
20



Chapter 2

The Bootstrap

2.1 Introducing The Bootstrap

Recall the regression model that related the genotype x to the phenotype y. The
parameters of the model are α, which we call the genotypic covariate, the baseline
level of the homozygous wildtype µ, the frequency of the mutation in the population
p, and the conditional variance of the phenotype σ2. In this section we would like
to consider the estimation of the genotypic covariate.

Initially, let us assume that α, the quantity of interest, and µ, a nuisance
parameter, are unknown but that the quantities p and σ2 are known. The maxi-
mum likelihood estimate of parameter of interest is obtained by solving the normal
equation ˙̀ = 0. Examining the equation in our case we get that

α̂ =
x̄y − x̄ȳ

x̄x− x̄2
.

Large sample theory proposes to use the appropriate diagonal element of the Fisher
information matrix as an approximation of the variance of this estimate. Hence

v̂ar(α̂) =
σ2

n(x̄x− x̄2)
.

Let us examine in an example the validity of this approximation. Assume
the true parameter values are as given before and let us simulate estimates of the
variance and compare them to the actual variance. The latter is also obtained via
simulations:

> rm(list=ls())
>
> n <- 10; mu <- 15; al <- 1.5; sig <- 3; p <- 0.3
> n.sim <- 10^5
> al.s <- vector(length = n.sim)
> for(i in 1:length(al.s))
+ {
+ x.s <- rbinom(n,2,p)
+ y.s <- rnorm(n,mu+al*x.s,sig)
+ v.x <- var(x.s)
+ if (v.x > 0) al.s[i] <- cov(x.s,y.s)/v.x else

21



22 CHAPTER 2. THE BOOTSTRAP

+ al.s[i] <- 0
+ }
> true.var <- var(al.s)
> true.var
[1] 2.846964

Let us look at an example:

> x <- rbinom(n,2,p)
> y <- rnorm(n,mu+al*x,sig)
> x
[1] 1 1 0 0 0 0 0 0 1 1
> y
[1] 15.48461 11.00769 19.03690 19.27874 12.51359 19.73240 17.39038 14.10033
[9] 13.29940 17.28394
> al.hat <- cov(x,y)/var(x)
> al.hat
[1] -2.739816
> est.var.app <- sig^2/((n-1)*var(x))
> est.var.app
[1] 3.75
> true.var
[1] 2.846964

The bootstrap is a simulation-based statistical procedure. The essential com-
ponent in this procedure, and the source for its name, is the fact that the current
sample is the basis for the simulation algorithm. In a way, one may think of the
bootstrap as an attempt to mimic the simulation we carried out to obtain the ac-
tual variance of the estimate but without the benefit we had of “knowing” what the
values of the unknown parameters are.

As a matter of fact the name “bootstrap” may appear in the title of different
algorithms that may be applied in different settings. Hence, the name is more a de-
scription of a theme than a description of a specific algorithm. We will demonstrate
two distinct bootstrap algorithms that may fit the inference problem that is dealt
with here.

Assume that we are using the estimator α̂ but are not satisfied with the
standard assessment of the variance of the estimate which is proposed by the large
sample theory. Had we known the actual values of the parameters we would have
been able to simulate artificial samples and use them to compute the variance.
Unfortunately, these parameters are unknown to us. As a remedy, one may use
estimates of the parameters, namely α̂ and µ̂ as if they were the true population
parameters values for the simulation of the samples. The resulting estimate of the
variance is called the parametric bootstrap estimate of the variance

Let us demonstrate the application of the parametric bootstrap for estimating
the variance of the estimate α̂:

> alpha.est <- function(x,y,var.x,sig)
+ {
+ v.x <- var(x)



2.1. INTRODUCING THE BOOTSTRAP 23

+ if(v.x > 0) al.hat <- cov(x,y)/var(x) else al.hat <- 0
+ return(al.hat)
+ }

This is a function that computes the statistic. It will be used in the bootstrapping
algorithm:

> p.boot.alpha <- function(x,y,B=200,sig,p)
+ {
+ alpha.boot <- vector(length=B)
+ n <- length(x)
+ if (var(x) > 0)
+ {
+ al.hat <- cov(x,y)/var(x)
+ mu.hat <- mean(y) - al.hat*mean(x)
+ for(b in 1:B)
+ {
+ x.s <- rbinom(n,2,p)
+ y.s <- rnorm(n,mu.hat+al.hat*x.s,sig)
+ alpha.boot[b] <- alpha.est(x.s,y.s,var.x,sig)
+ }
+ alpha.boot[is.na(alpha.boot)] <- 0
+ v <- var(alpha.boot)
+ } else v <- 0
+ return(v)
+ }

Let us apply it to the example:

> est.var.p.boot <- p.boot.alpha(x,y,sig=sig,p=p)
> est.var.p.boot
[1] 3.005303
> true.var
[1] 2.846964

An alternative bootstrap approach is the non-parametric bootstrap In this
approach, which is the better known application of the bootstrap method, one does
not base the sampling of the artificial samples on an assumed model for the marginal
distribution of the observations (x, y), but uses instead a non-parametric descrip-
tion of the joint distribution, the empirical distribution for example. The practi-
cal consequence of using the empirical distribution is that an artificial sample is
formed by by sampling with replacement n elements from the original sequence
{(x1, y1), . . . , (xn, yn).

Let us demonstrate the application of the non-parametric approach on our
data:

> np.boot.alpha <- function(x,y,B=200,sig,p)
+ {
+ alpha.boot <- vector(length=B)
+ n <- length(x)



24 CHAPTER 2. THE BOOTSTRAP

+ if (var(x) > 0)
+ {
+ index <- 1:n
+ for(b in 1:B)
+ {
+ i.s <- sample(index,rep=TRUE)
+ x.s <- x[i.s]
+ y.s <- y[i.s]
+ alpha.boot[b] <- alpha.est(x.s,y.s,var.x,sig)
+ }
+ v <- var(alpha.boot)
+ } else v <- 0
+ return(v)
+ }
> est.var.np.boot <- np.boot.alpha(x,y,sig=sig,p=p)
> est.var.np.boot
[1] 3.32312
> true.var
[1] 2.846964

Observe that both the parametric and non-parametric approach assume the
basic model of independence of observations, namely that the per-sample observa-
tions (xi, yi) are independent between the sample members. The two approaches
differ in the way they treat the distribution of a single pair in a parametric way, in
one case, and in a non-parametric in the other.

It should be realized that there are more than two ways to produce artificial
samples in an attempt to mimic the simulation computational method. Examples
of other non-parametric re-sampling methods can be found in the paper by Efron
and Tibshirani.

2.2 Estimating the location of the QTL

Let us turn now to a more complex problem. Up to this point we have looked at a
single locus with the aim of relating it to the phenotype, either with the binomial
modeling in the case of affected half-sibs or using regression modeling in the case
of a quantitative trait. In reality, the location of genetic factor, also known as the
quantitative trait locus (QTL) is unknown. Hence, a-priory we do not know which
location should be tested. Therefore, the common practice it to examine many
locations at once and try to infer from the data the presence, and if so, the location
of the QTL.

In order to fix ideas let us imagine an experiment that aims at the mapping
of QTLs that contribute to some quantitative trait in mice. A popular design for
an experiment is the backcross design. This design initiates with two inbred strains,
one showing an elevated level of the trait compared to the other.

Inbred strains are created by repeated brother-sister mating, which results
in the reduction, and eventually the practical elimination of any genetic variability
within the strain. Consequently, any mouse of the given strain is homozygous at
each genetic locus and any pair of mice from the strain are genetically identical.



2.2. ESTIMATING THE LOCATION OF THE QTL 25

However, mice from distinct strains may differ genetically from each other at many
loci.

Observe that there may by phenotypic variability within each strain but it
cannot be attributed to genetic factors. On the other, some of the phenotypic
difference between strains may be due to their genetic differences. The goal is to
identify these factors.

In order to carry out the task one identifies a collection of markers, scattered
across the genome. A marker is a locus in which the two strains differ. Standard
maps of markers involve a few hundreds of such mapped polymorphic loci. Notice,
that QTLs can be any of hundreds of thousands of polymorphic sites. Hence, we
may not assume that any of the markers is itself a QTL.

The first step in the creation of the backcross is the formation of F1 mice by
crossing a mouse from one strain with a mouse from the other strain. Backcross mice
are formed by crossing an F1 mouse with a mouse from one of the inbred strains.
Denote one of the inbred strain by capital letters and the other by small letters.
Hence the genotype at an anonymous locus is MM for the first strain and mm for
the second. The genotype of F1 must be Mm. If the F1 is crossed back with the
mm mouse then the genotype may either be mm or it may be Mm, depending on
which of the two copies of the F1 mouse was passed to the offspring.

Concentrate on a given chromosome. Assume that one identifies markers at
loci t1, t2, . . . , tm over that chromosome and creates a sample of backcross mice. An
(asymptotically) sufficient statistic is the vector (α̂1, . . . , α̂m) of estimated regression
coefficients of the phenotype over each of the markers. Notice that if there is no
QTL on this chromosome then the mean of each component in the vector is 0,
and the variance is approximately 2σ2/n, where n is the number of mice. After
dividing by the standard variation one obtains a standardized vector (Z1, . . . , Zm),
the components of which are standard normal.

The components of the vector are not independent. The dependence structure
results mainly from the process of recombinations. This process involves crossovers of
genetic material between the two copies during the formation of a gamete. Consider
the gamete that originated from the F1 parent of a given backcross mouse and look
at two loci. We say that a recombination took place if the allele at the first locus is
from one (grand-parental) source and the allele at the other locus is from a different
source. The probability of a recombination is denoted by θ. A popular model for
the recombination rate, the Haldane Model, produces

θ = 0.5− 0.5× e−β|ti−tj | ,

where |ti − tj | is the distance between the two markers and β is a constant that
depends on the units of distance and on the design of the experiment. If the distance
is measured in centiMorgans (cM) then for the backcross design β = 0.02. For the
affected sib-pairs (ASP), on the other hand one gets that β = 0.04. It turns out
that

cov(Zi, Zj) = e−β|ti−tj | .

The vector (Z1, . . . , Zm) can be used in order to test the null hypothesis of the
absence of a QTL on the chromosome. The null is rejected if any of the components
is significantly different than zero. However, our focus now is not in testing but
in estimation. Consequently, we will assume that at least one QTL is present and



26 CHAPTER 2. THE BOOTSTRAP

our goal is to locate it. For simplicity, let us assume the presence of a single QTL
at a locus unknown to the applied statistician and with an unknown effect. The
presence of this QTL is reflected in the distribution of the vector (Z1, . . . , Zm). We
will consider a large sample and the resulting normal approximation. Based on
large sample theory we get that for local alternatives the distribution of the vector
of standardized statistics is multi-normal with a non-zero mean vector and with the
covariance structure as under the null hypothesis.

Specifically in our example, the source of the signal is the QTL and this signal
is reflected in the markers as a result of the correlation between the genotype of the
QTL and the genotypes at the markers. In order to quantify the signal imagine a
statistic, parallel to the statistics obtained at the markers, is computed based on
the genotype of the QTL. The mean of this imaginary statistic is non-zero and may
be denoted by µ. The parameter µ results from the effect on the phenotype of the
alleles of the QTL and is a function of the relative contribution of the QTL to the
phenotypic variance. The (asymptotic) correlation between the imaginary statistic
and the statistics at the markers is a function of the pairwise distances and obeys
the same formula as the covariance between the markers themselves. Moreover, the
expectation of the statistic at the markers is equal to the correlation between the
marker and the QTL times the expectation at the QTL. Hence, if the QTL is located
at q, then:

E(Zi) = µσq = µe−β|ti−q| , for i = 1, 2, . . . , m.

The unknown parameters in this asymptotic presentation of the statistics
problem of QTL mapping are two: the location of the QTL q and the effect of the
QTL µ. We will estimate these parameters using the MLE approach. Unfortunately,
the likelihood function in this setting is not a smooth function of the parameters.
Hence, one may not use the standard asymptotic theory of large samples in order
to obtain an approximation of the variance of the estimates. Instead, we will apply
the parametric bootstrap to produce an assessment of the sampling properties of
the estimates based on the observed data. In order to speed up the computations
we will simulate directly the sufficient vector of statistics (Z1, . . . , Zm) based on its
asymptotic normal distribution.

Let us demonstrate the simulation of the sufficient statistics with an example.
Assume a QTL, located 10 cM from the beginning of the chromosome, that produces
a mean of 6:

> qtl <- 10
> mu <- 6
> b <- 0.04

Notice that we are assuming the correlation rate that fits the ASP experiment. The
resulting vector of means of the markers’ statistics is:

> mark <- seq(0,160,by=40)
> Mu <- mu*exp(-b*abs(mark-qtl))
> Mu
[1] 4.02192028 1.80716527 0.36486038 0.07366404 0.01487251

Observe that the markers are placed at 0, 40, 80, 120, and 160 and that the QTL
is located between the firs two markers. Notice that the covariance matrix of the
markers and its inverse are given by:



2.2. ESTIMATING THE LOCATION OF THE QTL 27

> Sig <- outer(mark,mark,function(x,y) exp(-b*abs(x-y)))
> round(Sig,5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1.00000 0.20190 0.04076 0.00823 0.00166
[2,] 0.20190 1.00000 0.20190 0.04076 0.00823
[3,] 0.04076 0.20190 1.00000 0.20190 0.04076
[4,] 0.00823 0.04076 0.20190 1.00000 0.20190
[5,] 0.00166 0.00823 0.04076 0.20190 1.00000
> W <- solve(Sig)
> round(W,5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1.04249 -0.21048 0.00000 0.00000 0.00000
[2,] -0.21048 1.08499 -0.21048 0.00000 0.00000
[3,] 0.00000 -0.21048 1.08499 -0.21048 0.00000
[4,] 0.00000 0.00000 -0.21048 1.08499 -0.21048
[5,] 0.00000 0.00000 0.00000 -0.21048 1.04249

The function outer takes as input two vectors and a binary function and produces
a matrix. The components of the matrix are the outputs of the application of the
function to a pair of components, one from each vector. The default binary function
is “*”, in which case the function produces the standard outer product of the two
vectors. However, the default function may be replaced by any other binary function,
either by its name – hence using “"-"” would produce the pairwise differences – or
by its definition as in the example.

The function solve solves a system of linear equations if its arguments is an
invertible matrix and a vector or, if the argument is only the matrix, it compute the
inverse of the matrix. Observe the particular form of the inverse of the correlation
matrix, which has non-zero elements only on the main-, super-, and sub-diagonals
and the matrix. (This is a consequence of the fact that the entries of the correlation
matrix take the form ρ|i−j|, for some ρ.)

Let us try to simulate a vector of observed sufficient statistics with the func-
tion rmvnorm:

> Z <- rmvnorm(7,Mu,Sig)
Error: could not find function "rmvnorm"

The reason that we have failed is that given function is not part of the stan-
dard R distribution and also is not loaded automatically at the initiation of the
session. Therefore, we need first to install on our computer the library of functions
that contains this specific one – an operation that we do once – and upload the li-
brary – an operation we do for each session that requires the function. The package
mvtnorm is the name of the library that includes the function rmvnorm. It can be
installed directly from CRAN using the option packages in the R GUI toolbar. After
the installation on can load the library and get:

> library(mvtnorm)
> Z <- rmvnorm(7,Mu,Sig)
> Z

[,1] [,2] [,3] [,4] [,5]
[1,] 4.146552 0.26869404 0.7084614 0.2741802 -0.92907689



28 CHAPTER 2. THE BOOTSTRAP

[2,] 1.713306 1.62798543 1.2676685 -0.3750106 0.03495147
[3,] 3.020231 -0.02227084 0.4362036 -2.1767059 -2.23372021
[4,] 4.962628 2.14258340 0.4810787 0.1951507 -0.67051660
[5,] 4.541066 2.24139000 -0.2948301 -0.2132515 0.24400656
[6,] 3.211752 1.63506256 1.6919032 1.0679673 0.89321538
[7,] 4.769529 2.15444741 0.5249833 -0.7202958 0.55261256

The input to the function rmvnorm was an integer, that gives the requested number
of independent copies, a mean vector and a covariance matrix. The output is a
matrix, where each row represents an independent copy and each column represents
a component of the multi-normal vector. As a result of the crossing experiment for
gene mapping the applied statistician gets to observe a single row of observations
which he or she can use for making inference. In the simulation, however, we can
produce independent copies of the result of such experiment.

The estimation of the unknown parameters is based on the maximization of
the log-likelihood of a multi-normal vector. Observe that if z is such a vector with
mean vector µσq covariance matrix given by Σ then the log-likelihood is

`(q, µ; z) = µ(σq)′Wz − (µ2/2)(σq)′Wσq − 0.5z′Wz + 0.5 log(|W |)− 0.5d log(2π) ,

where W = Σ−1 is the inverse of the covariance matrix, |W | is its determinant and
d is the dimension of the vector. Notice that only the first two components are a
function of the unknown quantities q and µ. Hence, we may ignore the other terms
when looking for the maximizers.

The maximization of the target function with respect to the pair of parame-
ters may be carried out sequentially by first maximizing the function with respect
to mu for each fixed q and then maximizing the outcome with respect to q. The
advantage of this approach is the availability of an analytic expression for the max-
imization with respect to µ:

∂

∂µ
`(q, µ; z) = (σq)′Wz − µ(σq)′Wσq = 0 =⇒ µ̂(q) =

(σq)′Wz

(σq)′W (σq)

and therefore

`(q, µ̂(q); z) =
[(σq)′Wz]2

2(σq)′W (σq)
, (2.1)

which still needs to be maximized with respect to q.
Further simplification may be obtained by noticing that vector that results

from multiplying σq with the matrix W may have non-zero values only fro the two
components that are associated with the two markers adjacent to the QTL. Let us
demonstrate this fact for the given QTL:

> sig <- exp(-b*abs(mark-qtl))
[,1] [,2] [,3] [,4] [,5]

[1,] 0.63541 0.17291 0 0 0

The consequence of this property is that in order to locate the local maxima of
the log-likelihood with respect to the location of the QTL between a pair of ad-
jacent markers we can consider the sub-problem in which only these two markers
are observed and maximize the resulting log-likelihood. For example, consider the
computation of the profile log-likelihood (2.1) for a tentative QTL location at t = 3:



2.2. ESTIMATING THE LOCATION OF THE QTL 29

> Z1 <- Z[1,1:2]
> Z1
[1] 4.1465524 0.2686940
> t1 <- 40
> r <- exp(-b*t1)
> V1 <- matrix(c(1,r,r,1),2,2)
> W1 <- solve(V1)
> W1

[,1] [,2]
[1,] 1.042494 -0.210476
[2,] -0.210476 1.042494
> t <- 3
> sig <- exp(-b*c(t,t1-t))
> sig
[1] 0.8869204 0.2276377
> (sig%*%W1%*%Z1)^2/(sig%*%W1%*%sig)

[,1]
[1,] 16.87304

Let us write a function that compute the profile log-likelihood of the location:

> ll <- function(t,t1,Z1,W1,b)
+ {
+ sig <- exp(-b*c(t,t1-t))
+ return((sig%*%W1%*%Z1)^2/(sig%*%W1%*%sig))
+ }
> ll(t,t1,Z1,W1,b)

[,1]
[1,] 21.36515

The function optimize is a general linear maximizer and it can be used in
order to maximize the profile log-likelihood with respect to location of the QTL:

> optimize(ll,c(0,t1),maximum=TRUE, t1=t1,Z1=Z1,W1=W1,b=b)
$maximum
[1] 4.526025e-05

$objective
[,1]

[1,] 17.19389

Notice that the function located a maximizing location at the origin. The input of
the function optimize is the name (or definition) of the function to be optimized, the
interval over which optimization should be carried on, an argument named maximum,
with a default value of FALSE, which indicates whether minimization or maximiza-
tion is requested, and other arguments that may be used in order to control the
optimization algorithm. On top of these arguments a value for any argument that
is used by the target function may be passed on using the structure argument.name
= argument.value. The output of the function is a list with the maximizer and
with maximal evaluation of the objective function. In general, one can think of a



30 CHAPTER 2. THE BOOTSTRAP

list as a vector with components that can be any object. Hence, in the output of
the current application the first component, that is given the name maximum, is a
vector of length one, and the second component, titled objective, is a matrix.

We pack this function optimize in a form that will be more convenient for
the application of the bootstrap:

> opt.Z <- function(Z1,t1,W1,b)
+ return(unlist(optimize(ll,c(0,t1),maximum=TRUE,
+ t1=t1,Z1=Z1,W1=W1,b=b)))

Finally, we are in a position to write a function that compute the MLE
estimates of the location and the genetic effect. The input to this function are the
observations, the marker positions and the parameter β and the output is a list with
the estimated location of the QTL, the estimated parameter µ, and the maximum
of the target function. We would like to be able to apply this function for the
case of a single vector of observations, but also for a matrix composed of rows of
independent observations. The second situation is appropriate for the application of
the bootstrap, in which the maximization should be carried out in parallel for each
of the rows of simulated observations:

> mle.t <- function(Z,mark,b)
+ {
+ if(is.vector(Z))
+ {
+ Z <- matrix(Z,nrow=1,ncol=length(Z))
+ isvector <- TRUE
+ } else isvector <- FALSE
+ Q <- L <- M <- NULL
+ for(i in 2:length(mark))
+ {
+ t1 <- mark[i]-mark[i-1]
+ r <- exp(-b*t1)
+ V1 <- matrix(c(1,r,r,1),2,2)
+ W1 <- solve(V1)
+ temp <- apply(Z[,c(i-1,i),drop=FALSE],1,opt.Z,t1=t1,W1=W1,b=b)
+ Q <- cbind(Q,temp[1,])
+ L <- cbind(L,temp[2,])
+ sig <- exp(-b*cbind(temp[1,],t1-temp[1,]))
+ M1 <- apply(sig%*%W1*Z[,c(i-1,i),drop=FALSE],1,sum)
+ M1 <- M1/apply(sig%*%W1*sig,1,sum)
+ M <- cbind(M,M1)
+ }
+ interval <- apply(L,1,which.max)
+ QTL <- NCP <- vector(length=nrow(Z))
+ for (i in 1:nrow(Z))
+ {
+ QTL[i] <- Q[i,interval[i]]+mark[interval[i]]
+ NCP[i] <- M[i,interval[i]]
+ }



2.2. ESTIMATING THE LOCATION OF THE QTL 31

+ LLIK <- apply(L,1,max)/2
+ names(LLIK) <- NULL
+ if (isvector)
+ {
+ QTL <- QTL[1];NCP <- NCP[1];LLIK <- LLIK[1]
+ }
+ return(list(hat.qtl=QTL,hat.ncp=NCP,max.log.lik=LLIK))
+ }

As a demonstration, let us apply this function to the entire matrix Z

> mle.t(Z,mark,b)
$hat.qtl
[1] 4.526025e-05 1.936148e+01 5.038375e-05 9.500960e+00 1.117419e+01
[6] 1.156080e+01 1.006609e+01

$hat.ncp
[1] 4.146559 3.716878 3.020236 7.257053 7.100245 5.100041 7.134136

$max.log.lik
[1] 8.596947 2.324491 4.560895 12.992020 11.225152 5.665068 12.114199

and to its first component:

> mle.t(Z[1,],mark,b)
$hat.qtl
[1] 4.526025e-05

$hat.ncp
[1] 4.146559

$max.log.lik
[1] 8.596947

Consider the application of the bootstrap algorithm for the assessment of the
variance of the of the MLE of the location. We will assume a chromosome of typical
length of 160 cM for the ASP design. Markers are located in spacings of 10 cM
apart. We will consider, first, a QTL located 90 cM from the telomer with a genetic
effect of 6:

> qtl <- 90
> mu <- 6
> b <- 0.04
> mark <- seq(0,160,by=10)
> Mu <- mu*exp(-b*abs(mark-qtl))
> Sig <- outer(mark,mark,function(x,y) exp(-b*abs(x-y)))

Let us see first what is the true distribution of the MLE:



32 CHAPTER 2. THE BOOTSTRAP

> sim.mle <- mle.t(rmvnorm(1000,Mu,Sig),mark,b)
> mean(sim.mle$hat.qtl)
[1] 90.19342
> sd(sim.mle$hat.qtl)
[1] 2.300008
> plot(density(sim.mle$hat.qtl))

Notice that the distribution of the MLE is not normal, in contradiction to the
expected behavior under the standard theory of large samples.

The bootstrap approach does not depend on the validity of the assumptions
of large sample theory. Let us apply it on the observed data:

> obs <- rmvnorm(1,Mu,Sig)
> est <- mle.t(obs,mark,b)
> est
$hat.qtl
[1] 92.1713

$hat.ncp
[1] 5.654128

$max.log.lik
[1] 13.83031

Notice that the MLE algorithm produced an estimate of the unknown parameters,
which can be used as a basis for the parametric bootstrap simulation:

> hat.Mu <- est$hat.ncp*exp(-b*abs(mark-est$hat.qtl))
> est.boot <- mle.t(rmvnorm(1000,hat.Mu,Sig),mark,b)
> mean(est.boot$hat.qtl)
[1] 91.57936
> sd(est.boot$hat.qtl)
[1] 3.379363
> sd(sim.mle$hat.qtl)
[1] 2.300008

The bootstrap produced the estimate standard deviation 3.38, which is slightly larger
than the true standard deviation of 2.30.

Consider a second example in which the QTL is not located exactly at a
marker:

> qtl <- 95
> Mu <- mu*exp(-b*abs(mark-qtl))
> Sig <- outer(mark,mark,function(x,y) exp(-b*abs(x-y)))
> sim.mle <- mle.t(rmvnorm(1000,Mu,Sig),mark,b)
> mean(sim.mle$hat.qtl)
[1] 95.08576
> sd(sim.mle$hat.qtl)
[1] 3.751068
> plot(density(sim.mle$hat.qtl))



2.3. ESTIMATING THE STATISTICAL PROPERTIES OF THE BOOTSTRAP33

> obs <- rmvnorm(1,Mu,Sig)
> est <- mle.t(obs,mark,b)
> est
$hat.qtl
[1] 95.20342

$hat.ncp
[1] 8.500297

$max.log.lik
[1] 29.00849

> hat.Mu <- est$hat.ncp*exp(-b*abs(mark-est$hat.qtl))
> est.boot <- mle.t(rmvnorm(1000,hat.Mu,Sig),mark,b)
> mean(est.boot$hat.qtl)
[1] 95.15049
> sd(est.boot$hat.qtl)
[1] 2.070334
> sd(sim.mle$hat.qtl)
[1] 3.751068

This time the bootstrap produced a slight underestimation of the true standard
deviation.

2.3 Estimating the statistical properties of the Boot-
strap

In order to assess the statistical properties of the bootstrap procedure for estimating
the MLE of the location of the QTL we should conduct a simulation study in which
we simulate artificial data, apply the bootstrap to the data, and iterate several
times in order to obtain a distribution of the bootstrap estimate. Unfortunately,
the function mle.t for the computation of the MLE of the location of the QTL
and of its genetic effect is too slow for our current purpose. The main reason for
that is the need to apply the general optimization function optimize. Let examine
the prospects of developing an alternative optimization function which exploits the
characteristics of this special problem in order to scale up the speed of computation.
Let us look at an example:

> library(mvtnorm)
> qtl <- 90
> mu <- 6
> b <- 0.02
> Delta <- 40
> mark <- seq(0,160,by=Delta)
> Mu <- mu*exp(-b*abs(mark-qtl))
> Sig <- outer(mark,mark,function(x,y) exp(-b*abs(x-y)))
> Z <- rmvnorm(7,Mu,Sig)



34 CHAPTER 2. THE BOOTSTRAP

The function ll was written in order to compute the profile function of the location,
after the maximization with respect to the genetic effect:

> ll <- function(t,t1,Z1,W1,b)
+ {
+ sig <- exp(-b*c(t,t1-t))
+ return((sig%*%W1%*%Z1)^2/(sig%*%W1%*%sig))
+ }

Let us use this function in order to plot the profile based on the data of the first
observation, i.e. the first row of the matrix Z:

> t1 <- 40
> r <- exp(-b*t1)
> V1 <- matrix(c(1,r,r,1),2,2)
> W1 <- solve(V1)
> t <- 0:40
> l.hat <- rep(t,4)
> for (j in 1:4) for(i in 1:length(t))
+ l.hat[i+(j-1)*length(t)] <- ll(t[i],t1,Z[1,j:(j+1)],W1,b)
> plot(l.hat,type="l")

Examining the plot one may note that between markers the function is es-
sentially a quadratic function. Quadratic functions have explicit maximizers, which
may either be an internal point or the location of either bracketing markers. The
function mle.2 is a substitute for the previously used mle.t. In this version we use
analytical expression of obtaining the between-markers local maximizers. Moreover,
the function is written so that computation is conducted in parallel for all rows of
the data matrix Z, exploiting the efficient parallel computation abilities of R.

> mle.2 <- function(Z,Delta,b)
+ {
+ # Change a vector to a matrix
+ if(is.vector(Z))
+ {
+ Z <- matrix(Z,ncol=length(Z),nrow=1)
+ isvector <- TRUE
+ } else isvector <- FALSE
+ # calculate W1
+ r <- exp(-b*Delta)
+ V1 <- matrix(c(1,r,r,1),2,2)
+ W1 <- solve(V1)
+ # Calculate tentative qtl in each interval
+ Z0 <- Z[,-ncol(Z),drop=FALSE]
+ Z1 <- Z[,-1,drop=FALSE]
+ Q <- log(pmax(Z1/Z0,0))/(2*b)
+ Q <- pmin(Q,Delta/2)
+ Q <- pmax(Q,-Delta/2)
+ Q <- Delta/2+ Q
+ # Calculate log-likelihood



2.3. ESTIMATING THE STATISTICAL PROPERTIES OF THE BOOTSTRAP35

+ sig0 <- exp(-b*Q); sig1 = exp(-b*(Delta-Q))
+ term1 <- sig0*(W1[1,1]*Z0+W1[1,2]*Z1)
+ term2 <- sig1*(W1[2,1]*Z0+W1[2,2]*Z1)
+ term3 <- sig0^2*W1[1,1]+2*sig0*sig1*W1[1,2]+sig1^2*W1[2,2]
+ L <- (term1+term2)^2/term3
+ M <- (term1+term2)/term3
+ # Find the max
+ LLIK <- apply(L,1,max)/2
+ names(LLIK) <- NULL
+ I <- apply(L,1,which.max)
+ QTL <- NCP <- vector(length=nrow(Z))
+ for (i in 1:nrow(Z))
+ {
+ QTL[i] <- Q[i,I[i]]+Delta*(I[i]-1)
+ NCP[i] <- M[i,I[i]]
+ }
+ if (isvector)
+ {
+ QTL<-QTL[1];NCP<-NCP[1];LLIK<-LLIK[1]
+ }
+ return(list(hat.qtl=QTL,hat.ncp=NCP,max.log.lik=LLIK))
+ }

> mle.t(Z,mark,b)
$hat.qtl
[1] 94.20679 70.95575 72.43281 92.89604 95.75981 83.12447 86.91135

$hat.ncp
[1] 8.717983 6.266412 5.690262 8.087221 6.197648 4.341192 7.110072

$max.log.lik
[1] 24.716946 14.331089 12.339417 21.773280 12.220130 8.353205 19.663286

> mle.2(Z,Delta,b)
$hat.qtl
[1] 94.20679 70.95575 72.43280 92.89603 95.75981 83.12445 86.91135

$hat.ncp
[1] 8.717983 6.266412 5.690263 8.087221 6.197648 4.341191 7.110072

$max.log.lik
[1] 24.716946 14.331089 12.339417 21.773280 12.220130 8.353205 19.663286

> mle.2(Z[1,],Delta,b)
$hat.qtl
[1] 94.2068

$hat.ncp



36 CHAPTER 2. THE BOOTSTRAP

[1] 8.717983

$max.log.lik
[1] 24.71695

Examining the application of both functions on the same dataset we can see that
they produce essentially the same output. Notice that the new function, like the old
one, may be applied to both matrices and vectors.

Let us examine first the distribution of the MLE of the location, this time
based on a much larger number of iterations:

> qtl <- 90
> mu <- 6
> b <- 0.04
> Delta <- 10
> mark <- seq(0,160,by=Delta)
> Mu <- mu*exp(-b*abs(mark-qtl))
> Sig <- outer(mark,mark,function(x,y) exp(-b*abs(x-y)))
> est.sim <- mle.2(rmvnorm(10^5,Mu,Sig),Delta,b)
> plot(density(est.sim$hat.qtl,from=80,to=100))

The non-normal distribution of the MLE is clearly evident.
Let us turn now to the investigation of the statistical properties of the boot-

strap algorithm. To warm up, let us start by applying it once to a vector of simulated
data as we did before:

> obs <- rmvnorm(1,Mu,Sig)
> est <- mle.2(obs,Delta,b)
> est
$hat.qtl
[1] 90.58005

$hat.ncp
[1] 5.699034

$max.log.lik
[1] 15.53167

> hat.Mu <- est$hat.ncp*exp(-b*abs(mark-est$hat.qtl))
> est.boot <- mle.2(rmvnorm(10^3,hat.Mu,Sig),Delta,b)
> sd(est.boot$hat.qtl)
[1] 2.607806
> sd(est.sim$hat.qtl)
[1] 2.357489

In principle, now all we have to do is iterate the above by sampling new observations,
computing and storing the bootstrap estimate of the standard deviations. However,
we would like to exploit the simulations in order to examine another application of
the bootstrap algorithm: the construction of confidence intervals.



2.3. ESTIMATING THE STATISTICAL PROPERTIES OF THE BOOTSTRAP37

Notice that the bootstrap produces a sample of the estimate, which is sup-
posed to mimic its real sampling distribution. A natural proposal for a confidence
interval of confidence probability 1 − α is to take the as a lower confidence limit
the α/2 quantile of that distribution and use the 1 − α/2 quantile as the upper
confidence limit. Consider as an example the construction of a confidence interval
for the location of the QTL given the generated bootstrap samples for the given
observations:

> hat.qtl <- sort(est.boot$hat.qtl)
> LCL <- hat.qtl[round(0.05*length(hat.qtl))]
> UCL <- hat.qtl[round(0.95*length(hat.qtl))]
> LCL
[1] 86.42792
> UCL
[1] 94.09775

Notice, that the produced confidence interval contains the actual QTL, which is
located at 90. A question we may ask is what is the actual confidence limit of this
procedure for constructing confidence intervals?

Let us now run the simulation that will assess both the statistical properties of
the bootstrap estimate of the standard deviation and the properties of the bootstrap
generated confidence interval:

> n.rep <- 10^3
> SD <- LCL <- UCL <- rep(-1,n.rep)
> for(i in 1:n.rep)
+ {
+ obs <- rmvnorm(1,Mu,Sig)
+ est <- mle.2(obs,Delta,b)
+ hat.Mu <- est$hat.ncp*exp(-b*abs(mark-est$hat.qtl))
+ est.boot <- mle.2(rmvnorm(1000,hat.Mu,Sig),Delta,b)
+ SD[i] <- sd(est.boot$hat.qtl)
+ hat.qtl <- sort(est.boot$hat.qtl)
+ LCL[i] <- hat.qtl[round(0.05*length(hat.qtl))]
+ UCL[i] <- hat.qtl[round(0.95*length(hat.qtl))]
+ }
> mean(SD)
[1] 3.361597
> sd(est.sim$hat.qtl)
[1] 2.357489
> sd(SD)
[1] 2.21148

Examining the the properties of the estimate of the standard deviations one
may conclude that it is biased upwards by about 1 cM. The standard deviation of
the estimate is about 2 cM. Considering now the confidence interval:

> mean((LCL <= qtl) & (UCL >= qtl))
[1] 0.985
> mean(UCL-LCL)
[1] 8.635271



38 CHAPTER 2. THE BOOTSTRAP

We may see that the confidence interval that the bootstarp is proposing is too wide
and it covers the true location with probability 0.985, instead of the requested 0.95.


