MORE SOLUTIONS: CHAPTER 7, CLASS OF AUGUST 4

BENJAMIN YAKIR

Problems, 75. The moment generating function of X is that of a Poisson(2) distribution and that of Y corresponds to the $\mathrm{B}(10,3 / 4)$ distribution. Accordingly, the two random variables have the given distributions. They are also independent.
(a) Considering the three possibilities:

$$
\begin{aligned}
\mathrm{P}(X+Y=2) & =\mathrm{P}(X=0, Y=2)+\mathrm{P}(X=1, Y=1)+\mathrm{P}(X=2, Y=2) \\
& =e^{-2}\left[\binom{10}{2} \frac{3^{2}}{4^{10}}+\binom{10}{1} \frac{2 \cdot 3}{4^{10}}+\binom{10}{0} \frac{2^{2}}{2 \cdot 4^{10}}\right]
\end{aligned}
$$

(b) The product equals zero if either of the random variables is:

$$
\begin{aligned}
\mathrm{P}(X Y=0) & =\mathrm{P}(\{X=0\} \cup\{Y=0\}) \\
& =\mathrm{P}(X=0)+\mathrm{P}(Y=0)-\mathrm{P}(X=0, Y=0) \\
& =e^{-2}+\binom{10}{0} \frac{1}{4^{10}}-e^{-2}\binom{10}{0} \frac{1}{4^{10}}
\end{aligned}
$$

(c) By independence, $\mathbb{E}(X Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)=2 \cdot 10 \cdot 3 / 4$.

Theoretical, 19. By bi-linearity, $\operatorname{Cov}(X+Y, X-Y)=\operatorname{Cov}(X, X)-\operatorname{Cov}(X, Y)+$ $\operatorname{Cov}(Y, X)-\operatorname{Cov}(Y, Y)=\operatorname{Var}(X)-\operatorname{Var}(Y)$. If X and Y share the same marginal distribution then their variances are also equal and the last difference becomes zero.

Theoretical, 24. For any $t, 0<\mathbb{E}\left[(X-t Y)^{2}\right]=\mathbb{E}\left(X^{2}\right)-2 t \mathbb{E}(X Y)+t^{2} \mathbb{E}\left(Y^{2}\right)$, with equality holding only if $\{t Y=X\}$ with probability one. Take $t=\mathbb{E}(X Y) / \mathbb{E}\left(Y^{2}\right)$ to obtain $0<\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X Y)^{2} / \mathbb{E}\left(Y^{2}\right)$, hence the proof.

A corollary of this inequality, applied to the centered random variables $X-\mathbb{E}(X)$ and $Y-\mathbb{E}(Y)$ is the claim that $[\operatorname{Cov}(X, Y)]^{2} \leq \operatorname{Var}(X) \operatorname{Var}(Y)$ (with equality holding only if $Y=a X+b$ for some constants a and b). Consequently, the correlation between the two random variables, $\rho(X, Y)=\operatorname{Cov}(X, Y) / \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$, falls inside the interval $[-1,1]$.

Theoretical, 35. Splitting the event according to the values of X we get from the formula of complete probability that

$$
\mathrm{P}(X<Y)=\sum_{x=0}^{\infty} \mathrm{P}(X<Y \mid X=x) \mathrm{P}(X=x)=\sum_{x=0}^{\infty} \mathrm{P}(x<Y) \mathrm{P}(X=x)
$$

where we illuminated the conditioning since the events $\{X=x\}$ and $\{Y>x\}$ are independent. For a geometric random variable with parameter p one has that $\mathrm{P}(Y>x)=(1-p)^{x}$, since the event occurs if, and only if, the first x trails ended in failure. For $p=1-s \Rightarrow 1-p=s$ we obtain the representation.

Theoretical, 41. (a) The random variables X and Y are not independent since the conditional distribution of Y, given $\{X=x\}$ may obtain only two values, x and $-x$, and thus depends on the value that X obtains and cannot be equal to the marginal distribution (which is normal).
(b) Y and I are independent since the conditional distribution of Y, given $\{I=1\}$, is standard normal. Since the distribution of $-X$ is also standard normal it follows that the conditional distribution of Y, given $I=0$, is again standard normal.
(c) The marginal distribution of Y is standard normal since

$$
\begin{aligned}
\mathrm{P}(Y \leq y) & =\mathrm{P}(Y \leq y \mid I=1) / 2+\mathrm{P}(Y \leq y \mid I=0) / 2 \\
& =\mathrm{P}(X \leq y \mid I=1) / 2+\mathrm{P}(-X \leq y \mid I=0) / 2 \\
& =\Phi(y) / 2+\Phi(y) / 2=\Phi(y)
\end{aligned}
$$

(c) Since the expectation of X is zero the covariance is equal to the mixed second moment:

$$
\mathbb{E}(X Y)=\frac{1}{2} \int_{-\infty}^{\infty} x \cdot x \cdot \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} d x+\frac{1}{2} \int_{-\infty}^{\infty} x \cdot(-x) \cdot \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} d x=0
$$

(Notice that the joint distribution of I and X has a support over the two parallel lines in the plain, one line associated with the value zero of I and the other with the value one.)

Theoretical, 49. Let $Y=\sigma Z+\mu, Z \sim \mathrm{~N}(0,1)$, be a normal random variable and let $X=e^{Y}$ be the log-normal random variable. Hence,

$$
\mathbb{E}(X)=\mathbb{E}\left[e^{Y}\right]=M_{\mathrm{Y}}(1)=e^{\mu+\sigma^{2} / 2}
$$

Likewise,

$$
\mathbb{E}\left(X^{2}\right)=\mathbb{E}\left[e^{2 Y}\right]=M_{\mathrm{Y}}(2)=e^{2 \mu+2^{2} \sigma^{2} / 2}
$$

Consequently,

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=e^{2 \mu+2 \sigma^{2}}-e^{2 \mu+\sigma^{2}}=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
$$

Theoretical, 50. Let $g(t)=\log M(t)$. Recall that $M(0)=1, M^{\prime}(0)=\mathbb{E}(X)$, and $M^{\prime \prime}(0)=\mathbb{E}\left(X^{2}\right)$. Taking a derivative with respect to t we get that

$$
g^{\prime}(t)=\frac{M^{\prime}(t)}{M(t)} \Rightarrow g^{\prime}(0)=\frac{M^{\prime}(0)}{M(0)}=\mathbb{E}(X)
$$

Taking a second derivative we get that

$$
g^{\prime \prime}(t)=\frac{M^{\prime \prime}(t)}{M(t)}-\frac{\left[M^{\prime}(t)\right]^{2}}{[M(t)]^{2}} \Rightarrow g^{\prime \prime}(0)=\frac{M^{\prime \prime}(0)}{M(0)}-\frac{\left[M^{\prime}(0)\right]^{2}}{[M(0)]^{2}}=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}
$$

Theoretical, 54. The expectation of Z is zero. Therefore, $\operatorname{Cov}\left(Z, Z^{2}\right)=\mathbb{E}[Z$. $\left.Z^{2}\right]=\mathbb{E}\left[Z^{3}\right]=0$. The last equality follows from the fact that $g(z)=z^{3} e^{-z^{2} / 2} / \sqrt{2 \pi}$ is anti-symmetric $(g(-z)=-g(z))$ so its integral over the real line is equal to zero.

