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Abstract 

In this paper, we study, within a modeling framework, the joint treatment of nonignorable 

dropout and informative sampling for longitudinal survey data, by specifying the 

probability distribution of the observed measurements when the sampling design is 

informative. The sample distribution of the observed measurements model is extracted 

from the population distribution model, assumed to be multivariate normal. The sample 

distribution is derived first by identifying and estimating the conditional expectations of 

first order sample inclusion probabilities, (assuming complete response at the first time 

period), given the study variable, based on a variety of models, such as linear, 

exponential, logit and probit. Next, we consider a logistic model for the informative 

dropout process. The proposed method combines two methodologies used in the analysis 

of sample surveys: for the treatment of informative sampling and of informative dropout.  

One incorporates the dependence of the first order inclusion probabilities at the initial 

time period on the study variable, see Eideh and Nathan (2006), while the other 

incorporates the dependence of the probability of nonresponse on unobserved or missing 

observations, see Diggle and Kenward (1994). An empirical example based on data from 

the British Household Panel Survey illustrates the methods proposed. 

1. Introduction 

Data collected by sample surveys, and in particular by longitudinal surveys, are used 

extensively to make inferences on assumed population models. Often, survey design 

features (clustering, stratification, unequal probability selection, etc.) are ignored and the 

longitudinal sample data are then analyzed using classical methods based on simple 

random sampling. This approach can, however, lead to erroneous inference because of 

sample selection bias implied by informative sampling - the sample selection 

probabilities depend on the values of the model outcome variable (or the model outcome 

variable is correlated with design variables not included in the model). For example, if 

the sample design is clustered, with PSU’s selected with probabilities proportional to size 

(e.g., size of locality) and the dependent variable (e.g., income) is related to the size of 

the locality, ignoring the effects of this dependence can cause bias in the estimation of 

regressions coefficients. In theory, the effect of the sample selection can be controlled for 

by including among the model all the design variables used for the sample selection. 

However, this possibility is often not operational because there may be too many of them 

or because they are not of substantive interest. Initial non-response in a longitudinal 

survey may also be considered as a form of informative sampling. 

To overcome the difficulties associated with the use of classical inference procedures for 

cross sectional survey data, Pfeffermann, Krieger and Rinott (1998) proposed the use of 

the sample distribution induced by assumed population models, under informative 

sampling, and developed expressions for its calculation. Similarly, Eideh and Nathan 

(2006) fitted time series models for longitudinal survey data under informative sampling. 
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In addition to the effect of complex sample design, one of the major problems in the 

analysis of longitudinal data is that of missing values. In longitudinal surveys we intend 

to take a predetermined sequence of measurement on a sample of units. Missing values 

occur when measurements are unavailable for one or more time points, either 

intermittently or from some point onwards (attrition). 

The literature dealing with the treatment of longitudinal data considers three major areas 

of research: 

(1) Analysis of complete non-survey longitudinal data (without nonresponse).   

The predominant method of analysis for longitudinal data has long been based on the 

application of generalized linear models (GLMs) – McCullagh and Nelder (1999) – to 

repeated measures and the use of generalized estimating equations (GEEs) to estimate the 

model parameters – see for instance Diggle, Liang, and Zeger (1994). The generalized 

linear model describes the conditional distribution of the outcome, given its past, where 

the distribution parameters may vary across time and across subjects as a stochastic 

process, according to a mixing distribution. Two different approaches to longitudinal 

analysis are dealt with by means of similar GLMs. In the “subject-specific” approach, 

sometimes referred to as the random effects model, the heterogeneity between subjects is 

explicitly modelled, while in the “population-averaged” approach, sometimes referred to 

as the marginal model, the average response is modeled as a function of the covariates, 

without explicitly accounting for subject heterogeneity. 

Frequently longitudinal sample surveys deal with hierarchical populations, such as 

individuals within households or employees within establishments, for which multi-level 

modeling is appropriate. In another approach, Goldstein, Healy and Rasbash (1994) 

consider the analysis of repeated measurements using a two-level hierarchical model, 

with individuals as second level and the repeated measurements as the first level. 

Path analysis, which has long been a preferred method of modelling complex 

relationships between large numbers of variables in cross-sectional analysis of structured 

data sets in the social sciences, has been generalized to modelling longitudinal data 

primarily by means of Graphical Chain Modelling (GCM) and Structural Equation 
Modelling (SEM) - see Wermuth and Lauritzen (1990) and Mohamed, Diamond and 

Smith (1998). 

Other models used for the anlaysis of longitudinal data, include Antedependence Models 
designed to deal with nonstationarily. Zimmerman and Nunez-Anton (2000) propose 

structured and unstructured antedependence models for longitudinal data, primarily in the 

context of growth analysis.  

(2) Treatment of nonresponse in longitudinal data in the non-survey context.  

The analysis of longitudinal data with nonignorable missing values has received serious 

attention in the last 20 years. For example, Little (1993) explores pattern-mixture models 

and pattern-set mixture models for multivariate incomplete data. Diggle and Kenward 

(1994) propose a likelihood-based method for longitudinal data subject to informative 

and monotone missingness. Little (1995) discusses methods that simultaneously model 

the data and the drop-out process via two broad classes of models – random-coefficient 
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selection models and random-coefficient pattern-mixture models, based on likelihood 

inference methods. Little and Wang (1996) fit pattern mixture models for multivariate 

incomplete data with covariates, via maximum likelihood and Bayesian methods, using 

the EM algorithm. Troxel, Harrington and Lipsitz (1998) use full likelihood methods to 

analyze continuous longitudinal data with non-ignorable (informative) missing values 

and non-monotone patterns. Lipsitz, Ibrahim and Molenberghs (2000) use a Box-Cox 

transformation for the analysis of longitudinal data with incomplete responses, while 

Ibrahim, Chen and Lipsitz (2001) estimate the parameters in the generalized linear mixed 

models with nonignorable missing response data and with non-monotone patterns of 

missing data in the response variable. For further discussion see Schafer (1995) and Little 

and Rubin (2002). 

(3) Treatment of effects of complex sample design and of nonresponse in longitudinal 
surveys.  

Some recent work has considered the use of the sample distribution under informative 

sampling. Longitudinal survey data may be viewed as the outcome of two processes: the 

process that generates the values of units in the finite population, often referred as the 

superpopulation model, and the process of selecting the sample units from the finite 

population, known as the sample selection mechanism. Analytic inference from 

longitudinal survey data refers to the superpopulation model. When the sample selection 

probabilities depend on the values of the model response variable at the first time period, 

even after conditioning on auxiliary variables, the sampling mechanism becomes 

informative and the selection effects need to be accounted for in the inference process. 

Pfeffermann, Krieger and Rinott (1998) propose a general method of inference on the 

population distribution (model) under informative sampling, which consists of 

approximating the parametric distribution of the sample measurements. The sample 

distribution is defined as the distribution of the sample measurements, given the selected 

sample. Under informative sampling, this distribution is different from the corresponding 

population distribution, although for several examples the two distributions are shown to 

belong to the same family and only differ in some or all the parameters. Several authors 

discuss and illustrate a general approach to the approximation of the marginal sample 

distribution for a given population distributions and of the first order sample selection 

probabilities. Pfeffermann and Sverchkov (1999) propose two new classes (parametric 

and semi-parametric) of estimators for regression models fitted to survey data. Sverchkov 

and Pfeffermann (2004) use the sample distribution for predicting finite population totals 

under informative sampling. Pfeffermann, Moura and Silva (2001) propose a model-

dependent approach for two-level modeling that accounts for informative sampling. 

Pfeffermann and Sverchkov (2003) consider four different approaches to defining 

parameter-estimating equations for generalized linear models, under informative 

probability sampling design, utilizing the sample distribution. Chambers, Dorfman and 

Sverchkov (2003) describe a framework for applying a common exploratory data analysis 

procedure, nonparametric regression, to sample survey data. Eideh (2007) use the sample 

distribution for deriving best linear unbiased predictors of the area means for areas in the 

sample and for areas not in the sample. For more discussion; see Eideh and Nathan 

(2003, 2006) and Nathan and Eideh (2004). 

The joint treatment of the effects of complex sample design and of nonresponse in 

longitudinal surveys has been considered by several authors. Feder, Nathan and 

Pfeffermann (2000) develop models and methods of estimation for longitudinal analysis 
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of hierarchically structured data, taking unequal sample selection probabilities into 

account. The main feature of the proposed approach is that the model is fitted at the 

individual level but contains common higher-level random effects that change 

stochastically over time. The model allows the prediction of higher and lower level 

random effects, using data for all the time points with observations. This should enhance 

model-based inference from complex survey data. The authors introduce a two-stage 

procedure for estimation of the parameters of the model proposed. At the first stage, a 

separate two-level model is fitted for each time point, thus yielding estimators for the 

fixed effects and for the variances. At the second stage, the time series likelihood is 

maximized only with respect to the time series model parameters. This two-stage 

procedure has the further advantage of permitting appropriate first and second level 

weighting to account for possible informative sampling effects. Pfeffermann and Nathan 

(2001) use time series structures with hierarchical modeling for imputation for wave 

nonresponse. Skinner and Holmes (2003) consider a model for longitudinal observations 

that consists of a permanent random effect at the individual level and autocorrelated 

transitory random effects corresponding to different waves of investigation. Eideh and 

Nathan (2006) fit time series models for longitudinal survey data under informative 

sampling via the sample likelihood approach and pseudo maximum likelihood methods 

and introduce a new test of sampling ignorability based on the Kullback-Leibler 

information measure. 

None of the above studies consider simultaneously the problem of informative sampling 

and the problem of informative dropout, when analyzing longitudinal survey data. In this 

paper we study, within a modeling framework, the joint treatment of nonignorable 

dropout and informative sampling for longitudinal survey data, by specifying the 

probability distribution of the observed measurements, when the sampling design is 

informative. This is the most general situation in longitudinal surveys and other 

combinations of sampling informativeness and response informativeness can be 

considered as special cases. The sample distribution of the observed measurements model 

is extracted from the population distribution model, such as the multivariate normal 

distribution. The sample distribution is derived first by identifying and estimating the 

conditional expectations of first order (complete response) sample inclusion probabilities, 

given the study variable, based on a variety of models, such as linear, exponential, logit 

and probit. Next, we consider a logistic model for the informative dropout process. The 

proposed method combines two methodologies used in the analysis of sample surveys for 

the treatment of informative sampling and informative dropout. One incorporates the 

dependence of the first order inclusion probabilities on the study variable, see 

Pfeffermann, Krieger and Rinott (1998), while the other incorporates the dependence of 

the probability of nonresponse on unobserved or missing observations, see Diggle and 

Kenward (1994). This is possible in longitudinal surveys by using models based on 

observations in previous rounds. 

The main purpose here is to consider how to account for the joint effects of informative 

sampling designs and of informative dropout in fitting general linear models for 

longitudinal survey data with correlated errors. 
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2. Population Model  

Let TtNiyit ,...,1 ;,...,1 , ==  be the measurement on the  i-th subject at time Tt ,...,1= . 

Associated with each ity  are the (known) values, pkxitk ,...1, = , of p  explanatory 

variables. We assume that the ity  follow the regression model: 

 1 1 ... ,it it p itp ity x xβ β ε= + + +  (2.1) 

where the itε  are a random sequence of length T  associated with each of the N  subjects. 

In our context, the longitudinal structure of the data means that we expect the itε  to be 

correlated within subjects. 

Let ( )′= iTii yy ,...,1y ,  ( )′= itpitit xx ,...,1x and let ( )′= pββ ,...,1β  be the vector of 

unknown regression coefficients. The general linear model for longitudinal survey data 

treats the random vectors Nii ,...,1, =y  as independent multivariate normal variables, that 

is  

 ( ) ~ , ,i i
p
MVN ′y x β V  (2.2) 

where ix  is the matrix of size T by p  of explanatory variables for subject i , and V has 

( ) thjk −  element, ( ) Tkjyyv ikijpjk ,...,1,,,cov == ; see Diggle, Liang and Zeger (1994).  

3. Sampling Design and Sample Distribution  

We assume a single-stage informative sampling design, where the sample is a panel 

sample selected at time 1=t  and all units remain in the sample till time Tt = . Examples 

of longitudinal surveys, some of which are based on complex sample designs, and of the 

issues involved in their design and analysis can be found in Friedlander et. al. (2002), 

Herriot and Kasprzyk (1984), and Nathan (1999). In many of the cases described in these 

papers, a sample is selected for the first round and continues to serve for several rounds. 

Then it is intuitively reasonable to assume that the first order inclusion probabilities, iπ , 

depend on the population values of the response variable, 1iy , at the first occasion only, 

and on ( )′= piii xx 1111 ,,Kx . 

Theorem 1.  

Let ( )θxyy ,~ iip
p

i f  be the population distribution of iy  given ix  and 

( )′=− iTiiTi yyy ,,, 321, Ky . If we assume that iπ  depends only on  on   and 11 iiy x , then the 

(marginal) sample distribution of iy  given ix  is given by: 

 ( ) ( ) ( )1 1 , 1 1,  , | , ; ,s i i s i i p i T i if f y f y−=y x θ x θ y x θ  (3.1) 
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where  

 ( ) ( )
( ) ( )1 1

1 1 1 1

1

| ,
, ,

,

p i i i
s i i p i i

p i i

E y
f y f y

E

π
π

=
x

x θ x θ
x θ

 (3.2) 

is the sample distribution of 1iy  given 1ix  and 

 ( ) ( ) ( )1 1 1 1 1 1, , ,p i i p i i i p i i iE E y f y dyπ π| = | |∫x θ x x θ  (3.3) 

Proof: See Eideh and Nathan (2006). 

Assuming independence of the population measurements, Pfeffermann, Krieger and 

Rinott. (1998) establish an asymptotic independence of the sample measurements, with 

respect to the sample distribution, under commonly used sampling schemes for selection 

with unequal probabilities. Thus the use of the sample distribution permits the use of 

standard efficient inference procedures as likelihood based inference. 

Note that, for a given population distribution, ( )θx ,11 iip yf , the sample distribution, 

( )γθx ,,11 iis yf , in equation (3.2)  is completely determined by ( )γx ;,| 11 iiip yE π .  

Consider the following approximation models for the population conditional expectation; 

( )γx ;,| 11 iiip yE π , proposed by Pfeffermann, Krieger, and Rinott (1998), and Skinner 

(1994): 

(a) Exponential Inclusion Probability Model: 

 ( ) ( )1 1 0 0 1 1 11 2 12 1| , exp ...p i i i i i i p i pE y a a y a x a x a xπ ∗= + + + + +x  (3.4) 

(b) Linear Inclusion Probability Model:  

 ( )1 1 0 0 1 1 11 2 12 1
| , ...p pi i i i i i i pE y b b y b x b x b xπ ∗= + + + + +x  (3.5) 

Nathan and Eideh (2004) consider additional approximations for the population 

conditional expectation, namely the logit and probit models. 

Theorem 2. 

We assume the multivariate normal population distribution of iy  given ix , defined by 

equation (2.2). Then under the exponential inclusion probability model given by equation 

(3.4), it can be shown that the sample distribution of iy , given 0, ,i ax θ , is multivariate 

normal: 

( )Vµθxy ,,, *

0 ~MVNa
S

ii                      (3.6) 
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where ( )*

1 0 11 2
, , ,i i iTa v ′′ ′ ′= −µ x β x β x βK . Thus, only the mean of the sample distribution (3.6) 

differs from that of the population distribution (2.2), whereas the variance matrix, V, 

remains the same. The distributions coincide when 00 =a , that is when the sampling 

design is noninformative. 

Similar results are obtained for the linear, logit and probit inclusion probability models.  

4. Sample Distribution under Informative Sampling and Informative Dropout  

Missing values arise in the analysis of longitudinal data whenever one or more of the 

sequence of measurements from units within the study is incomplete, in the sense that 

intended measurements are not taken, or lost, or otherwise unavailable. For example, 

firms are born and die, plants open and close, individuals enter the survey and exit and 

animals may die during the course of the experiment. We follow much of the literature on 

the treatment of missing value in longitudinal data in restricting ourselves to dropout (or 

attrition); that is to patterns in which missing values are only followed by missing values.  

Suppose we intend to take a sequence of measurements, iTi yy ,...,1 , on the ith sampled 

unit. Missing values are defined as dropout if whenever 
ji

y  is missing, so are 
ki

y  for all 

jk ≥ . One important issue which then arises is whether the dropout process is related to 

the measurement process itself. Following the terminology in Rubin (1976) and Little and 

Rubin (2002), a useful classification of dropout processes is: 

1. Completely random dropout (CRD): the dropout process and measurement processes 

are independent, that is, the missingness is independent of both observed and unobserved 

data. 

2. Random dropout (RD): the dropout process depends only on the observed 

measurements, that is, those preceding dropout. 

3. Informative dropout (ID): the dropout process depends both on the observed and on the 

unobserved measurements, that is, those that would have been observed if the unit had 

not dropped out. 

Following Diggle and Kenward (1994), assume that a complete set of measurements on a 

sample unit ni ,...,1=  could potentially be taken at all times: Tt ,...,1= . Let 

( )′= ∗∗∗∗
iTiii yyy ,...,, 21y denote the complete vector of intended measurements, and 

( )′= −1,21 ,...,,
idiiii yyyy denote the vector of observed measurements, where id  denotes 

the time of drop-out, with 1+= Td i  if no drop-out occurs for unit i . We assume that ∗
iy   

and iy  coincide for all time periods during which the ith unit remains in the study, that 

is, *

itit yy = if idt < . 

We define iD  as the random variable, 12 +≤≤ TDi , which takes the value of the 

dropout time, id of the ith unit, ni ,...,2,1= . 
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Let { }itiiiit yyyH x,,...,, 1,21 −= . Then under the exponential inclusion probability model 

(3.4), according to Theorem 2, the sample pdf of the complete series, 

( )′= ∗∗∗∗
iTiii yyy ,...,, 21y , is multivariate normal as defined by (3.6).  

The general model for the dropout process assumes that the probability of dropout at time 

idt =  depends on 
iidH  and on ∗

iidy . Then for Td i ≤ , Diggle and Kenward (1994) 

propose the following logistic model for informative dropout process with dropout at time 

id : 

 ( ) ( )
( )

*
1 1 1 , 1

, ;
log i t , ; log ... ,

1 , ;

i i i

i i i i i i idi
i i i

d id id
d id id i d i d d

d id id

P H y
P H y y y y

P H y
φ φ φ

∗
∗

− −∗
  = = + + +  −

φ
φ

φ
(4.1) 

where φ is a vector of unknown parameters. 

Once a model for the dropout process has been specified, we can derive the joint 

distribution of the observed random vector iy , under the assumed multivariate normal 

sample distribution of ∗
iy , via the sequence of conditional sample pdf’s of ity  given itH , 

( )φVβa ,,,, 0

∗
itts Hyf  and the sequence of conditional sample pdf’s of ∗

ity  given itH ,  

( )0,,, Vβa∗∗
itts Hyf .  

For an incomplete sequence ( )1 2 , 1, ,...,
ii i i i dy y y −
′

=y with dropout at time id , the joint 

sample distribution is given by: 

 ( ) { } ( ) ( )
1

, 1 , 1

2

  * 1 , ;
i

i i i

d

s i i s d i d i t it it i i id
t

f f P H y P D d H
−

∗
− −

=

   = − =  
  
∏y x y x φ  (4.2) 

where { } ( ) ( ), 1 , 1 1 1 i2 , 1 1,..., | ,
i i is d i d i s i i p i d i if f y f y y y∗ ∗ ∗
− − −=y x x x , see Theorem 2 , and 

 ( ) ( ) ( )0; , ,
ii i id t it it tp it it itP D d H P H , y f y H dy∗= = ∫ φ β V  (4.3) 

Comment: Note that (4.2) and (4.3)  take into account the effect of informative sampling 

and informative dropout. 

5. Sample Likelihood and Estimation 

In this section, we extend the methods of estimation for the analysis of longitudinal 

survey data under informative sampling; see Eideh and Nathan (2006), to take into 

account the effects of attrition or dropout, according to the model proposed by Diggle and 

Kenward (1994). We propose two alternative methods, based on the results of the 

previous section on the sample distribution of the observed measurements, in the 

presence of informative sampling and informative dropout. 
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5.1. Two Step Estimation   

The two sets of parameters in (4.2), which need to be estimated are those on which the 

population distribution depends, ( ) Tkjv jk ,...,1.,,, 2 == σβθ , and the parameters on which 

the sample distribution of observed measurements depends, ( )φθθ ,, 0a=∗ , where 0a is 

the parameter indexing the informative sampling process and φ  is the parameter 

indexing the dropout process; see equations (3.4)   and (4.2). Thus the parameters of the 

sample distribution of the observed measurements, θ*, include the parameters of the 

sample and population distributions. The parameters of the population distribution can be 

estimated using the sample distribution of observed measurements and using a two-step 

method.  

Step-one: Estimation of 0a : 

According to Pfeffermann and Sverchkov (1999), the following relationship holds: 

 ( ) ( )1

1

1
|

|
s i i

p i i

E w y
E yπ

= . (5.1) 

Thus, we can estimate 0 a  by regressing ( )iwlog−  against piii xxy 1111 ,...,, , si∈ . 

Step-two: Substitution of the ordinary least squares estimator, 0
~a , of 0a  in the sample 

distribution of observed measurements. The contribution to the log-likelihood function 

for the observed measurements of the i-th sampled unit can be written as: 

 

( ) ( )
{ } ( )

( )

2 2
0

1
2

, 1 , 1 0

2

2

, , , log , , , ,

                         log , , , , log 1 , ;

                          log , , , ,

i

i i

i

i jk s i i jk

d

s d i d i jk t it it
t

i i id jk

L v f v a

f v a P H y

P D d H v

σ σ

σ

σ

−
∗
− −

=

=

   = + −  
  

+ =

∏

β φ y x β

y x β φ

β φ

%

% (5.2) 

Thus the full sample log-likelihood function for the observed measurements to be 

maximized with respect to ( )φβ ,,, 2

jkvσ  is given by: 

 ( ) ( ) ( ) ( ) ( )2 2 2 2

1 0 2 3

1

, , , , , , , , , , , ,
n

rs jk i jk jk jk
i

L v L v L v a L L vσ σ σ σ
=

= = + +∑β φ β φ β φ β φ% (5.3) 

  

where the three components of (5.3) correspond to the three terms of (5.2). The explicit 

form of ( )0

2

1
~,, avL jkσβ  is obtained from equation (3.6), replacing T by 1id − . ( )φ2L  is 

determined by equation (4.1) The last term ( )φβ ,,, 2

3 jkvL σ  is determined by equation 

(4.2) which requires the distribution  ( )0,, Vβitittp Hyf ∗ .  
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5.2. Pseudo Likelihood Approach 

This approach is based on solving the estimated census maximum likelihood equations. 

The census maximum likelihood estimator of ( )jkv,, 2σβθ =  solves the census likelihood 

equations, which in our case are: 

 ( ) ( ) ( )2

1

log log , ,
N

p ip jk
i

U L L vσ
=

∂ ∂
= =
∂ ∂∑θ θ β
θ θ

 (5.4) 

Thus the pseudo maximal likelihood (PML) estimator of ( )jkv,, 2σβθ =  is the solution of:  

 

( ) ( )

( )

22
1 1 11

1

1

2

2 3 1*

1

log , , ,, ,

, , , | , , , ,
                             ,

n
p i iws jk

i
i

n
p i i iT i i jk

i
i

f y vL v
w

f y y y y v
w

σσ

σ

∗

=

∗

=

∂∂
= +

∂ ∂

∂

∂

∑

∑

x ββ

θ θ

x β

θ

K

 (5.5) 

where we can take ii ww =*  or nNwi =
* .  

For more details, see Binder (1983) and Eideh and Nathan (2006).                

6. Empirical Example – British Labour Force Survey 

The British Labour Force Survey (LFS) is a household survey, gathering information on a 

wide range of labour force characteristics and related topics. Since 1992 it has been 

conducted on a quarterly basis, with each sample household retained for five consecutive 

quarters, and a fifth of the sample replaced each quarter. The survey was designed to 

produce cross-sectional data, but in recent years it has been recognized that linking 

together data on each individual across quarters would produce a rich source of 

longitudinal data, that could be exploited to give estimates of gross change over time – 

see e.g., Tate (1999). Labour force gross flows are typically defined as transitions over 

time between the major labour force states, “employed”, “unemployed”, and “not in 

labour force” (or economically inactive). Quarter to quarter gross flows show how 

individuals with each labour force state or classification in one quarter are classified in 

the following quarter. Gross flows provide estimates of the number of individuals who 

went from employed in one quarter to employed in the next quarter, employed to 

unemployed, employed to not in labour force, and so forth. Estimates of labour force 

flows are useful for answering questions such as: (1) how much of the net increase in 

unemployment is due to individuals losing jobs and how much is due to individuals 

formerly not in the labour force starting to look for jobs; (2) how many unemployed 

individuals become discouraged and leave the labour force? A number of problems are 

associated with the estimation of gross flows. Some of these problems are (1) quarter to 

quarter nonresponse; (2) measurement errors or response errors; (3) sample rotation; and 

(4) complex sample design effects. In this numerical example we consider only the 

quarter-to-quarter nonresponse. The problem of handling quarter-to-quarter nonresponse 

was discussed and studied by Clarke and Chambers (1998), Clarke and Tate (1999).  
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In order to accommodate the differences between the assumptions of sections 2-5 and 

those required for the present application, primarily due to the fact the LFS data relate to 

categorical rather than to continuous variables, the following modifications were made. 

Let  ( )banh ,  be the number of individuals with labour force flow ( )ba, , 3,2,1, =ba  in 

household h and let ( ) 0, >baω  be the probability of an individual having labour force 

flow ( )ba, . 

We assume that nonresponse is of whole households, so that responses for all individuals 

are obtained if the household responds and none are obtained if the household fails to 

respond. This closely approximates the situation in most household labour force surveys. 

Let 11S  denote the subset of households who responded in both quarters, i.e., the subset 

representing the longitudinal linked data on the same persons. 

The estimates of labour force gross flows are shown in Table 1.  Following are details on 

the methods of estimation used:  

(1)Unweighted method:  

The second column of Table 1 gives estimates from the unweighted data, obtained by 

maximizing the simple likelihood, 

 ( )
( )

11

11

,

ˆ , ;  , 1,2,3,

h
h S

U

n a b

a b a b
n

ω ∈= =
∑

 (6.1) 

where 

11

11

,

( , )h
h S a b

n n a b
∈

= ∑ ∑  is the total number of persons in the households of subset 

11S  

 (2) Weighted method: 

The third column of Table 1 gives estimates from the weighted data at the household 

level, computed as: 

 ( )
( )

11

11

,

ˆ , ;  , 1,2,3,
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∑
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where hw  is the longitudinal weight of household h . 

(3) The sample likelihood method: 

The sample likelihood was derived under the assumptions of the exponential model, for 

the household weights as a function of the labour force flow frequencies, defined by 
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equation  (3.4) and on the basis of the relationships between the population likelihood 

and that of the respondent sample, defined by equations (3.6) and (4.2). 

The forth column in Table 1 gives the estimates (SMLE), based on the sample log-

likelihood under the exponential model, which in this case is given by: 

 ( ){ } ( ){ }( ) ( ) ( ) ( )1

,

, , , exp 0,0 , ,  , h h h h
a b

E w n a b a b a b n a bα α α−  
 = + 

 
∑  (6.3) 

where ( ) ( ) ( )0,0 , 1,1 ,..., 3,3α α α  are parameters to be estimated. 

Table 1: Gross Flows Estimates (percentages) 

Flow Unweighted Weighted  

 

Exponential-

SMLE  

EE 70.62 69.32 69.78 

EU 1.08 1.25 1.17 

EN 1.53 1.71 1.61 

UE 1.61 1.62 1.61 

UU 3.78 4.41 4.16 

UN 1.00 1.12 1.07 

NE 1.40 1.29 1.35 

NU 1.06 1.14 1.12 

NN 17.92 18.12 18.13 

 

The main findings from Table 1 are: 

1. There are small differences between unweighted and weighted gross flow estimates.  

2. There are only small differences between gross flow estimates based on household 

level weighting and those obtained based on sample likelihoods, under the exponential 

models. The household level weighted estimates use the calibrated longitudinal weights, 

while the sample likelihood method uses the predicted weights based on modeling. Also 

the calibrated weights as constructed by the ONS are functions of auxiliary variables, like 

age, tenure, martial status and do not depend on the labour force frequencies. Thus these 

calibrated weights might be considered as ignorable because they depend only on 

auxiliary variables and do not depend on the labour force status. The fact that the 

differences between them are small implies that the estimates based on the sample 

likelihoods are basically just reconstructing the present weights (possibly with some 

smoothing) and may not reflect the full effects of informative nonresponse. 

3. Both the household level weighting and sample likelihood procedures for estimating 

the labour force gross flows seem to reduce at least part of the effects of nonresponse, 

compared to the unweighted method. Based on their simulation study, Clarke and Tate 

(2002), recommend similarly that weighting should be used to produce flows estimates 

that offer a considerable improvement in bias over unadjusted estimates. Although the 
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sample likelihood estimates cannot be shown to be better than the weighted estimators, 

their similarity to the weighted estimates indicate that they also are an improvement over 

the unweighted estimates. 

7. Conclusions 

In the empirical result, we introduce alternative method of obtaining weighted estimates 

of gross flows, taking into account informative nonresponse. The method is based on 

extracting the response labour force sample likelihood as a function of the population 

labour force likelihood and of the response probabilities-based on the reciprocals of the 

adjusted calibrated weights. The proposed method is model based while the classical 

method is based on the adjusted weights. Thus we think that the new method is more 

efficient than the weighted method, although no hard evidence for this is available. 

However the two methods, sample likelihood and weighting, give approximately the 

same estimates of labour force gross flows when the propensity scores are based on the 

reciprocals of the adjusted calibrated weights.  

Initially we considered that the estimates of gross flows based on the response sample 

likelihood might explain the nonignorable nonresponse. The similarity of the results of 

the weighted and response likelihood methods is not surprising, since the calibrated 

weights used in both methods are only a function of auxiliary variables and do not 

depend on the labour force status. The interesting result is that if we have sample data 

that contain the response variable and the sampling weights and for nonresponse the 

calibrated adjusted weights, then basing inference using classical weighted method and 

the proposed method based on the response likelihood may give similar results. 
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