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Abstract 

 
In this article we introduce new method of obtaining weighted estimates of gross 
flows, taking into account informative nonresponse. This method based on extracting 
the response labour force model as a function of the population labour force model 
and of the response probabilities, which are obtained as reciprocals of the adjusted 
calibrated weights. The new method is model based while the classical method is 
based on the adjusted weights. We think that the first method is more efficient than 
the weighted method. However the two methods, sample likelihood and weighting, 
give approximately the same estimates of labour force gross flows.  Also we consider 
exponential and linear models to explain the variations in the calibrated weights under 
household level and from the exponential model we conclude that the unemployed 
persons at both quarters are under-represented in the labour force survey sample. This 
is similar to the result obtained by Clarke and Tate (1998) by comparing the estimates 
of gross flows under ignorable and nonignorable models which is very sophisticated 
model. The interesting result is that if we have sample data that contains the response 
variable and the sampling weights and for nonresponse the calibrated adjusted 
weights, then basing inference using classical weighted method and the new method 
based on the response likelihood may give similar results. 
 
Key words: Informative nonresponse, logistic regression, sample likelihood method, 
weighted estimates.  
 
1. Introduction 
 
Labour Force Surveys are carried out in many countries. These surveys were often 
designed originally for cross-sectional analysis of households and individual data, so 
as to study labour force and other socio-economic characteristics on a current basis. 
Complex rotating sampling schemes have after been introduced in order to improve 
comparisons over time. For example, the quarterly Israel Labour Force Survey (LFS) 
employs a rotating panel sampling scheme whereby each unit in the sample is 
interviewed for two consecutive quarters; is left out of the sample for the next two 
quarters and then interviewed again for two more consecutive quarters. 
Another example of LFS is the British Labour Force Survey, which is a household 
survey carried out by the Office for National Statistics (ONS) that gathers information 
on a wide range of labour force characteristics and other related topics. Since 1992, 
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the LFS has been conducted on a quarterly basis using a rotating sample design, 
where each household is retained in the sample for five consecutive quarters and then 
replaced. Thus, the 60000 sampled households from each quarter (around 120000 
individuals) can be divided into five ‘waves’, with wave one households appearing in 
the sample for the first time, wave two household appearing for the second time, and 
so on until wave five. The survey is designed to produce cross-sectional data, but in 
recent years it has been recognized that linking together data on each individual across 
quarters could produce a rich source of longitudinal data, the uses of which include 
estimation of labour force gross flows. The process of producing linked data sets by 
linking records from samples at two quarters is relatively straightforward; the linked 
sample is simply the subset of individuals who responded in both quarters.  
In the area of nonresponse several papers relate to the problem of informative 
(nonignorable) nonresponse in estimating labour force gross flows. Stasny (1986) 
considers the problem of using categorical data from a panel survey in which there is 
non-random nonresponse to estimate gross flows. The methods are illustrated for the 
case of estimating gross flows in labour force participation using the data from the 
Canadian Labour Force Survey. Three models are proposed that allow nonresponse to 
be related to employment classification, time, or to both employment classification 
and time. Maximum likelihood estimation is used to fit the models to a single panel of 
Labour Force Survey data. Clark and Chambers (1998) model the probability of a 
household nonresponse pattern as a weighted average of individual nonresponse 
probabilities and the household flow probabilities as multinomial, based on individual 
flow probabilities. By modeling both the labour force flow frequencies and the 
nonresponse, they simultaneously fit the joint models to incomplete data. Clarke and 
Tate (1998) compare the use of calibration weights developed based on adding tenure 
as a weighting variable to age and region with the model-based analysis developed by 
Clark and Chambers (1998). The authors conclude that there is a significant difference 
between unweighted, weighted and model-based estimation. 
One of the problems associated with the estimation of gross flows is quarter-to-
quarter or month-to-month nonresponse. This problem was discussed by Stasny 
(1986), Clarke and Chambers (1998), Clarke and Tate (1998) and Tate (1999). The 
authors assume that individuals’ labour force flows behaviour, is independent within 
households, and that households are homogeneous with respect to their labour force 
flows behaviour. Similarly, individual conditional response probabilities, given the 
labour force flows data, are assumed homogeneous within and between households. 
As they point out these assumptions are clearly unrealistic. The aims of this article are 
as follows: 
1. Extend the model of Clark and Chambers (1998) by specifying the labour force 
flows and nonresponse probabilities as regression models to accommodate individual 
level variables such as age, gender, and education, and household level variables such 
as region and tenure. One possible solution for this is to consider a logistic regression 
model for the labour force flow probabilities, possibly using random effects models.  
2. Use the model-based approach to estimate the labour force gross flows by 
incorporating the model for the labour force flow frequencies or probabilities and the 
model for nonresponse. This is done on the basis of the relationships between the 
population likelihood and that of the respondent sample. This can improve the 
estimates, as shown by comparing the proposed estimates of labour force gross flows 
and their accuracy with those obtained by weighting (Clark and Tate, 1999, 2003) and 
to those obtained by simple modeling (Clark and Chambers, 1998).  



 208

In Section 2 a simple labour force flow model. In Section 3 we introduce the labour 
force flow model under informative nonresponse. In Section 4 we model the 
conditional expectation of response probabilities and derive the response sample 
likelihood function. In Section 5 we develop a new method of estimation of labour 
force gross flows. In Section 6 we specify the labour force flows and nonresponse 
probabilities as regression models. In section 7 we compare the unweighted, 
weighted, sample maximum likelihood and binomial logistic regression model 
approaches for estimating the labour force gross flows using a real data set previously 
analyzed by the Office for National Statistics. Finally Section 8 is devoted to the 
conclusions and future work. 
 
2.  A Simple Labour Force Flow Model  
 
A gross flow is the probability or frequency of individuals in the population, making a 
state transition between two quarters, say ( )21  2  and  1 QQQQ < . Labour force gross 
flows refer to transitions between the three main labour force states: 1=employed, 
2=unemployed and 3=not in labour force. 
Let S denote the hypothetical complete sample of households, indexed by h , and 
assume that S  is a simple random sample of households. Within household h , let 

hn be the total number of eligible individuals, of which ( )banh ,  have the labour force 
flow ( )ba,  between  2 and 1 QQ where ( )∑ ==

ba
hh banban

,
3,2,1, and , . 

Table 1 shows the complete labour force flows data for household h  as a 3x3 
contingency table. If household h  responds at both quarters, the observed data are the 
cells of this two-way table. However, if household h  does not response at quarters 

 2or  1 QQ , the observed data correspond to the appropriate margin of the 

table: ( ) ( ) 3,2,1,,,
3

1
==+ ∑

=

abanan
b

hh  are the observed data if household h  responds at 

quarter 1Q  but does not respond at quarter 2Q ; and ( ) ( ) 3,2,1,,,
3

1
==+ ∑

=

bbanbn
b

hh  

are the observed data if household h  responds at quarter 2Q  but does not respond at 
quarter 1Q . Furthermore, if household h  does not respond at either of the quarters 

 2 and 1 QQ , the observed data is the household size, hn , which we take to be known 
and fixed between  2 and 1 QQ . For more discussion; see Clarke and Chambers 
(1998). 
 
 
 

Table 1 
Complete Labour Force Flow Data for Household h  

 2Q  
Status 1 2 3 Total 

1 ( )1,1hn  ( )2,1hn  ( )3,1hn  ( )+,1hn  
2 ( )1,2hn  ( )2,2hn  ( )3,2hn  ( )+,2hn  

 

 

1Q  
3 ( )1,3hn  ( )2,3hn  ( )3,3hn  ( )+,3hn  
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 Total ( )1,+hn  ( )2,+hn  ( )3,+hn  hn  
 
Let ( ) ( )[ ]3,3,...,1,1 hhh NN=N  be the vector random variable of labour force flows 
frequencies for household h , where ( )baNh ,  is the random variable whose outcome 
corresponds to the number of individuals, ( )banh , , with labour force flow ( )ba, , 

3,2,1, =ba . The realization of this random vector is denoted by 
( ) ( )[ ]3,3,...,1,1 hhh nn=n . 

Let ( ) 0, >baω  be the probability of an individual having labour force flow ( )ba, , 
where ( ) 1,

,
∑ =

ba
baω . The vector of labour force flow probabilities is denoted by 

( ) ( )[ ]3,3,...,1,1 ωω=ω , of which 8 are free. 
The simple labour force flows model for hh nN =  is taken to be multinomial, with 
probability function:  

         ( ) ( )( ) ( )

( )∏==
ba h

ban
hhh ban

ban
h

,

,

!,
,!Pr ωωnN .                               (1) 

Model (1) assumes that individuals’ labour force flows behaviour, is independent 
within household, and that household are homogeneous with respect to their labour 
force flows behaviour. These assumptions are unrealistic, but equation (1) can be 
extended to a more realistic model for the labour force flows, as we discuss in 
Sections 5 and 6. 
 
3. The Labour Force Flow Model under Informative Nonresponse 
 
One of the problems associated with the estimation of labour force gross flows is 
quarter-to-quarter nonresponse. The problem of handling quarter-to-quarter 
nonresponse was studied by Clark and Chambers (1998) and Clark and Tate, (1999). 
The authors developed two methods for taking into account the problem of 
nonresponse - that of weighting and that of model-based adjustments for nonresponse 
bias by modeling the probability of a household nonresponse pattern as a weighted 
average of individual nonresponse probabilities and the household flow probabilities 
as multinomial, based on individual flow probabilities. By modeling both the labour 
force flow frequencies and the nonresponse, they simultaneously fit the joint models 
to incomplete data. A new model-based approach, for dealing with the problem of 
nonresponse, is introduced in the following, based on the concept of informative 
sampling, as developed by Pfeffermann, Krieger and Rinott (1998).  
We assume that nonresponse is of whole households so that responses for all 
individuals are obtained if the household responds and none are obtained if the 
household fails to respond. This closely approximates the situation in most household 
labour force surveys. Denote the random vector for the nonresponse pattern of 
household h by  ,0 and ,quarter at  responds    household if  1 == hjjhj RQhR otherwise, 
where 2,1=j . The realization of this random quantity is denoted by ( )21, hhh rr=r . Let 

( ){ } 1,0,;, : === vuvuhS huv r , so that ( ){ }1,1 :11 == hhS r  denotes the subset of 
households with nonresponse pattern ( )1,1 , which is a subset of the complete sample 
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00011011 SSSSS ∪∪∪= . This subset, 11S , represents the longitudinal linked data 
on the same persons across two quarters.  
The labour force flow model for household h  with nonresponse pattern ( )vu,  is 
defined by: 

( ) ( )uvhhrhhS ShPP
uv

∈=== ,,, αωnNαωnN ,                         (2) 
where α  is a vector of unknown parameters. 
By application of Bayes theorem, (2) can be written as: 

( ) ( )
( )

( )ωnN
αω
αnN

αωnN =
∈

=∈
== hh

uv

hhuv
hhS

Sh
Sh

P
uv

Pr
,Pr

,Pr
, .              (3) 

Note that unless ( ) ( ) huvhhuv ShSh nαωαnN   allfor    ,Pr,Pr ∈==∈ , the labour force 
flows model and the respondent model are different, in which case the nonresponse 
mechanism is informative. 
In particular, the labour force flow model for household h  with nonresponse 
pattern ( )1,1 , that is for households who responded at both quarters is given by: 

( ) ( )
( )

( )ωnN
αω
αnN

αωnN =
∈

=∈
== hh

hh
hhS Sh

Sh
P Pr

,Pr
,Pr

,
11

11
11

.               (4) 

Model (3) incorporates the population (or complete sample) model for the labour 
force flow frequencies and the nonresponse effects as a function of the labour force 
flow. This is done by modeling the population distribution of labour force flow 
frequencies to take into account informative nonresponse. The modification is based 
on the ratio of the conditional probability of response given the true labour force flow 
to the unconditional probability. Nonresponse of this kind is an example of 
nonignorable (informative) nonresponse and its presence would imply that estimates 
of the important measures of labour force gross flows could be biased even after the 
application of a weighting process for adjustment of nonresponse.  
In order to apply (4), it is necessary to model the probabilities, ( )αnN ,Pr 11 hhSh =∈ . 
Let hz  be an observable auxiliary variable, considered as random, which is not 
included in the working model for the labour force flows. 
Let ( )hhhh Sh znN ,Pr 11 =∈=φ . Then according to Pfeffermann and Sverchkov 
(1999) the following relationships hold: 

( ) ( )
( )

( )ωnN
αω
αnN

αωnN =


=
== hh

h

hhh
hhS

E
E

P Pr
,

,
,

11
φ

φ
,                   (5a) 

( ) ( ) ( )ωnNαnNαω === ∑ hh
ba

hhhh EE Pr,,
,

φφ                          (5b) 

and 

 ( )
( )

( )
( )αω

αω
αnN

αnN
,

1,  and  
,

1,
11

1111


=
=

==
−−

hS
h

hhhS
hhh E

E
E

E
φ

φ
φ

φ .    (5c) 

It should be emphasized that, according to (5a), the labour force flows model of the 
linked data is completely determined by the specification of the conditional 
probabilities, ( )αnN ,Pr 11 hhSh =∈ . However the respondent probabilities themselves 
are not observable.  In order to estimate the unknown parameters, we replace 

hh dby    1−φ - the longitudinal calibrated weights of household h , under the assumption 
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that they represent the reciprocals of the response probabilities. For more discussion 
of calibrated weights; see Clarke and Tate (1998). The question that arises here is how 
to compute the longitudinal weight of a household, when we only know the 
individuals’ longitudinal weights. One way to overcome this problem is to take the 
average of the longitudinal weights of the persons in that household.  
According to (5a), the labour force flow model of the linked data is completely 
determined by the specification of the conditional expectation ( )αnN ,hhhE =φ , 
which can be identified and estimated based on the longitudinal weights and using the 
relationship (5c). This allows us to construct the respondent likelihood based on (5a) 
and apply standard inference procedures. In particular, since the parameters of the 
respondent model (5a) include the parameters of the labour force flow model, these 
can be estimated by applying maximum likelihood or other methods to the linked 
data, employing their respondent model. 
 
4. Modeling the Conditional Expectation of Response Probabilities 
 
The specification of the respondent model of the labour force flows given in (5a) 
depends on the identification of the conditional expectation ( )αnN ,hhhE =φ . Let us 
consider the following approximations: 
1. Exponential model: 

( ) ( ) ( ) ( ) ( ) ( )     , ,,0,00,0expexp,
,









+=′== ∑

ba
hhhhhh banbanE ααπ nααnN   (6a) 

where ( ) ( ) ( ) ( )( )3,3,...,1,1,0,0 ,10,0 ααα== αhn .  
Under this approximation and using (1) and (5b) we have: 

( ) ( )( )

( ) ( ) ( )( )
( )( ) ( )

( )

( )( ) ( ) ( )( ) ( ) ( )( )( ) .3,3exp3,3...1,1exp1,10,0exp                  

!,
,!*,,0,0exp                  

,,

, ,

,

,

h

h

n

ba ba h

ban

h
ba

h

hhh

ban
banbanba

EEE

αωαωα

ω

αα

ππ

++=



















+=

=

∑ ∏∑

αNωα

   (6b)                   

Now substituting (6) in (5a), we can show that: 

( ) ( )( ) ( )

( )∏==
ba h

ban

hhhS ban
banP

h

,

,*

!,
,!

11

ωωnN ,                             (7a) 

where 

( )
( ) ( )( )
( ) ( )( )

1,2,3, ;
,exp,

,exp,,

,

*
==

∑
ba

baba
bababa

ba
αω

αω

ω .                        (7b) 

Thus the respondent and population labour force flow models follow a multinomial 
distribution but the transitions probability, ( )ba,ω , under the population model, 
changes, under the respondent model, to ( )ba,*

ω ,  defined in (7b). 
Note that if ( ) 0, =baα  for all ( )ba, , that is, the nonresponse mechanism is ignorable 
(noninformative) then the population and respondent labour force flow models are the 
same. 
An alternative approximation of (4.2) is: 
2. Linear model: 
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( )

( ) ( ) ( ) ( ). ,,0,00,0                            
,

,
∑+=

′==

ba
hh

hhhh

banban
E

αα

π nααnN
                    (8) 

Under this approximation, we have:       

( ) ( ) ( ) ( )( )
( )( ) ( )

( )

( ) ( ) ( ).,,0,0                            

!,
,!*,,0,0,

,

, ,

,

,

∑

∑ ∏∑

+=



















+==

ba
h

ba ba h

ban

h
ba

hhhh

baban

ban
banbanbaE

h

ωαα

ω

ααπ αnN
   (9)   

Now substituting (8) and (9) in (5a), we obtain: 

( )
( ) ( ) ( )

( ) ( ) ( )
( )( ) ( )

( )∏
∑

∑

+

+

==
ba h

ban

h

ba
h

ba
h

hhS ban
ban

baban

banba
P

h

,

,

,

,

!,
,!*

,,0,0

,,0,0

11

ω

ωαα

αα

ωnN .         (10) 

Again, if ( ) 0, =baα  for all ( )ba, , that is, the nonresponse mechanism is ignorable 
(noninformative) then the population and respondent labour force flow models are the 
same. 
 
5. Estimation  
 
One of the main purposes of the labour force survey is the estimation of the labour 
force gross flows. These estimates are an important tool in the study of labour force 
dynamics. We consider three methods of estimation: the two-step method (see 
Pfeffermann, Krieger, and Rinott (1998)), which takes into account the 
informativeness of response, the unweighted method which does not account for 
response informativeness, and the weighted method which deals with nonresponse 
problem only via the calibration weights. 
 
Two-step method: 
Since the number of parameters indexing the respondent labour force flow model is 
large, (there are 10 informative parameters ( ) ( ) 3,2,1,,,,0,0 =babaαα , and 8 transition 
probabilities ( ) ( ) 1, and 3,2,1,,,

,
== ∑

ba
bababa ωω ), according to Pfeffermann, 

Krieger, and Rinott (1998) and because of problems of identifiability, under the 
exponential model, it is often computationally easier to estimate these parameters in 
two steps: 
First-step: the coefficients ( ) ( ){ }ba,,0,0 αα  are estimated from the observed 
calibrated longitudinal weights { }hd , employing the relationships (5c) and (7a) or (5c) 
and (10). 
Second-step: the estimates of the informative parameters obtained in the first step are 
substituted in (7a) or (10), and then the parameters indexing the labour force flow 
model, ( ){ }ba,ω , are estimated by the maximum likelihood procedure. 
Estimation of ( ) ( ){ }3,2,1,,,,0,0 =babaαα under the exponential model: 
In this case, using the relationship (5c), we have: 



 213

( ) ( )

( ) ( ) ( ) . ,,0,0exp                               

exp,

,

11



















+−=

′−==

∑
ba

h

hhhhS

banba

dE

αα

nααnN

             (11) 

The least squares estimate of α  can be obtained by using nonlinear regression where 
d  is treated as the response variable and ( )ban ,  as the explanatory variables. 
Alternatively we can use the approximation, ( )( ) ( )XEXE lnln ≈ . Under this 
approximation we have: 

( )( ) ( )

( ) ( ) ( ).,,0,0                                       

,log

,

11

∑−−=

′−==

ba
h

hhhhS

banba

dE

αα

nααnN
                   (12) 

Thus by regressing ( )hh dD ln−=−  on ( ) ( )( ) mhnn hhh ,...,1,3,3,...,1,1,1 ==n , where 
m  is the number of households in the linked sample data, 11S , the ordinary least 
squares estimate of α  is given by: 

( ) ( ) ( )( ) ( ) ( )Dnnnα ′′−==
−1

1 3,3~,...,1,1~,0,0~~
ααα ,                        (13) 

where: 
( ) ( )

( ) ( )















=

3,3...1,1
.........

3,3...1,1

1
...
1 11

mm nn

nn
n   and ( ) ( )( )mdd ln,...,ln 1=D .              (14) 

Having estimated the informativeness response parameters, the resulting sample log-
likelihood of the multinomial probability density function (pdf in (7a) is given by: 

( ) ( ) ( )( ) cbabanl
m

h ba
hr +








=∑ ∑

=1 ,

* ,~ln, ωω ,                                 (15) 

where c  is a constant that does not depend on ( )ba,~*
ω , which is defined as: 

( )
( )

( ) ( )( )
1,2,3ba,  ,

,~exp,
,,~

,

*
==

∑
ba

baba
baba
αω

ω

ω . 

Note that (6.15) can be written as: 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ),3,3~exp3,3...2,1~exp2,11,1~exp1,1log          
3,3log3,3...2,1log2,11,1log1,1

αωαωαω

ωωω

+++−

+++=

+

+++

n
nnnlr ω     (16) 

where ( ) ( ) 3,2,1,;,,
1

== ∑
=

+
babanban

m

h
h and ( )∑ ∑

=

+
=

n

h ba
h bann

1 ,
, . 

Now the maximum likelihood estimates of ( )ba,ω  are the values which maximize 
( )ωrl  subject to the constraint ( ) 1,

,
=∑ ba

ba
ω . 

To get these ML estimators ( )ba,ω  we differentiate (15) with respect to *~
ω subject to 

the constraint  ( ) 1,~
,

*
=∑ ba

ba
ω  and setting ( ) 0~

~
*

*

=
∂

∂

ω

ωl , we can show that the ML 

estimators of ( )ba,~*
ω  are given by: 
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( )
( ) ( )
( ) ( )

( )
3,2,1, ; 

,
 

,~exp,ˆ
,~exp,ˆ

,~̂

1

1

,

*
===

∑

∑

∑
=

= ba
n

ban

baba
bababa m

h
h

m

h
h

ba
αω

αω

ω .                 (17) 

Thus we can show that the ML estimators of ( )ba,ω  are the solutions of the following 
system of equations: 

( ) ( )( ) ( )( )( ) ( )( )( ) ( ) ( ) ( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( )( ) ( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )

( ) ( )( ) ( )( )( ) ( )( )( ) ( ) ( ) ( )( ),3,3~exp2,3~̂2,3ˆ2,3~exp3,3~exp2,3~exp2,3~̂
2,1ˆ2,1ˆ3,3~exp2,1~exp2,3~̂1,1ˆ3,3~exp1,1~exp2,3~̂

. . .                                                   
(18)                            3,3~exp1,1~̂2,3ˆ3,3~exp2,3~exp1,1~̂2,1ˆ*

3,3~exp2,1~exp1,1~̂1,1ˆ1,1~exp3,3~exp1,1~exp1,1~̂

**

**

**

**

αωωαααω

ωωααωωααω

αωωααωω

ααωωαααω

−=−−+

−+−

−=−+

−+−−

 
subject to ( ) 1,ˆ

,
=∑ ba

ba
ω . 

Estimation of ( ) ( ){ }3,2,1,,,,0,0 =babaαα under the linear model: 
In this case, using the relationship (5c), we have: 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) .,,0,00,0                                

0,00,0,
1

,

1
11

−

−









+=

′+==

∑
ba

hh

hhhhhS

banban

ndE

αα

α nααnN

                (19) 

The estimate of ( ) ( ){ }3,2,1,,,,0,0 =babaαα can be obtained by fitting a non-linear 

regression model. Alternatively we can use the approximation,
( )XEX

E 11
=







 , and 

regress 
h

h d
D 1

=  against the repressor variables in hn . So that in this case the OLS 

estimator of α  is similar to (14), that is: ( ) ( ) ( )( ) ( ) ( )Dnnnα ′′==
−1

1 3,3~,...,1,1~,0,0~~
ααα , 

where 







=

mdd
1,...,1

1

D . 

Having estimated the informative parameters, they can be substituted in (10), so that 
the log-likelihood of the resulting sample probability density function (pdf) given in 
(10) is given by: 
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This likelihood function can be written as: 
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where c  is a constant that does not depend on ( )ba,ω . 
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Now the maximum likelihood estimates of ( )ba,ω  are the values, which maximize 
( )ωrl subject to the constraint ( ) 1

,
=∑ ab

ba
ω . In this case, closed forms of the estimates 

cannot be obtained, so that numerical optimization has to be used. 
Unweighted method: 
Here we assume the nonresponse mechanism is ignorable, so that the maximum 
likelihood estimates of the labour force flow transition probabilities, 
( ) 3,2,1,;, =babaω  are the values, which maximize ( )ωl : 

( ) ( ) ( ) ( ) ( ) ( ) ( )3,3log3,3...2,1log2,11,1log1,1 ωωω
+++

+++= nnnl ω ,         (22) 
subject to the constraint ( ) 1,

,
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ba
ω .  

We can show that the maximum likelihood estimates of ( )ba,ω  are given by: 
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Weighted method: 
The weighted estimates of the labour force flows transition 
probabilities ( ) 3,2,1,;, =babaω  can be based on household weights or on individual 
weights: 
1. Based on household level weights: 
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2. Based on individual level weights: 
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where hid  is the longitudinal weight for person i  in household h  and ( )banhi ,  is the 
flow of person i  in household h . 
 
 
6. Multinomial Logistic Regression for the Labour Force Flows  
 
In the previous sections we studied and discussed the labour force flows model under 
the assumption that individual labour force flows are homogenous and independent 
within household. Similarly, individual conditional response probabilities, given the 
flow, are assumed homogeneous within and between households. These assumptions 
are clearly unrealistic. In this section we extend the model of Clark and Chambers 
(1998) by specifying the labour force flows and nonresponse probabilities as 
regression models to accommodate individual level variables such as age, gender, and 
education, and household level variables such as region and tenure. One possible 
solution for this is to consider a logistic regression model for the labour force flow 
probabilities, possibly using random effects models.  
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Let hix be a vector of covariate information, at individual or household level, which is 
available for all units (respondent or nonrespondent), for example, tenure, age-sex and 
education. Let  ( )ba ,β  be a vector of unknown coefficients including the constant term, 
and let ( )bahi ,ω  denote the probability of individual i  in household h , having labour 
force flow ( )ba, . The multinomial logistic regression is given by: 
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.                                     (26) 

To fit this model we do the following: 
1. Estimate the regression coefficients, ( )ba,β , on the basis of respondent households, 
that is based on 11S , by assuming that the nonresponse mechanism is ignorable or 
noninformative. 
2. Estimate the individual flows probabilities, ( )bahi ,ω , from the multinomial logistic 
model (26). 
Having estimated the regression coefficients and the individual flows probabilities; 
we can derive the household flows probabilities from the individual flows 
probabilities as follows: 
Let ( )bahi ,δ  be the indicator variable, which takes the value 1 if and only if 
individual i  in household h  has flow ( )ba, . Thus:  

( ) 1,
,

=∑
ba

hi baδ ; ( ) );,(,
1

banba h

n

i
hi

h

=∑
=

δ ( ) ∑∑∑ ==

= ba
hh

ba

n

i
hi nbanba

h

,, 1
),(,δ .    (27) 

Let ( ) ( ) ( ) ( )( )3,3,,1,1,,3,3,,1,1 11 hhnhnhhh δδδδ lll=δ  be the partition vector of all the 

indicator variables, ( )bahi ,δ , for household h.  
For given ( ) ( )( )3,3,,1,1 hhh nn l=n , let h∆  be the set of all the possible partitions, hδ , 

such that ( ) 1,
,

=∑
ba

hi baδ  and ( ) ),(,
1

banba h

n

i
hi

h

=∑
=

δ . 

For example if 2=hn  and ( )0,0,1,1 l=hn , i.e. ( ) ( ) 12,11,1 == hh nn  (and all other 
values of ),( banh are zero), then h∆  has two partitions: (1,0,0,0,0,0;0,1,0,0,0,0) and 
(0,1,0,0,0,0;1,0,0,0,0,0), i.e. either ( ) ( ) 12,11,1 21 == hh nn  (and all other values are zero) 
or ( ) ( ) 11,12,1 21 == hh nn (and all other values are zero). Similarly if ( )0,0,0,2 �=hn , 
then h∆  has just one partition: (1,0,0,0,0,0;1,0,0,0,0,0). 
The household flow probability can then be computed as follows: 
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For example if 2=hn and ( )0,0,1,1 l=hn , then:  
( ) ( ) ( ) ( ) ( )1,12,12,11,1Pr 2121 ωωωω +== ωnN hh .                    (29a) 

Similarly if ( )0,0,0,2 l=hn , then: 
( ) ( ) ( )2,11,1Pr 21 ωω== ωnN hh .                                    (29b) 

But in our case, for the labour force survey data, the hn  is known, so that the 
household flow probabilities can then be computed as follows: 
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This can be computed only if ( )bahi ,ω  are known – see equation (6.26). 
For example if 2=hn  and ( )0,0,1,1 �=hn , then:  

( ) ( ) ( )2,11,1Pr 21 ωω== ωnN hh .                                   (31) 
Similarly if ( )0,0,0,2 l=hn , then: 

( ) ( ) ( )2,11,1Pr 21 ωω== ωnN hh .                                     (32) 
Note that the (30) can be used only to compute the household flow probability.  
 
7.  Real Data 
  
1. Creation of household weight: 
In order to compare the unweighted, weighted, sample maximum likelihood and 
binomial logistic regression model approaches for estimating the LFS gross flows, as 
considered in the previous sections, we use a real data set previously analyzed by the 
Office for National Statistics (ONS). This data set is the 1995 Summer-Autumn LFS 
linked longitudinal data file. The data is on an individual level, so that in order to 
apply the proposed methods, which are household-based, we had to create and 
identify a household record based on the individual level data. The file contains 
individual calibration weights - see Clarke and Tate (1999) for details of the 
construction of these weights. For our purposes a household weight is required. On 
the basis of some explorative analysis (see below) we decided to use their mean as an 
approximate measure of the weight of the household. 
In order to create a good measure for household weight we examined the individual 
longitudinal weights within household. The results are summarized in the following 
table, which contains the mean and the variance of the minimum, maximum and 
average of the individual longitudinal weights within household 

Table 2 
 Minimum Maximum Average 
Mean 547.86 600.25 571.90 
Standard Deviation 92.28 245.22 93.18 
 
The histograms of the values of the minimum and maximum of the individual 
longitudinal weights within household shows that these measures produce 
distributions that are skewed to the right, while the histograms of the values of the 
mean of the individual longitudinal weights within household shows that these 
measures produce approximately bell shaped distributions. Based on this descriptive 
study we adopted the mean as an approximate measure of weight of the household. 
2. Fitting models for the household weights: 
2.1 Exponential model:  
Here we fit the exponential model for the logs of the mean household weights, 

∑
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=
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i
hi

h
h d

n
d

1

1 , as a response variable, where hid  represents the longitudinal weight 

within household h  for individual i  and  hn  is the number of individuals in 
household h. The explanatory variables are the labour force flow frequencies for 
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households which respond in the two quarters - ( )banh ,  - the number of individuals 
who have labour force flow ( )ba,  between the two quarters. 
The resulting fitted model is given by:  
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         (33) 

The residual standard error is 0.1445 and the p-value of the F-statistic is very close to                  
zero. 
2.2 Linear model: 
Here we fit the reciprocals of the household weights as a linear function of the labour 
force flow frequencies. In this case the fitted model is given by: 
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    (34) 

The residual standard error is 0.00024 and the p-value of the F statistic is again very 
close to zero. 
Some conclusions on the characteristics of the nonresponse can be obtained by 
examining the estimated regression coefficients from these fitted models. For 
instance, for the exponential model, the regression coefficients for individuals in a 
household whose labour force status is unemployed in the second quarter (b=2) are 
higher than for persons whose labour force status is employed (b=1) or not in labour 
force (b=3) in the second quarter, irrespective of their status in the first quarter. The 
converse holds for the linear model, since the dependent variable is the reciprocal of 
the weight. In both cases this implies that persons whose labour force status is 
unemployed in the second quarter have higher predicted weights than other persons 
and the highest predicted weights occurs for persons whose labour force status in both 
the two quarters is unemployed. We conclude that the least represented persons in the 
sample are the persons who were unemployed in both quarters. Conversely for 
persons whose labour force status at the second quarter is employed. This is similar to 
the result obtained by Clarke and Tate (1998) by comparing the estimates of gross 
flows under ignorable and the more sophisticated nonignorable models. 
3. Gross flows estimates: 
By maximizing the likelihood functions under the exponential and the linear models, 
estimates (or predictions) of the gross flows are obtained. These are compared with 
the classical maximum likelihood, binomial logistic regression and the weighted 
estimates, weighted at the individual and at the household levels. The estimates of 
labour force gross flows are shown in Table 3. Following are details on the methods 
of estimation used:  
3.1 Unweighted method: The first column gives estimates from the unweighted data 
obtained maximizing equation (22).  
3.2 Weighted methods: 
3.2.1 At the individual level: The second column gives estimates from the weighted 
data at the individual level using equation (25). 
3.2.2 At the household level: The third column gives estimates from the weighted 
data at the household level, computed using equation (24).                                                               
3.3 Sample likelihood method:  
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3.3.1 Exponential model: 
The fourth column gives the estimates based on the sample log-likelihood under the 
exponential model. They are obtained by maximizing equation (16).       
3.3.2 Linear model: 
The fifth column gives the estimates based on the sample log-likelihood under the 
linear model. They are obtained by maximizing equation (21). 
3.4 Binomial logistic regression: 
The last column gives the estimates from the binomial logistic regression. They are 
computed as follows:  
The binomial logistic regression model for labour force flow ( )ba,  is given by: 
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where 210 ,, βββ  are unknown parameters, hn  is the household size, hd  is the mean 
household weight and ( )bah ,ω  denote the probability of household h , having labour 
force flow ( )ba, . 
To fit this model we do the following: 
1. Estimate the regression coefficients, 210 ,, βββ , on the basis of respondent 
households, that is based on 11S , by assuming that the nonresponse mechanism is 
ignorable or noninformative. 
2. Estimate the household flow probabilities, ( )bah ,ω , from the logistic model (35) as: 
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3. Estimate the overall labour force flow probability as: 
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where m  is the number of households in 11S . 
Table 3 

Gross Flows Estimates (Percentages) 
Status Method of Estimation 
Flow Unweighted Weighted  

Individual 
Weighted  
Household

SMLE- 
Exponential

SMLE-
Linear 

Logistic  
Regression

EE 70.62 70.51 69.32 69.78 69.80 68.69 
EU 1.08 1.22 1.25 1.17 1.16 1.04 
EN 1.53 1.77 1.71 1.61 1.61 1.39 
UE 1.61 1.76 1.62 1.61 1.61 1.50 
UU 3.78 3.90 4.41 4.16 4.15 4.22 
UN 1.00 1.09 1.12 1.07 1.06 1.03 
NE 1.40 1.52 1.29 1.35 1.35 1.25 
NU 1.06 1.12 1.14 1.12 1.11 1.12 
NN 17.92 17.12 18.12 18.13 18.15 19.76 
 
The main findings from Table 3 are as follows: 
1. The gross flows estimates based on the sample likelihood under the exponential and 
linear models (last two columns) give approximately the same results. Thus modelling 
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the calibrated weights at the household level as an exponential or a linear function of 
labour force frequencies does not affect the point estimates of gross flows. 
2. There are small differences between unweighted and weighted gross flow 
estimates, both when using individual and household weights. The differences 
between estimates based on individual weights and the unweighted estimates are 
smaller than those between estimates based on household weights and unweighted 
estimates. This may be explained by the fact that nonresponse for the LFS is, in 
general, at the household level and not at the individual level, due to the high 
prevalence of use of proxy respondents. 
3. There are only small differences between gross flow estimates based on household 
level weighting and those obtained based on sample likelihoods, under both the linear 
and the exponential models. The household level weighted estimates use the 
calibrated longitudinal weights, while the sample likelihood method uses the predicted 
weights based on modeling. Also the calibrated weights as constructed by the ONS 
are functions of auxiliary variables, like age, tenure, martial status and do not depend 
on the labour force frequencies. Thus these calibrated weights might be considered as 
ignorable because they depend only on auxiliary variables and do not depend on the 
labour force status. The fact that the differences between them are small implies that 
the estimates based on the sample likelihoods are basically just reconstructing the 
present weights (possibly with some smoothing) and may not reflect the full effects of 
informative nonresponse. 
4. Both the household level weighting and sample likelihood procedures for 
estimating the labour force gross flows seem to reduce at least part of the 
nonresponse, compared to the unweighted method. Because based on simulation study 
by Clarke and Tate (2003), the authors recommended that the weighting could be used 
to produce flows estimates that offer a considerable improvement in bias over 
unadjusted estimates. 
5. The labour force gross flows estimates under the binomial logistic regression differ 
quite considerably from the estimates based only on the weights. This implies that the 
use of additional covariate information may reduce nonresponse biases. Also the use 
of the predicted household weights based on the exponential and on the linear models, 
instead of the adjusted calibrated weights - hd , produces the same results.  
 
8. Conclusions and Future Work 
 
In this article we introduce alternative methods of obtaining weighted estimates of 
gross flows, taking into account informative nonresponse. The first method based on 
extracting the response labour force model as a function of the population labour force 
model and of the response probabilities, which are obtained as reciprocals of the 
adjusted calibrated weights. The second method is based on the binomial logistic 
regression. The new methods are model based while the classical method is based on 
the adjusted weights. We think that the first method is more efficient than the 
weighted method. However the two methods, sample likelihood and weighting, give 
approximately the same estimates of labour force gross flows.  Also we consider 
exponential and linear models to explain the variations in the calibrated weights under 
household level and from the exponential model we conclude that the unemployed 
persons at both quarters are under-represented in the labour force survey sample. This 
is similar to the result obtained by Clarke and Tate (1998) by comparing the estimates 
of gross flows under ignorable and nonignorable models.  
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Initially we considered that the estimates of gross flows based on the response labour 
force likelihood may explain the nonignorable nonresponse. We are not surprised at 
the similarity of the results of the weighted and response likelihood methods because 
the calibrated weights used in both methods are only a function of auxiliary variables 
and do not depend on the labour force status. The interesting result is that if we have 
sample data that contains the response variable and the sampling weights and for 
nonresponse the calibrated adjusted weights, then basing inference using classical 
weighted method and the new method based on the response likelihood may give 
similar results. 
The alternative methods of estimating gross flows, based on modeling only adjusted 
calibrated weights give approximately the same estimates of labour force gross flows 
as those based only on the calibrated weights themselves. The addition of other 
covariates incorporated in the logistic model provides different values of the 
estimates, which may reflect better the effects of informative nonresponse. We 
propose to carry out additional experiments with alternative sets of covariates, in 
order to find better models (i.e., with better fit).  However we still do not have well-
founded evidence that these estimates have smaller bias or smaller mean square error, 
unless we assume that the model used is the correct one.  No validation of the 
correctness of the model is possible without some additional information on the 
nonresponse. Further data on the cases that responded in at least one of the months for 
which they were sampled but did not respond in one or both of the periods compared 
has been requested. Based on this data, which we shall assume to represent also the 
total nonresponse, we propose to fit the Heckman model. This basically assumes that 
response is determined by the threshold of an unknown response variable, which is a 
linear function of known auxiliary variables. The regression residuals of the response 
variable are assumed to be correlated with those of the regression for the variable of 
interest, thereby modelling informative nonresponse.  Estimation of the unknown 
model parameters is based on data for the auxiliary variables for both respondents and 
non-respondents and on the values of the variable of interest. The models then will 
provide both estimates of nonresponse probabilities as a function of the covariates and 
estimates of the labour force flows, taking into account informative nonresponse. 
These estimates will then be compared with those obtained from models without 
information on the nonresponse. 
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