- 40; xi <- 6

> ZZ <- (add.qtl(Z,beta,markers,q,xi))^2

> ZZ.max <- apply(ZZ,1,max)

> d <- dim(ZZ)

> ZZ.dif <- matrix(ZZ.max,nrow=d[1],ncol=d[2])-ZZ

> conf.level <- function(cc,q,ZZ.dif,cl=0)

+ mean(ZZ.dif[,q+1] < cc)-cl

> cc <- uniroot(conf.level, interval=c(0,10),

+ q=q, ZZ.dif=ZZ.dif, cl=0.9)$root

> cc

[1] 4.678781

> 1-conf.level(cc,q,ZZ.dif,cl=0)

[1] 0.1

Next we turn to the investigation of the change in the confidence level of the
confidence set as a function of the noncentrality parameter. While we are at
it, let us compute also the expected lenght of the confidence set:

> xi <- 3:8

> cs.length <- cs.level <- vector(mode="numeric")

> for (i in 1:length(xi))

+ {

+ ZZ <- (add.qtl(Z,beta,markers,q,xi[i]))^2

+ ZZ.max <- apply(ZZ,1,max)

+ ZZ.dif <- matrix(ZZ.max,nrow=d[1],ncol=d[2])-ZZ

+ cs.level[i] <- mean(ZZ.dif[,q+1] < cc)

+ cs.length[i] <- mean(apply(ZZ.dif < cc,1,sum))

+ }

> names(cs.level) <- xi

> cs.level

3 4 5 6 7 8

0.8593 0.8727 0.8864 0.9000 0.9109 0.9216

> names(cs.length) <- xi

> cs.length

3 4 5 6 7 8

31.1014 18.0115 11.2120 7.6695 5.6781 4.3922
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It can be seen from the results of the simulations that for values of ξ ranging
from 3 to 7 the probability that maxt Z

2
t − Z2

τ < c2 is not too far from its
target value of 0.9. Observe, also, that the expected length of the confidence
set is quickly reduced when the noncentrality parameter increases. In essence:
the stronger the signal the more accurately it can be located.

Let us propose a theoretical explanation to the phenomena we have just
observed. Suppose that markers are equally spaced at inter-marker distance
∆. It can be shown by an argument similar to that used to derive (1.2) that
when the QTL τ coincides with a marker locus not near either end of the
chromosome,

Prτ,ξ{max
i

Z2
i∆−Z2

τ ≥ c2} ≈ 2 ν
(
[2β∆(c2+ξ2)]1/2

)
(1+c2/ξ2)1/2 exp (−c2/2) .

(1.6)

The probability (1.6) is determined primarily by the factor 2 exp(−c2/2)
and only to a lesser degree by the factors depending on ξ. For a numerical
example, suppose ∆ = 1 cM and c2 = 4.6, so 2 exp(−c2/2) = 0.2. For ξ
increasing from 4 to 7, which would be reasonable values for a detectable but
not overwhelming QTL, the right-hand side of (1.6) decreases from 0.134 to
0.090, so under these conditions we have approximately a 0.90 confidence set.

We can compare the simulated confidence probabilities to the approxima-
tions proposed in (1.6):

> Delta <- 1

> cs.level <- rbind(cs.level,1-2*Nu(sqrt(2*beta*Delta*

+ (cc+xi^2)))*sqrt(1+cc/xi^2)*exp(-cc/2))

> rownames(cs.level) <- c("simulated","analytical")

> round(cs.level,3)

3 4 5 6 7 8

simulated 0.859 0.873 0.886 0.900 0.911 0.922

analytical 0.848 0.873 0.891 0.904 0.915 0.924

Equation (1.1) tells us how fast the process Zt is expected to drop away
from its maximum as we move away from the true QTL. Hence, it also gives
us a rough idea of the length of the confidence set: If we assume that ξ ap-
proximately equals maxt Zt (cf. Prob. 1.6) and ξ exp(−0.02 |τ − t|) equals Zt,
then solving the equation ξ2 − ξ2 exp(−0.04 |τ − t|) = c2, for 2|τ − t|, should
approximately produce the expected length of the confidence set. Solution to
the equation yields the formula 50 log[ξ2/(ξ2 − c2)] cM as a rough approxi-
mation of the expected length of the confidence set. Compare it to the results
of the simulations:

> cs.length <- rbind(cs.length,50*log(xi^2/(xi^2-cc))/Delta)

> rownames(cs.length) <- c("simulated","approximation")

> round(cs.length,3)

3 4 5 6 7 8
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simulated 31.101 18.012 11.212 7.670 5.678 4.392

approximation 36.684 17.295 10.361 6.961 5.018 3.796

Note that even under favorable conditions the confidence set is more than
5 cM in width, which is still sizable if measured by the number of genes it
can contain. Under less favorable conditions, the interval is much wider. As
we saw in Chap. ??, the recombination fraction between two marker loci for
a RI design is larger than for a BC or IC design. This means that the rate
of decay of the value of Zt for a RI design from its maximum value near a
QTL is more rapid. On the one hand, this has a negative effect on the power
to detect linkage, since it means that the noncentrality parameter at markers
located at a relatively short distance from a QTL can be substantially smaller
than at the QTL itself. On the other hand, it permits the construction of
more accurate confidence regions – roughly four times as accurate for a RI
strain produced by sib mating and twice as accurate for a RI strain produced
by selfing. For the example discussed above with ξ = 5, the expected size of
the confidence set based on a BC design is about 10 cM. The same argument
applied to θRI = 4θ/(1 + 6θ) for a RI strain produced by sib mating suggests
a confidence set of about 2.5 cM, which would be a substantial improvement
in accuracy.

Remark 1.3. From the argument given above and from the approximation
log[ξ2/(ξ2 − c2)] = − log(1 − c2/ξ2) ≈ c2/ξ2, we see that the length of the
confidence interval is roughly inversely proportional to ξ2. Since ξ2 is itself
proportional to the sample size n, the length of the confidence interval is in-
versely proportional to n. It is common in statistical problems that confidence
intervals are inversely proportional to n1/2. The difference reflects special fea-
tures of gene mapping as a statistical problem. Apart from this theoretical
curiosity, we have the more practical implication that the confidence interval
can be made half as long by doubling the sample size, whereas one would or-
dinarily expect that the sample size must be quadrupled in order to halve the
confidence interval. Nevertheless, it remains essentially impossible to identify
a QTL uniquely by using only methods of gene mapping. We return to this
issue briefly in Chap. ??.

1.5 Confidence Bounds for the Genetic Effect of a QTL

A confidence region for the genomic location of a QTL gives us an idea of
where to concentrate a systematic search for the QTL. A confidence region
for the genetic effect of a QTL, as measured, for example, in a backcross by
the noncentrality parameter ξ = E(Zτ ) = n1/2(α+δ)/σy, provides information
about the importance of the QTL in determining the phenotype, indicates the
range of outcomes we might expect to see if we replicated the experiment, and
provides a basis for comparing the QTL in different strains of mice. If we could
observe Zτ itself (and were aware that the marker we are observing is indeed
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the QTL τ), it would be a simple matter to use the normal distribution to
find an approximate confidence interval for ξ. However, since we must search
for τ , the surrogate observation maxt Zt will often not equal Zτ , especially if
the spacing between markers is small, so a large value at one marker may be
accompanied by a large value at nearby markers. When τ itself is a marker
or close to a marker, maxt Zt may exceed Zτ , hence giving a biased estimator
of ξ. (See Prob. 1.6 for an exploration of this issue by simulations.)

To deal with this problem we find in this section a lower confidence bound
for ξ, which deals with the problem of multiple comparisons and indicates that
the genetic effect is at least of some minimal size. The same methods can be
used to find an upper confidence bound (hence also a confidence interval), but
in view of the applications and the problem of bias, the lower bound seems
scientifically more interesting.

Consider maxt Zt, where the maximum is taken over all chromosomes and
all marker loci. In testing the null hypothesis of no genetic effect we ask
whether the observed value of maxt Zt is incompatible with the null hypothesis
in the sense that the probability when the null hypothesis is true of a still
larger value is so small that it renders the null hypothesis untenable. A lower
confidence bound for ξ is found by asking a very similar question in a slightly
different way. We consider a trial value of ξ, say ξ0. In the test of hypothesis
this was 0. Now, instead of asking whether ξ0 is unreasonable, we ask how large
ξ0 must be so that is at least minimally reasonable. This can be formalized by
regarding the observed maximum zmax = maxt Zt as a constant, then finding
the value of ξ0 that satisfies

Prξ0
(
max

t
Zt ≥ zmax

)
= p (1.7)

(cf. (6.5)), where p is some (usually small) probability. The value of ξ0, which
is a function of zmax, say ξ0(zmax), is called a (1− p)-lower confidence bound
for ξ, because it can be shown to satisfy

Pr
(
ξ0
(
maxt Zt

)
≤ ξ

)
= 1− p . (1.8)

In particular, if maxt Zt were to equal exactly the 0.05 significance threshold,
then the 0.95 lower confidence bound would be ξ0 = 0. The case p = 0.5
is also of interest. In this case the confidence bound can be regarded as a
point estimator of ξ, called a median unbiased estimator because by (1.8) the
median of its cumulative distribution function is ξ. As a point estimator it
does not have the bias inherent in using maxt Zt.

To compute the probability (1.7), we assume that there is only one QTL
contributing to the trait. The complementary event, {maxt Zt < zmax}, con-
sists of the intersection of the events that the indicated inequality holds for
all t on the chromosome where the QTL is located and on all other (unlinked)
chromosomes. These two events are independent, so the probability of their
intersection is the product of their probabilities. Moreover, the first probabil-
ity is just one minus the power, which is given approximately in (1.2) in the
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special case that the QTL coincides with a marker locus. Let Q1(z, ξ0) denote
the power. The second probability is just one minus the type I error proba-
bility associated with a genome containing one less chromosome (namely the
linked chromosome), which is given approximately by (??). If we denote the
type I error probability by Q0(z, C, L), then the probability on the left-hand
side of (1.7) is

Q1(zmax, ξ0) +Q0(zmax, C, L)−Q1(zmax, ξ0)Q0(zmax, C, L) ,

which can be used, as indicated above, to give a confidence bound for ξ.
For a numerical example, suppose that zmax = maxt Zt = 3.9 with a

marker spacing of ∆ = 1 cM. Recall that the 0.05 significance level with this
marker spacing was about 3.78, so the assumed value of z is only marginally
significant. If this were the outcome of directly observing Zτ , which is normally
distributed with mean ξ and variance one, a point estimator of ξ would be
3.9 itself while a 0.95-lower confidence bound would be 3.9−1.65 = 2.25. The
method described above to account for the genome scan gives a 0.95-lower
confidence bound of 1.35 if the QTL is assumed to coincide with a marker
and we use the approximations (1.2) and (??) for Q1 and Q2. If we assume
that the QTL is midway between markers, we require a more complicated
calculation of Q1(z, ξ) (using, for example, the program given at the end of
Sect. 1.2). The result would be a lower confidence bound of 1.45. Assuming
the QTL is located exactly at a marker gives the most conservative result
(smallest lower confidence bound).

The 0.5-confidence bound, i.e., the median unbiased estimator for the hy-
pothetical data of the preceding paragraph when the QTL coincides with a
marker locus is 3.57, somewhat less than the näıve biased estimate of 3.9.

Consider now the example from Sen and Churchill [?] mentioned in the
preceding chapter, where∆ ≈ 10 cM. For the value zmax = 5.8 on chromosome
4, the 95% lower confidence bound would be approximately 4.10. For the value
zmax = 3.7 on chromosome 15 it would be approximately 1.08. In the first
case the confidence bound is very close to the näıve lower confidence bound of
zmax−1.645 ≈ 4.15; but in the second case the problem of bias is more serious
and hence the difference from the näıve confidence bound is substantial.

Remark 1.4. The approximation for Q1(z, ξ) given in (1.2), which involves
division by ξ, is a poor approximation for very small values of ξ. Since the lower
confidence bound involves evaluation of Q1(z, ξ), for small ξ, before putting
too much faith in the approximation, it is advisable to check its accuracy by
simulation. (Consider Prob. 1.7 and see also Fig. 1.3.)

1.6 Bibliographical Remarks

The analytic approximations to the power are found in Feingold, Brown and
Siegmund [?]. The discussion of confidence regions is taken from [?] and [?].
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Problems

1.1. The two parameters that determine the power for a given cross and a
given inter-marker spacing are the proximity of the QTL to the markers and
the noncentrality parameter (ξ).

(a) Use the programs in the text to simulate the power function, for the
backcross design with 10 cM, 5 cM, and 1 cM inter-marker spacings, over a
grid of values of the noncentrality parameter.
(b) Plot the power function and interpret the resulting plots.

1.2. Given a budget of $50,000 and other costs as described in the text, what
would be the smallest effect that can still be detected with a power of 85%
for the backcross design?

1.3. Write a function that simulates the test statistic for the intercross when
the QTL is present. Use this function in order to examine the power function
for detecting a QTL using this design. Consider both the cases that the trait
is additive (δ = 0) and the trait is either dominant or recessive (δ = ±α).
(Remember that the test statistic for an IC has two degrees of freedom and
hence requires a different threshold from a BC – Probs. ?? and ??.) Assuming
σ2
e is the same for an IC and for a BC, discuss the comparative advantages
and disadvantages of a BC and an IC design.

1.4. In this problem we use the notation of Prob. ??. A mathematical approx-
imation for the power of an intercross design for a QTL at 0 recombination
distance from the nearest marker is given by

Pr
(
max

i
Ui∆ ≥ u

)
≈

1− Φ
(
u1/2 − ξ

)
+ ϕ

(
u1/2 − ξ

)[ 1

2 ξ
+
(u1/2

ξ

)1/2{2 ν

ξ
− ν2

u1/2 + ξ

}]
. (1.9)

In this equation ξ = (ξ21+ξ22)
1/2, where ξ1 = (n/2)1/2α/σy and ξ2 = n1/2δ2/2σy

are noncentrality parameters for the additive and dominance effects, respec-
tively, and ν = ν

(
(2β̄∆u)1/2

)
, where β̄ = (ξ21β1 + ξ22β2)/ξ

2. Compare the
numerical results you obtained by simulation in the preceding problem with
those obtained from this approximation.

1.5. Use the approximate power formula given in (1.3) to compare the power
of a BC and a RI design based on repeated sib mating. Assume that the trait
is additive and that σ2

e is the same for both designs. (This latter assumption
may not be satisfied if there is more than one major QTL. See Prob. ??.)
Recall that the appropriate value of β for the RI design is 0.08 (Prob. ??), so
the RI design will have both a higher threshold and a steeper drop-off in power
when markers are relatively widely spaced and the QTL is located between
markers.
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1.6. A parameter of interest is the locus-specific heritability, defined in a back-
cross by h2 = (α+ δ)2/4σ2

y . This parameter gives the proportion of the total
phenotypic variance that is attributable to the QTL. Suppose we would like
to use the data from a genome scan to get some idea of the magnitude of h.
We found in Chap. ?? that E(Zτ ) ≈ n1/2h. Hence if we had a single marker at
the QTL itself, we could use our test statistic to obtain an unbiased estimate
of h. In a genome scan we could use the statistic maxt Zt/n

1/2, as a surrogate
for Zτ/n

1/2. Simulate the expected value of this statistic for different values
of h ranging from 3.0 to 6.0 and ∆ ranging from 1 to 10 cM, and for differ-
ent positions of τ with respect to the nearest flanking markers. Does it seem
reasonable from your simulations to conclude that maxt Zt/n

1/2 provides an
acceptable estimator of h? Discuss.

1.7. Calculate lower confidence bounds for values of maxt Zt ranging from
3.85 to 6.0. How does the “bias adjustment” for multiple comparisons change
as maxt Zt increases? Use simulations to approximate Q1(z, ξ) for some of the
smaller values of ξ.

1.8. A strategy to minimize the cost of genotyping, while maximizing the
amount of marker information in the neighborhood of a QTL, is to select
markers to genotype in two stages. In the first stage one uses fairly widely
spaced markers, say at 20 or 40 cM intervals. Then in regions where there
is some evidence of linkage, say a Z value in the range of 1 to 2, one adds
more markers. For a specific example, suppose that markers are originally
genotyped at 20 cM intervals. If Zt > z1, where z1 is a parameter to be
chosen, then in each of the 20 cM intervals flanking t, additional markers
are placed at 5 cM intervals. Linkage is detected if for the final collection
of markers, maxt Zt > z2. Simulate this experiment with different values of
z1, and determine z2 so that the significance level is 0.05. Find the power of
this procedure for several values of the noncentrality parameter. How do the
significance threshold and power compare with the case of a single stage of
5 cM genome scan? On average, how many fewer markers are genotyped per
mouse? Repeat the same experiment with the modified first stage rule: if for
two consecutive markers (Zt +Zt+∆)/2 > z3, then add new markers between
the loci t and t+∆. Does one of these first stage procedures seem much better
than the other?


