STAT 4015 Q

Solution to the "Final"

Problem 1. European roulette wheel has 37 numbers on it, which we assume to be 1, 2, $\ldots, 37$. The roulette is rolled 4 times and the number obtained is recorded. Let X be the largest of the four numbers.
(1) Compute $\mathrm{P}(X=20)$.
(2) Compute the $\mathbb{E}(X)$.

Solution. Let $Y_{i}, i=1, \ldots, 4$, be the recorded numbers. We assume that they are independent and uniformly distributed over the 37 numbers. By the definition, $X=\max _{i=1}^{4} Y_{i}$. Note that

$$
\mathrm{P}(X \leq x)=\mathrm{P}\left(Y_{1} \leq x, \ldots, Y_{4} \leq x\right)=\prod_{i=1}^{4} \mathrm{P}\left(Y_{i} \leq x\right)=(x / 37)^{4},
$$

for $x=1, \ldots, 37$. It follows that

$$
\mathrm{P}(X=20)=\mathrm{P}(X \leq 20)-\mathrm{P}(X \leq 19)=\left(20^{4}-19^{4}\right) / 37^{4}
$$

and

$$
\mathbb{E}(X)=\sum_{x=1}^{\infty} \mathrm{P}(X \geq x)=\sum_{x=1}^{37}\left[1-(x-1)^{4} / 37^{4}\right]
$$

Problem 2. The density of a random variable X is given in the form $f_{X}(x)=c e^{-3 x^{2}+7 x}$, for x real.
(1) Evaluate c.
(2) Find the value x with the property that $\mathrm{P}(X>x)=0.1$

Solution. Notice that X has a normal distribution. Completing the squares we get that

$$
-3 x^{2}+7 x=-3(x-7 / 6)^{2}+49 / 12=-\frac{(x-7 / 6)^{2}}{2(1 / 6)}+49 / 12 .
$$

It follows that the mean of the random variable is $\mu=7 / 6$ and the variance is $\sigma^{2}=1 / 6$. Completing the function into a density we get that

$$
c e^{49 / 12} \sqrt{2 \pi / 6}=1 \Longrightarrow c=e^{-49 / 12} / \sqrt{2 \pi / 6} .
$$

Finally, $\mathrm{P}(X>x)=\mathrm{P}(Z>(x-\mu) / \sigma)=0.1$. Hence, $(x-\mu) / \sigma=1.28$ and $x=1.28 \sigma+\mu=$ $1.28 / \sqrt{6}+7 / 6$.

Problem 3. The joint density of X and Y is given in the form $f_{X Y}(x, y)=c e^{y-x} y^{2} x^{2.3}$, for $0 \leq y \leq 1$ and $x>0$.
(1) Evaluate c.
(2) Compute the marginal density of X. Are X and Y independent or not?
(3) Compute the probability $\mathrm{P}(X<Y)$.

Solution: X and Y are independent since

$$
f_{X Y}(x, y)=\left\{c_{1} x^{2.3} e^{-x} I_{\{x>0\}}\right\} \times\left\{c_{2} e^{y} y^{2} I_{\{0 \leq y \leq 1\}}\right\}
$$

for some normalizing constants c_{1} and c_{2} such that $c_{1} \cdot c_{2}=c$. Notice that the marginal distribution of X is Gamma(3.3,1). Therefore, $c_{1}=1 / \Gamma(3.3)$. In order to obtain the value of c_{2} we should integrate the density of Y over the range:

$$
1 / c_{2}=\int_{0}^{1} y^{2} e^{y} d y=\left[y^{2} e^{y}\right]_{0}^{1}-2 \int_{0}^{1} y e^{y} d y=e-2\left\{\left[y e^{y}\right]_{0}^{1}-\int_{0}^{1} e^{y} d y\right\}=e-2 .
$$

It can bee concluded that $c=1 /[(e-2) \Gamma(3.3)]$.
For the given probability one should integrate the joint density over the event:

$$
\mathrm{P}(X<Y)=c \int_{0}^{1}\left[\int_{x}^{1} y^{2} e^{y} d y\right] x^{2.3} e^{-x} d x
$$

This observation is sufficient for the exam. An alternative representation of the probability may be obtained by integration with respect to y, that yields

$$
\begin{aligned}
\int_{x}^{1} y^{2} e^{y} d y & =\left[y^{2} e^{y}\right]_{x}^{1}-2 \int_{x}^{1} y e^{y} d y \\
& =e-x^{2} e^{x}-2\left\{\left[y e^{y}\right]_{x}^{1}-\int_{x}^{1} e^{y} d y\right\} \\
& =e-x^{2} e^{x}-2\left\{e-x e^{x}-e+e^{x}\right\} \\
& =e-2 e^{x}+2 x e^{x}-x^{2} e^{x},
\end{aligned}
$$

and then integrating with respect to x :

$$
\mathrm{P}(X<Y)=\frac{e}{e-2} \mathrm{P}(X<1)+\frac{1}{\Gamma(3.3)(e-2} \int_{0}^{1}\left(-2 x^{2.3}+2 x^{3.3}-x^{4.3}\right) d x
$$

The CDF of X is computable via the incomplete Gamma function. The other integral can be integrated to produce an explicit result.

Problem 4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed according to the $U(0,1)$ distribution.
(1) Identify the distribution of $Y_{i}=-\log X_{i}$ and compute its mean and its variance.
(2) Use the Central Limit Theorem in order to give and approximation to the probability $\mathrm{P}\left(\prod_{i=1}^{n} X_{i} \leq x\right)$, for $0<x<1$.

Solution. Let $X \sim U(0,1)$. Consider the CDF of the transformed uniform for any positive x :

$$
\mathrm{P}(-\log X \leq x)=\mathrm{P}\left(X>e^{-x}\right)=1-e^{-x} .
$$

It follows that $Y=-\log Y \sim \operatorname{Exp}(1)$, which has mean and variance both equal to one. Next,

$$
\begin{aligned}
\mathrm{P}\left(\prod_{i=1}^{n} X_{i} \leq x\right) & =\mathrm{P}\left(\sum_{i=1}^{n}\left(-\log X_{i}\right) \geq-\log x\right) \\
& \approx \mathrm{P}(Z>(-\log x-n) / \sqrt{n})=\Phi((\log x+n) / \sqrt{n}))
\end{aligned}
$$

Problem 5. An urn contains 200 black and 200 white balls. They are removed from the urn in pairs. Let X be the number of pairs where both balls are black.
(1) Compute $\mathbb{E}(X)$.
(2) Compute (X).

Solution. Let X_{i} be the indicator of the i-th pair being composed of two black balls, for $i=1, \ldots, 200$. Notice that $X=\sum_{i=1}^{200} X_{i}$. By the linearity of the expectation

$$
\mathbb{E}(X)=\sum_{i=1}^{200} \mathbb{E}\left(X_{i}\right)=200 \cdot \mathrm{P}\left(X_{1}=1\right)=200 \cdot \frac{200}{400} \cdot \frac{199}{399}
$$

The variance of X_{i} is

$$
\operatorname{Var}\left(X_{i}\right)=\frac{1}{4} \cdot \frac{398}{399},
$$

based on the computation of the variance of an Hypergeometric distribution. For the covariance between X_{1} and X_{2}, notice that $\mathbb{E}\left(X_{1} X_{2}\right)=\mathrm{P}\left(X_{1}=1, X_{2}=1\right)$. The latter is the probability that all 4 balls are black:

$$
\mathrm{P}\left(X_{1}=1, X_{2}=1\right)=\frac{200}{400} \cdot \frac{199}{399} \frac{198}{398} \cdot \frac{197}{397} .
$$

The covariance, for $i \neq j$, is thus

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\frac{200}{400} \cdot \frac{199}{399} \frac{198}{398} \cdot \frac{197}{397}-\left[\frac{200}{400} \frac{199}{399}\right]^{2}
$$

Finally,

$$
\operatorname{Var}(X)=200 \cdot \operatorname{Var}\left(X_{1}\right)+200 \cdot 199 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right) .
$$

