MORE SOLUTIONS: CHAPTER 5, CLASS OF JULY 27

BENJAMIN YAKIR

Problems, 16. Let $X \sim N\left(40,4^{2}\right)$ and $Z \sim N(0,1)$. The probability of having a year with over 50 inches of rain is

$$
\mathrm{P}(X>50)=\mathrm{P}\left(\frac{X-40}{4}>\frac{50-40}{4}\right)=\mathrm{P}(Z>2.5)=0.0062
$$

where the last number was taken from the Standard Normal Distribution Table. Hence, the probability of not having that amount of rain for 10 years is ($1-$ $0.0062)^{10}=0.9397 \approx 94 \%$. Apart from the assumed normality we assume that the probability of the occurrence this extreme event is independent among years.

Theoretical, 2. Start with the case where $Y \geq 0$ is a non-negative random variable. By definition,

$$
\mathbb{E}[Y]=\int_{0}^{\infty} y f_{Y}(y) d y
$$

Notice that $f_{Y}(y)=-\frac{\partial}{\partial y}\left(1-F_{Y}(y)\right)$. Hence, applying integration by parts, we get

$$
\int_{0}^{\infty} y f_{Y}(y) d y=\left[-y\left(1-F_{Y}(y)\right)\right]_{0}^{\infty}+\int_{0}^{\infty}\left(1-F_{Y}(y)\right) d y
$$

However, if $\mathbb{E}[Y]=\int_{0}^{\infty} y f_{Y}(y) d y<\infty$ then the monotone sequence of the tail converges to zero: $\lim _{y \rightarrow \infty} \int_{y}^{\infty} x f_{Y}(x) d x=0$. This implies, since $y\left(1-F_{Y}(y)\right)<$ $\int_{y}^{\infty} x f_{Y}(x) d x$, that evaluation of the term in square brackets at $y=\infty$ is zero. Clearly, the evaluation at $y=0$ is also zero, hence

$$
\int_{0}^{\infty} y f_{Y}(y) d y=\int_{0}^{\infty}\left(1-F_{Y}(y)\right) d y=\int_{0}^{\infty} P(Y>y) d y
$$

For a general random variable we may use the representation

$$
Y=\max \{Y, 0\}-\max \{-Y, 0\}
$$

and apply the previous result to each of the non-negative random variables in the difference.

Theoretical, 5. Using the hint we get:

$$
\int_{0}^{\infty} \mathrm{P}\left(X^{n}>t\right) d t=\int_{0}^{\infty} \mathrm{P}\left(X^{n}>x^{n}\right) n x^{n-1} d x=\int_{0}^{\infty} \mathrm{P}(X>x) n x^{n-1} d x
$$

since the change of variable did not change the limit of integration and since $d t=$ $n x^{n-1} d x$. The lest equality follows from the fact that $\left\{X^{n}>x^{n}\right\}=\{X>x\}$ are the same event.

Theoretical, 11. Let $Z \sim N(0,1)$ and let g be a differentiable function. Consider the integral

$$
\mathbb{E}\left[g^{\prime}(Z)\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g^{\prime}(z) e^{-\frac{1}{2} z^{2}} d z
$$

The derivative of the function $\exp \left\{-z^{2} / 2\right\}$ is $-z \exp \left\{-z^{2} / 2\right\}$. Using integration by parts we get the relation

$$
\int_{-\infty}^{\infty} g^{\prime}(z) e^{-\frac{1}{2} z^{2}} d z=\left[g(z) e^{-\frac{1}{2} z^{2}}\right]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} g(z)\left[-z e^{-\frac{1}{2} z^{2}}\right] d z
$$

If the function g is such that the limits, at $\pm \infty$, of the term in the large square brackets converges to zero then we get that

$$
\int_{-\infty}^{\infty} g^{\prime}(z) e^{-\frac{1}{2} z^{2}} d z=\int_{-\infty}^{\infty} z g(z) e^{-\frac{1}{2} z^{2}} d z
$$

which implies the relation $\mathbb{E}\left[g^{\prime}(Z)\right]=\mathbb{E}[Z g(Z)]$. Part (b) follows from the given relation by taking $g(z)=z^{n}$. (Notice that the condition holds.) Part (c) can be solved by applying (b) with $n=3$ to get $\mathbb{E}\left[Z^{4}\right]=3 \mathbb{E}\left[Z^{2}\right]=3$.

