MORE SOLUTIONS: CHAPTER 8, CLASS OF AUGUST 6

BENJAMIN YAKIR

Problems, 13. Let \bar{X}_{25} be the average score of the first class and let \bar{Y}_{64} be the average score of the second class. We will be using the Central Limit Theorem in order to approximate the average score of each class.
(a) Notice that $\mathbb{E}\left(\bar{X}_{25}\right)=74$ and $\operatorname{Var}\left(\bar{X}_{25}\right)=14^{2} / 25$.

$$
\mathrm{P}\left(\bar{X}_{25}>80\right) \approx \mathrm{P}\left(Z>\frac{80-74}{14 / 5}\right)=\mathrm{P}(Z>2.143)=0.016
$$

(b) For the second class again $\mathbb{E}\left(\bar{Y}_{64}\right)=74$ but $\operatorname{Var}\left(\bar{Y}_{64}\right)=14^{2} / 64$.

$$
\mathrm{P}\left(\bar{Y}_{64}>80\right) \approx \mathrm{P}\left(Z>\frac{80-74}{14 / 8}\right)=\mathrm{P}(Z>3.429)=0.0003
$$

(c) Note that $\mathbb{E}\left(\bar{Y}_{64}-\bar{X}_{25}\right)=0$. We will be making the dubious assumption that the average scores in the two classes are independent of each other. It will follow that but $\operatorname{Var}\left(\bar{Y}_{64}-\bar{X}_{25}\right)=14^{2} / 25+14^{2} / 64=14^{2} \cdot 0.234^{2}$.

$$
\mathrm{P}\left(\bar{Y}_{64}-\bar{X}_{25}>2.2\right) \approx \mathrm{P}\left(Z>\frac{2.2}{14 \cdot 0.234}\right)=\mathrm{P}(Z>0.672)=0.251
$$

(d) By the symmetry of the normal distribution:

$$
\mathrm{P}\left(\bar{Y}_{64}-\bar{X}_{25}<-2.2\right) \approx \mathrm{P}\left(Z<\frac{-2.2}{14 \cdot 0.234}\right)=0.251
$$

Problems, 16. Let S_{AJ} be the total processing time for A.J. and let S_{MJ} be the total processing time of M.J.. of the second class. We will be using the Central Limit Theorem in order to approximate the distributions of these sums.
(a) Notice that $\mathbb{E}\left(S_{\mathrm{AJ}}\right)=1000$ and $\operatorname{Var}\left(S_{\mathrm{AJ}}\right)=20 \cdot 10^{2}=2000$.

$$
\mathrm{P}\left(S_{\mathrm{AJ}}<900\right) \approx \mathrm{P}\left(Z<\frac{900-1000}{\sqrt{2000}}\right)=\mathrm{P}(Z<-2.236)=0.0127
$$

(b) Notice that $\mathbb{E}\left(S_{\mathrm{MJ}}\right)=1040$ and $\operatorname{Var}\left(S_{\mathrm{MJ}}\right)=20 \cdot 15^{2}=4500$.

$$
\mathrm{P}\left(S_{\mathrm{MJ}}<900\right) \approx \mathrm{P}\left(Z<\frac{900-1040}{\sqrt{4500}}\right)=\mathrm{P}(Z<-2.087)=0.0184
$$

(c) Note that $\mathbb{E}\left(S_{\mathrm{AJ}}-S_{\mathrm{MJ}}\right)=-40$ and, assuming independence, $\operatorname{Var}\left(S_{\mathrm{AJ}}-S_{\mathrm{MJ}}\right)=$ $2000+4500=6500$.

$$
\mathrm{P}\left(S_{\mathrm{AJ}}-S_{\mathrm{MJ}}>0\right) \approx \mathrm{P}\left(Z>\frac{40}{\sqrt{6500}}\right)=\mathrm{P}(Z>0.496)=0.310
$$

Theoretical, 8. The Gamma distribution with scale λ and shape t can be represented as a sum of n independent random variables, each with scale λ and shape t / n. If t is large and t / n converges to a positive constant then the Central Limit Theorem can be applied to the sum in order to argue proximity to normality.

