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Summary. The aims of this article are twofold: first estimate the parameters of the superpopulation
model for two-stage cluster sampling from a finite population when the sampling design for the both
stages is informative. Second predict the finite population total, cluster-specific effects for clusters in
the sample and clusters not in the sample, and predict the cluster totals for clusters in the sample and
clusters not in the sample. To achieve this we derive the sample and complement-sample distributions
and the moments of the first stage and second stage measurements. Also we derive the conditional
sample and conditional sample-complement distributions and the moments of the cluster-specific
effects given the cluster measurements.
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1. Introduction

Two-stage cluster sampling is frequently used in health and social sciences. Classical
theory underlying the use of this sampling mechanism involves simple random
sampling for each of the two stages or unequal probabilities of selection at one or
more of the two stages- see Cochran (1977), Sarndal, Swensson, and Wretman (1997),
and Lohr (1999) for discussion and examples. In such cases the relationship between
the response variable and the covariates in the sample is the same as modeled for the
population. When the selection probabilities are related to the values of the response
variable even after conditioning on concomitant variables included in the population
model, we obtain what is known as informative sampling, which results in selection
bias, consequently the relationship between the response variable and the covariates in
the sample differs from the population model, so that standard estimates of the
population model parameters severely biased, leading possibly to false inference-for
more discussion, see Pfeffermann, Krieger and Rinott (1998).

In a recent master thesis Amin (2000) consider the estimation of the variance
components model parameters when the sampling design for the first stage is
informative with exponential sampling while for the second stage is noninformative.
In (2001) Pfeffermann, Moura and Silva estimate the parameters of the two-level
model under informative sampling design for both stages using the Markov Chain
Monte Carlo algorithm. The authors noted that the sample models used for this
experiment are correct. In practice the relationship between the sample selection
probabilities and the model dependent variables need to be identified from the sample.
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Neither of the above studies considers maximum likelihood estimation method,
prediction of finite population total, cluster-specific effects for sample and non-
sample clusters, and prediction of cluster totals for sample and non-sample clusters
when the sampling design for any of the stages is informative.

The aims of the present study are twofold: estimation and prediction when the
sampling design for the both stages is informative. Special cases are those in which
sampling at one or neither of the stages is informative. In order to do that we extract
the sample distributions of the first and second stages using the population model and
first order inclusion probabilities, extract the sample marginal and sample posterior
distributions, and then find sample and complement-sample moments of these
distributions. We can thereby use the resulting sample, complement-sample and their
moments for estimation of the population model parameters and prediction of finite
population total, cluster-specific effects for sample and non-sample clusters, and
prediction of cluster totals for sample and non-sample clusters when the sampling
design for both stages is informative.

In Section 2 we define the population model for two-stage cluster sampling. Section3
defines the sampling designs. In section 4 we extract the sample pdf’s for the first and
second stages. In section 5 we derive the marginal and posterior sample distributions
and their moments. In Section 6 we study the variance components model for two-
stage informative cluster sampling. Section 7 is devoted to the estimation of
population parameter and prediction of sample and non-sample cluster-specific
effects. In Section 8 we predict the finite population total under-two stage informative
cluster sampling. In Section 9 we predict the sample and non-sample cluster totals,
and Section 10 for simulation study (later).

2. Population model and sampling design for two-stage cluster sampling

Consider a finite population U of N primary sampling units (psu’s) or clusters
labelled 1,...,N,U ={1,...,N}where N is a known number. Let M,,i=1...,N be the

number of secondary sampling units (ssu’s) in the ith psu. Let
yij,izl,...,N, j=1..,M;be the value of the response variable y for the ssu j

belonging to the psu i. Assume that cluster-specific auxiliary data z, = (zil,..., ziq) and

element-specific auxiliary data x;, :(xijl,...,xijp) are available for all clusters and
population elements, respectively.

Consider the following two-stage superpopulation model that includes random-
intercept effects:

First - Stage : uj = z}y +n;

1
Second — Stage : yij | 4 = ui +xijj B+ &jj, .

where i =L..,N: j L., Mj:e; - N(0,02 ) - N.02) p=(p,.. By ) and
y = (;/1,..., Yq ) are vectors of unknown fixed regression parameters. We assume that

all the e;'sand 7;'s are independent. Here the cluster-specific effects 4 are
modeled as linear functions of known auxiliary variablesz;. The first-stage cluster-



specific effects 7; accounts for the variation of the random cluster-specific effects not
explained by the repressor variablesz; .

For this model we have:
Ep(yij): zjy + X3, Varp(yij): ol+ol, Covp(yij,yik): L

Covp(yij , yrk): 0,i=r @)

The purpose of this study is to estimate the population parametersy, 5, o2, and aj,

predicting the cluster-specific effects for clusters in the sample and clusters not in the
sample, the prediction of the finite population total, and the prediction of cluster
totals for sample and non-sample clusters.

Particular cases of model (1) are model, which depend on the data available, and are
widely used in small area estimation, for example:

1. Random effects model or variance components model: for this model we assume
that no auxiliary variables are available for both stages:

Vi = Hi+€y.8 = NI(O,oez)

ij 1 ¥ij

3)
7 =ﬂ+ﬂi,77i;N|(0,0f,)
In matrix notation this model can be expressed as:
yi =uly +u, E (0,)=0,E (wu))=Cov (u)=V, =c2J, +0l1, (4)

where 1,, = (11) is a vector of length M, and consequently y; ~ N(ylM_ ,V, )
1 p 1

This random effects model is proposed by Scott and Smith (1969) as a
superpopulation model for two-stage cluster sampling from a finite population.

2. Nested error unit level regression model: in this case element-specific auxiliary data
are available for all population elements:

, 2
Vi =X B+ 1 +€;,8; ;NI(O'O-e)

®)
ﬂi=#+f7i,m;N|(0,Gf,)

This model employed originally by Battese et al. (1988).
3. Area level random effects model: in this model cluster-specific auxiliary data are
available for all clusters:

Yii = Hi T€;,€ ;NI(O’GeZ)

. (6)
=2y +n;,n ~NI (0,aj ) e; and 77; are independent
p
4. The model used by Fay and Herriot (1979) is defined by:
M = py + 8,8~ NI(O’déi)
i )

=2y +n,,n ~NI (0,aj ) e, and n; are independent
p

where g, is the direct sample estimate of ;.

We assume two-stage cluster sampling design with informative sampling for the first
and second stages. Special cases are those in which sampling at only one or neither of
the stages is informative.

Let di,dij,izl,...,N, j=1..,M, Dbe design variables (considered as random), used

for the sample selection but not included in the working model under consideration.At



the first stage a sample sof size n psu’s (clusters) is selected with inclusion
probabilities:

7, =Pr(ies|u,z;,d,)=h(,z,d,) for some function h, and all psu’s iU .

At the second stage a sample, s,, of size m, ssu’s is selected from the i'th selected
psu with conditional inclusion probabilities:

7 =Pr(jesliesy;, x;.d;)=h,(y;.x;,d; ) for somefunctionh, , forallssu's j eU,
andallpsu'sieU.

In fact these first order selection probabilities are a function of observed auxiliary
variables which are related to g andy; . For simplicity we consider the first order
inclusion probabilities to depend on the unobserved z;and y; instead of the actual

variables for selection, which are related to them.
In the following we use only the conditional expectations of the inclusion
probabilities E, (7, | z;,z, )andE, (7 | x;,Y; )-

Comment 1: If 7;,=1, then we are in single-stage cluster sampling.

3. Sample model and sample moments for two-stage informative cluster
sampling

In this section we will derive the sample distributions and their moments for the
cluster-specific effects 4 (first stage), for ;| (second stage), and derive their

moments.
3.1 Sample distribution and sample moments for the cluster-specific effects

Following Pfeffermann, Krieger and Rinott (1998), the first stage sample distribution
of the cluster-specific effects 4, is:

fs(ﬂi|zi):%fp(ﬂi|zi) (8)
where E, (7, |2,)= [E, (7, | 11,2, (i |2, )d ;.

Note that the sample distribution is different from the population distribution unless
E,(7 | 4,2,)=E, (7, |z,)forallieU. In such cases the sampling design is
ignorable. Also the sample distribution of z; is fully determined by the conditional
expectation E (7, | 4,2, ) and the superpopulation model distribution f_(z; |z;).
Suppose the sample inclusion probabilities have an approximate expectation:

A. Exponential model: E, (7 | 4,2,)=0.(z; )explb, +b,s,) (9a)
B. Linear model: E, (7 | 1.2,)=a, +ayu +9,(z,) (9b)
where g, and g, are some functions of z, and {a,,a,,b,,b, } are unknown parameters

to be estimated from the sample data (see the section on estimation) .
Under the exponential model, we can show that, the sample pdf of z; is given by:

f, (,ui |z,)= (Zﬂai )_0'5 exp(— —2( = (z;y + blcri ))ZJ (10)

i



Hence the sample and population models belong to the normal distribution, but the
mean of the sample model shifts by the constantbloj , SO that

E. (1 |z;):z;7/+b1crfl and Var, (x, |z§)=0i (11)

Note that the sample pdf of ., is independent of b, and. If by =0, then the sample

and population distributions are the same, in such cases the sampling mechanism for

the second stage is ignorable.

Under the linear model, the sample pdf of ., is given by:

fs(/uilzi)::AOfp(/ui|Zi)+A1f;;N(lui|Zi) (12)

a0+gl(zi) w _/uifp(/uilzi)

a, +a1Z;7+gl(zi)’ A=1-Aand s (Iui lZi)_ Ep(/ui |Zi) .

That is, f.(z |z,) is a mixture of normal and weighted normal distribution of 4,

given z, in the population.

Note that the sample and population pdf’s are different unlessa, =0, in which case

the sampling mechanism for the first stage is noninformative. Also

ifa, 0,0,(z,)=0,anda, =0,  thenf (u |z,)=f"(x |2,), the  weighted

distribution of z; .

Now, we can show thatthe mean and the variance under the sample pdf of y; in (12)

are:

where A, =

E.(y|2)=2y+ 20, (13a)
ST T G, v 0@ ) gy
2
var, (i, |z,)= 07| 1- ) (13b)

(ao +3, (Zi )+ 3-1Z;7)2
Here the mean and the variance are changing. Thus according to (10) and (12) the
change in the population parameters depends on the model of the conditional

expectation: E (7, | z,,2z;).  Also  note  that, according to  (13bb),
Var, (u; | z;)<Var, (x; | z;) with equality if and if a, =0, that is when the sampling
design is noninformative.

3.2 Sample distribution and sample moments of second stage measurements

Similarly to Section 3.1, the conditional sample pdf of y; given s and x; is given

by:
E, by 4%, Y3)
p ili [ 1 ]
(v 1 x,) (14)
Ep(”j\i |/ui’Xij) p( : :
Consider the following model assumption for the conditional expectation of the
sample selection probabilities.
A. Exponential model: Ep(ﬂ'j“ [ X, Vi ,,ui): ke(xij )exp(d0 +d1yij) (15a)

fs(yij |/uilxij):

B. Linear model: Ep(7r”i [ X, Y5 ,,ui): Co +C Yy +K (xij) (15b)



where k; andk,are some functions of x; and x; and {dg,d;,co,¢1} are unknown
parameters to be estimated from the sample data (see the section on estimation).

Then under the exponential model, the conditional sample pdf of y; given x; is given
by:

f (yij | 4, %5 ): (27;092 )_0'5 exp[— %(yu - (ﬂi +x;B+dyof ))Zj (16)

e
Also, Es(yij | /Ui): #; +x;f+dio; and Var, (4 127) = 0.
Similarly under the linear model we have:
(co +K, (xij )+ clyij)
C, +K, (xij )+ C i + 01)(;j
The mean and the variance under this sample model are:

fs(yij |/Uivxij): fp(yij |/ui’xij) (16)

[ Clo-e2
Es(yij | /uiaxij): M+ X8+ (Co K (Xij ))+ Cl(/ui N X;j ) (17a)
_ 2|q1_ (Clo'e2 )2
e (yij s )_ |t ((Co +k, (Xij ))+ cl(#i +Xj) ))2 4o

4. Sample marginal distributions of cluster measurements

In this section we are interested in deriving the sample marginal distribution of
y, = (yil,...,yimi) and the conditional sample distribution of ; |y, and their
moments and complement-sample moments, when the sampling design for the first
stage and second stage is informative. Special cases are those in which sampling at
one or neither of the stages is informative. Under this sampling mechanism, we
showed that the sample and population distributions for the first and second stages are

different-see Section 3. The sample model and sample moments of y; for the two-

stage depend on the sample model of the cluster-specific effects (first stage) and the
sample model of y; | «; (second stage). So that we have different combinations to
consider, depending on the modelling of the conditional expectation assumed for the
first order inclusion probabilities of selecting clusters in the first stage and selecting
units in the second stage from the selected clusters in the first stage. As an illustration
let us consider the following two cases:

Casel: Model (9a) E, (7, | 4;,2;) = 9. (z; Jexp(o, +by;) and

Model (15a) E, [z, | ;. X 44 )= k. (x; Jexp(dy + dy; )
Using the results of Sections 3.1and 3.2 and method of conditioning, we can show
that:

The mean of y; under the sample model is:

E.(y,)=2y+x,8+d,0? +bo? (18a)
The variance of y; under the sample model is:
Var, (yij ): ol+ol (18b)

The covariance between y; and y; under the sample model is:



Cov; (yij 1 Yik ): 0'5 (18c)
Note that in this case the mean changes, while the variance and covariance do not
change.
For this case let us find the marginal sample pdf of (yil,..., yimi) .Using (10), (16) and
since (yil,...,yimi)|,ui,i:l,...,nare asymptotically independent, then we can show
that:

£00)=@r) " o2 o ol)

exp(— - (i(yij - (X;jﬂ"' ziy +ho} +do; ))2 ]J* (19)

2
20—9 j=

exp{ (2 Oy (i(yij —(xgjﬁ+z;y+bla§ +d1€7§ ))J ]

B L b=
Notice that the sample and population marginal distributions belong to the same
family, but the mean under the sample model is shifts by the constantblcrf, +dla§,

this constant represent the effect of informative sampling for both stages.
This sample pdf's can be used for estimating the population parameters

7.B.0lando?.

Case 2: Model (9b) E, (7, | ;,2;)=a, +a,; +9,(z;) and
Model (15a) Ep(ﬂjli | Vi X0 45 ): K, (xij )exp(dO + dlyij)

Similar to Case 1, we can show that:

E.(y;)=x,B+zy+d,o? + 20, (20a)
L =X z
Vi ! e ao"‘gl(zi)"‘alZ;?/
a0, f
var,(y, )=02 + 02| 1- Sl (20b)
J 8 (ao"‘gl(zi)"‘alZ;?/)z
and
(o, )
Cov,(y;. Yy )= 02| 1- s (20c)
o 8 (ao"'gl(zi)"'alZ;?/)z
Also we can show that:
A Uiz(yu—Xijﬁ—dldf)JrUf(ZW)
f(yi)=hy; — = 21
) =) Ak . (21)
where
A = 2 +9,(2) , A =1-Ajandh,(y,) is the marginal distribution of 'y,

a + 9 (Zi)+a1(Z;7/)
when the sampling design for the first stage is noninformative and for the second
stage is informative, which is the marginal distribution given in (19) with b, =0.



5. Estimation of population parameters

We are interested in estimating the vector of unknown population
parameters, &/, = (y,ﬁ,ai,aez), that characterize the population models given in (1).
We base the inference on the sample models derived in Section 4. We consider two

methods of estimation, the two-step and pseudo maximum likelihood estimation
methods.

5.1 Two-setp method:

Case 1: Model (9a) E, (7, | ;,2;)=exp(b,; +b'z;) and
Model (15a) Ep(ﬂ'j“ | Vi X ,,ui):exp(dlyij +d'xij)
where
b = (0y.0,,..0, ) 2 = (.22 ) 1A = (dg 0, d ) A X = (X500 X, ) -

"1 Sig T gp
Under this approximation, some of the parameters of the sample model are not
identifiable, so that we estimate the parameters of the population model based on the
sample models in two steps.
Step-one: the coefficients b, andb and d, andd are estimated via the relationship
between the moments under the sample and population models- see Pfeffermann and
Sverchkov (1999). Thus we have:
E, (W | ;) = exp(— (b, +b'z;)) (22a)

and

Es(Wj|i |/‘i): exp(— (dlyij +d'x;; » (22b)

where w; =7z, " and w;; =7 ;.

The problem in estimating b, andb is that, the s are unobserved, one possible

M
solution is to estimate by Y, :mi‘lz y; and use measurement error model.
j=1

Another possibility for estimating b, andbis to replace g in (22a) byy;.
Thus the OLS estimators of B = (- by,—b') is given by:

B :(—511—5')' -@z2)'zW, Z;i=(%i.z) (23)

where Z, =(y,.z,) .

n

B-(-d,-d) -3 (xx) XX,

i=1 =

where X; = (y},x})and W, :(Iogwl‘ Jlogw . Ji=1..n.

Similarly, using (22b), the OLS estimators of D =(—d,,d ) is given by:
(24)
1

Step-two: having estimating (b;,d; ), we substitute these estimates in (19) and then the
next step is to estimate the parameters, 0:([3,7,062,05), of the superpopulation

model given in (4.1) via the ML estimation method.
According to (19), the contribution to the log-likelihood function for the ith sampled
cluster can be written as:



Ly (B,y.52,52)=—0.5(m, —1)log(c2)-0.5log(m,c + o)
13 , , = ~ 2
20_2 1(yij —(xij[i+ziy+blaz +d1crez)) (25a)
e J=
m 2
( xm 0' ol )[Z (yIJ —(xsz +zZy+ blcri +d,0? ))j
Thus the full log-likelihood functlon to be maximized is given by:
Lalb.1020))=2 LB 1,02 07) (25)
This function can be maximized using S PLUS statistical software.
Case 2: Model (9b) E, (7; | 4;,2;)=(ayu; +a'z;) and
Model (15a) Ep(ﬂ'j‘i | yij,xij,,ui)Z (dlyij +d'xij), where

a:(ao,az, ,aq) (1 Zip, Z ),d:(do,dz,...,dp) and x;; (1 Xijp s+ ,]p)

We estimate the populatlon model parameters in the same way as Case 1.

Step-one: Estimation of (a;,a)and (d,d).

The estimates of (d,,d) is given by (24), while the estimates of (a,,a) are similar to

L e

i m;li
Step-two: having estimating the informativeness parameters under the two stages we

substitute these estimates in (21) and then the next step is to estimate the parameters,
6= (]3 y,02,0 ) of the superpopulation model given in (1) via the ML estimation

method.
According to (21), the contribution to the log-likelihood function for the ith sampled
cluster can be written as:
Ly (B v,62,0 ) —0.5(m, 1)Iog( ) 0.5Iog(miaf, +o§)
1 M , , o~ 2
- 2o Z(yij _(XijB+ZiY+dlat32))
e =
0-/-21 i i ’ 7 2 ’
+ 2) Z(yij —(XijB+ZiY+d10'e )) (26a)

2((762 Xmicrf, +0g J\i=L

mj -
A O'f,_ (yij_X;jB_dlo'ez)+o-e2(Z;'Y)
+ |Og(A0 +'— 1=

2 2
ZI’Y miO'#-i-O'e

Thus the full log-likelihood function to be maximized is given by:
Lalb.10202)= 2L B.1.02.07) (26b)

This function can be maximized using S- PLUS software.



Pseudo maximum likelihood estimation

Now we extend the idea of PML to two-stage cluster sampling. According to Section
2 , the first stage inclusion probabilities are denoted by z;,i =1,...,N and the second

stage inclusion probabilities are denoted byzz.‘.,jzl,...,Mi. So that the joint

inclusion probabilities are given by 7jj = 7z . N;j=1..,M;j. Therefore the

jli+!
joint sampling weights are wj; :W‘lei W, :7ri‘1,wj|i =7Z'ﬂi,i =1..,N;j=1..,M;.

Under the conditions of model (1), the contribution of the ith cluster to the census
log-likelihood function is given by:

Le,(B.v.02,02)= —0-5('\/' . ~1log(c?)-0.5log(M 02 + o2)

: (yij - (X;jB + Z;Y))z (2723)

2
2c7e =

M

( )('V'. o2t )(Z(yu (E,-BJFZEY))I

Thus the full census log-likelihood function to be maximized is given by:
N
L.(B.v.02,02)= ZLci (.7.02.52) (27b)

Now the probability weighted estimator of L, (]3 v,02,0 ) is given by:

I:Ci (B,y,ae Nea ): —0.5( » —1)|0g(0'e )—O.5|0g(mi0'u + o0, )

= S w (yy — (xiB 2y

Te 1= (27¢)

]

"o )(m,a# +o?

Thus the PML estimator is defined as the solution of following estimating equation:
I:C(Byae,a ) ZW I—c.( y,of,af,) (27d)

This function can be maximized using S- PLUS software.
6. Prediction of Cluster-Specific Effects

In order to predict the cluster-specific effects for cluster in the sample and cluster not
in the sample, we first derive the conditional sample distribution of z; | Yiy,..., Yim; »

and their moments and complement-sample moments, when the sampling design for
the first stage and second stage is informative. Special cases are those in which
sampling at one or neither of the stages is informative. Under this sampling
mechanism, we showed that the sample and population distributions for the first and
second stages are different-see Sections 3.1 and 3.2. The conditional sample model
and conditional sample moments of ;| Yi;,..., Vin; depend on the sample model of

10



the cluster-specific effects (first stage) and the sample model of ;| z; (second

stage). So that we have different combinations to consider, depending on the
modelling of the conditional expectation assumed for the first order inclusion
probabilities of selecting clusters in the first stage and selecting units in the second
stage from the selected clusters in the first stage. As an illustration let us consider the
following two cases:

Case 1: Model (9a) E, (7; | ;,2;)=exp(b; +b'z;) and

Model (158) E, [z ; | vy ;.24 )=expld,y; +d'x; )

In this case we can show that, the conditional sample pdf of ; | yjis given by:

m;
2 2 2 2
6;1 (yij _X;jﬂ_dlo-e )+Ge (Z;}/—i_blo-y)
j=1

p (28)

2
+0,

2
o.0
2
u

ﬂilyi~N 2 2 ’
s miO'#+O'e miO'

Thus after some calculations we can show that:

af,i(yi,- _X;jﬂ_dlf’ez)+5e2(zf7+b15§)

j=1

E . )=
Juily) " (29)
= Ep(ﬂi‘yi)+(1_¢i)blo-;21 '¢idlo'e2
where
m mio>
Ep(m!yi)=¢i[yi —mi_lzxijﬁ]+(1'¢i Nziy)and ¢; =———*—-.
j=1 miO'# +O'e
This conditional expectation can be written as:
ars (44) .
E i )= S | . _E A E . 30
s (i 1yi) Vars(yi)(y' s (Vi) + Es (1) (30)
o 1 i ' ! 2 2 4 2
where Eq(v;) = P Z(Xijﬁ+zi7+blo'y +di0¢ ) ' Es(ﬂi):ZiVerlo'y and
i j=1
m. 2 2
var,(5,)= Mou
m

m;
Also (29) can be interpreted as a weighted average of y; —m; ! inj p- dlag and

j=1
2 2
Zi7/+b_l_o-y with Welghtsﬁ and 1-ﬁ respectively.
midﬂ-i-de midﬂ-i-de

Prediction of cluster-specific effects for clusters in the sample:

Simple calculations show that for known variances(af,,af), and known

informativeness parameters (bl,dl), the best linear unbiased predictor (BLUP) of the
cluster-specific effects for clusters in the sample is given by:

11



,[li,s|ys :¢i(yi _mi_ljZ:l:X;jBJ"'(l'@ XZ;);)+(1'¢i )blo';zz '¢idlo-e2' (31a)

=l[1i,u‘YS +(1'¢i XZ;?)+(1'¢i )bla;zz _¢id1692
where
midﬁ ~ _ _1mi ' A A
¢ =————and ﬂi,u|ys: gi| Vi —mi 2 x; B +(1- ¢ Nzi7) is the BLUP under
mo, +0, =1

noninformative probability sampling for both stages.

In practice, the variances(afl,aez) and the informativeness parameters(b,,d,) are

unknown. A suggested procedure is to replace the variances (af, ,aez) in the BLUP by
standard variance components estimates like ML estimators, PML estimators or
ANOVA estimators and to replace the informativeness parameters(b;,d,) by their
estimates-see Section 5. The resulting predictors are known as the Empirical BLUP
(EBLUP). Thus the EBLUP of cluster-specific effects for clusters in the sample is
given by:
- - 194, 2 AT Y 2 AT a2
fislys =di| Vi —mit Y xi 8 +(1'¢ixzi7)+(1'¢i))15,u -gidie  (31b)
j=1

mé

mé2+68

where ¢fi =

Prediction of cluster-specific effects for clusters not in the sample:

Let us now find the complement-sample conditional mean  of
Hily1s Yo Where jgs.
Sverchkov and Pfeffermann (2001) proved the following formula:

ey, )= Eulboribobe) (32)

Ep((l_”j]xj)

Using this formula, and if Ep(ﬂ'j |,uj,zj): ge(zj)exp(b0 +b1/,zj) then we can show
that:
c ( | ) , ge(zj)olaf, exp(bO +b1(z’j;/)+ O.Sbfcyj)
c\WilYyn¥n )= 257 — , 2 2
1- g, (z, Jexplb, + b, (z/7)+ 05070 )
_E (y»|z | )_ ge(zj })16;2, exp(b0 +b1(z’j7/)+ 0.5b12crfl)
P - ge(zj)exp(bo +b1(z'j7/)+ 0.5bfaf,)
Thus the EBLUP of cluster-specific effects for clusters not in the sample is given by:
iy =25 (je(zj)olc}j exp(b0 +bl(z'j7?)+ 0.5b12c}§)
e 1—§e(zj)exp(bo+b1(z’j;7)+0.5b126f,)
Remark 1: Notice that BLUP of cluster-specific effects for clusters in the sample,
given in (31a), depends on the informative parameters b, and d, for both stages, while
the BLUP of cluster-specific effects for clusters not in the sample given by (33a)

(33a)

(33b)
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depends only on the informative parameters b, andb, of the first stage. This is
intuitively reasonable because for non-sample clusters we do not do any
subsampling.
Case 2: Model (9b) E,, (7, | 4;,2;)=a, +a,u; +9,(z;) and

Model (15a) Ep(njh |V ,xij,,ui)= K, (xij )exp(dO +d1yij)
Similar to Case 1, using the results of Sections 4 and using Bayes theorem, we can
show that, the conditional sample pdf of .; | (yil,..., Yim, )is given by:

(Ao +Zél /‘iJ
fo(e 1y)= A ' h, (2 1y,) (34)
(Ao + 2y E, (1 |Yi)J
where A, = 8, +9,(z) ,A =1-A, and

a0+gl(zi)+a1(Z;Y)
Gftzl(yij _X;jﬂ_ d16e2)+6e2(z;7) olo?

ho(z |y, )is N| —2= — 35

S y))is - m———— (35)

Notice that h,is the conditional sample distribution of .; giveny; when the sampling

design for the first stage is noninformative, while for the second stage is informative
with exponential sampling. Also (34) can be written as a mixture of conditional
sample distribution,hs(,ui |yi).and weighted conditional sample

distributions, hy' (1 | y;), as follows:

£ 1v.)= A, G )+ A0 s 1) @)
where
A= Ale A =1-A; and h!(ﬂilyi):%_
(AO + 2y Ehs (/ui |y|)j o (s 1y,

These conditional sample pdf can be used for predicting z; .
Now we can show that the mean of the conditional sample distribution is:

Alvarhs (/Ui ly; ) (37)

(ZE?)(AO e Iyi)J

zy

Es(/ui |Yi): Ehs(/ui |Yi)+

where
O-EZ(yij - X;jﬁ - d10'e2)+ O'ez(z;;/)
E, (/ui |Yi): = 2 (38a)

2
mo, +0o,

= Ep(/ui |yi)_dlo-ez¢i

and

13



oot
—— " =Var, (i ]y;) (38b)
midﬂ +Ue

Notice that Eg(x; |yi)=En, («; |yi) if and only if A =0, and this happens when

Varhs (/Ui |Yi):

a, =0, that is, when the sampling design for the first stage is noninformative. Also
Ep, («i |yi)=Ep(x |yi) if and only ifd, =0, that is the sampling design for the
second stage is noninformative.

Under this sample conditional pdf, simple calculations show the EBLUP of cluster-
specific effects for clusters in the sample is given by:

; = 'aivar Hi Y
fis |Ys =By (i 1))+ ;il( ) (39a)
(Z:?)(AO t—a Ehs (/Ui |Yi)J
z;y
where
“ 6-/21 : (yu _X:J ~d A2)+O'2(Zi’7;) . &263
EhS (lul |yi): = ~2 ~2 ,Varhs (/UI |y|):ﬁ
mio_ﬂ to. midﬂ +0¢g

Ao = % + §i(z) and Ay =1- Ay

8o + G (z;)+ & (ziv)
Prediction of cluster-specific effects for clusters not in the sample:

Let us now find the conditional complement-sample mean  of
Hil Yy Yar Vi :(yil,...,yimi)where jées. Similar to Case 1, but
here: Ep(rrj | ,uj,zj): (ao +0, (zj)+ Gy ) In this case we can show that the EBLUP
of cluster-specific effects for clusters not in the sample is given by:

~ A2

a,0,

1-(@ +8/(z;)+a,(;7)
Remark 1: Notice that EBLUP of cluster-specific effects for clusters in the sample,
given in (39a), depends on the informative parameters a,, a, and d, for both stages,
while the EBLUP of cluster-specific effects for clusters not in the sample given by
(40) depends only on the informative parameters a, and a, of the first stage. This is
intuitively reasonable because for non-sample clusters we do not do any
subsampling.

(40)

/&j,c|YS = lef -

7. Prediction of finite population total under two-stage informative cluster
sampling

Assume two-stage population model (1). Let

T =ii Yi =Zn:i Yi +Zn: %‘4 Yi * i%‘ Yi (41)

i=1 j=1 i=1 j=1 i=1 j=m;+1 i=n+1j=1

14



define the population total that we want to predict using the sample data from two
stages and possibly values of auxiliary variables that may contains some or all the
design variables.

Notice that the population total is decomposed into three components: the first
component represents the total for observed units, the second component represents
the total for unobserved units in sample clusters, and the third component represent
the total for non-sample clusters.

For the prediction process we have the following available information:

A. The information that comes from the first stage denoted

by:0, ={(z;,1,)ieU,x, ies}.

B. Information  that comes from the second stage  denoted
by:0, = {(yij,ﬂw),i €S, je Si,(xij,lj“),i eU,j eUi}.

Thus the available information, from both stages, for the prediction process
isO, =0, UO0,.

Let T :f(OS) define the predictor of T based onO,. The mean square error (MSE)
of T given O, with respect to the population pdf is defined by:

MSE, (T )= EP((f—T)Z |on _ E,[E,,((TA—T)Z |#ij|os]
:EP(('I:—EP(T|OS)+ EP(T|OS)—T)2|OSJ (42)

—(f-E,(T10,)f +Var,(T |0,)
Using routine differentiation, we can show that (42) is minimized when
T=E(E,(T|x)0,), where E,()andE, () denote the expectations under the

population distributions for the first and second stages, respectively. Now we
consider the following:

E, [(Eu (T |/ui ))l Os]: E, I:Eu [(ggy” +§ _:A;iﬂyij +ij§l§ yijj | ﬂi} | Os] (43)

Thus the general predictor for the finite population total under two-stage informative
cluster sampling is:

~ n m n M; ~ ~ N M ~
T= ZZ Yij +z Z EIS(EICI (yij |/Ui)| Os)+ ZZEIC(EII (yij |/Ui)) (44)
i=l j=1 i=1l j=m;+1 i=n+lj=1
So that, the prediction problem reduces to the prediction of, E,S(E,CI (yij | 4, )| Os) and
EC(E, (v, | ), where E:(),Ef(). ES().and E; () denote the expectations under

the sample, sample-complement distributions for the first and second stages,
respectively.

The predictor given in (43) represents the prediction of the finite population total for
two-stage sampling when the sampling mechanisms for the two stages are
informative. We now consider the following particular cases:

1. First stage is noninformative and second stage is noninformative: here the predictor
is given by:

15



n m

fnn = ZZ Yij +Zn: % él (éu (yij | 1 )l Os)+ iilﬁ él (éu (yij | 1 )) (45a)

i=l j=1 i=1l j=m;+1 =N+

Using (29) withb, =d, =0, we can show that:

~ n i n Mi N ~ m; A~ A ~
Ton :ZZ Yii "‘z Z {X;jﬁ+¢i(yi _mi_lzX;jﬁj+(1_¢iXZ;7)J+
i=1 j=1 i=1 j=m;+1 j=1
(45b)
N M ~ R
>3 (i34 i7)
i=n+1j=1
Notice that infnn, non-sample units in sample cluster i are predicted

by,x”.[3+¢3i[37i - mi‘lzi:x;jﬁ’]+(1—¢3i Xz;?) while all units in non-sample clusters are
j=1

predicted by, x; B+z(y.

This predictor was obtained and studied by Scott and Smith (1969) using Bayesian
approach and by Royal (1976) using non-Bayesian approach. So here a new
justification of the Royal predictor, and also a generalization from variance
components model to linear mixed models, and in the following a generalization to
two-stage informative cluster sampling.

2. First stage is informative and second stage is noninformative: in this case our
predictor is:

=Sy o3 S BBy, 14)10,)+ SIS EE vy 1) (46)

i=1 j=1 i=1 j=m;+1 i=n+lj=1
This predictor is fully determined by the modelling of the first order inclusion
probabilities ;. Consider the following conditional expectations:
Exponential model: E, (7; | 1,2;) = exp(b, + b,z +2}b)
Under this model of first order inclusion probabilities we can show that:

R n m n M A mo R -

RS RTEO WD) {xi,—ﬁw{m —mrl_zlxajﬁ}(l—qﬁi )(zay“+b1&f,)J+

-

i=1j=1  i=lj=m;+l

- - . - (47)
N M - b 62 exp(b +zib+b z“+0.5b26-2)
' A M 0 i WZiy 1 Cu
2 2| Xfry - T oo 0en2A2
i=n+1 j=1 1—exp(b0 +zib +byzjy +0.5b; 0'/,)
Linear model: E, (7; | 1;,2;) = (a, +a,4; +z}a)
Here we can show that:
~ n mj n Mj LA Z\\?&I’, ,u-’O
TiL=ZZyij +2, Xijﬂ+E|(ﬂi|os)+ 1 ~(AI S) +
i=1j=1 i=1 j=mj+1 A~ AlEI(,ui]OS)
ziy| Ag+———
Ziy
N Mj Weld
> S i (@8)
i=n+1 j=1 1- (8 + 8,27 +2{a)
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where

Yy , siol _so
E, (ﬂi’os):¢i{Yi _miléxijﬁj+(1_¢i )(Zﬂ/)' Var, (/ui|os): miffi ‘:O'ez = m,
A = a, +7;a nd A = al(zﬂ/) _

a, +zja+a,(zy) a, +zja+a,(zy)

Other cases: first stage noninformative and second stage informative and first and
second stages informative can be treated in the same way but in these cases predictors
have no closed forms so Taylor approximation or Monte Carlo simulation are
adopted.

8. Prediction of finite population totals for sampled and non-sampled clusters

In Section 8 we obtained predictors of the finite population total. But in some
applications like small area estimation we are interested in predicting the small area
totals for sampled and non-sampled small areas.

Assume two-stage population model (5.1). Let

Ti = ZI Yii (49)

define the population total for cluster i € U that we want to predict using the sample
data from two stages and possibly values of auxiliary variables that may contains
some or all the design variables.

Prediction of cluster totals for clusters in the sample:

In order to do that, let us decompose T, into two components: the first component

represents the total for observed units, and the second component represents the total
for unobserved units in sample clusters that is:

M; m; M;
Tizzyijzzyij+ Zyijzzyij+zyij (50)
j=1 j=1 j=m;+1 jes; jes;

Let T,(0,) denotes the predictor of T, based on O,. So as in Section 8, the mean
square error with respect to the population model of ﬂ IS minimised when

T, =E,(E, (T; | )| O;). Thus we have:

EI[(EII(Ti |/ui))|os]: %yU + % lEI(EII(yij |/ui)|os) (51)

j=mj+
Thus the general predictor for the finite cluster total under two-stage informative
cluster sampling is:

- mj Mi . /A
Ti =E, [(EII(Ti |ﬂi))|os]: _Zl)’ij + Z 1E|S(E|C| (yij |/ui)|os) (52)
= j=mij+
So that, the prediction problem reduces to the prediction of,
E,S(E,CI (yij | 14 )| OS) under a specified sampling design.
1. First stage is noninformative and second stage is noninformative: here the predictor
is given by:
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j=m;+1

-Sve 3 [siaedn-m S -alen)| e
j=1
Notice that ann(les), non-sample units in sample cluster i are predicted by,

Xijﬁ"‘(fg{yi _mi_l_zixgjﬁ’\]'i'(l_éi XZ:?)
j=1

2. First stage is informative and second stage is noninformative: in this case if the
conditional expectation of the first order inclusion probabilities is exponential, then

Trlies)= zy.J+ > (;J-Em?{vi—mflgx;jﬁJ+(1—¢.X.7+bla )j(54)
j=mij + j-1

Now if the condltlonal expectation of the first order inclusion probabilities is linear,
then we have:

J ( ) Zyu + Z X;j:é""él(/ui‘os)"' A aE(Ai(S) ) (55)
jomi 41 ZE?{& L AE 2 0, J
Ziy

where

El(/ui’OS) (y| m; zxuﬁj 1 ¢)(Z }/) Var,(ﬂ |O) Gejai :¢i0e2

2
mo, +o, M

and
A Botza  and A - a,(zly)

a, +z;a+al(zi;/) a, +z;a+a1(z;7/)'
Similar procedures for other cases.

Prediction of cluster totals for clusters not in the sample

Here the decomposition of the finite cluster total into observed and unobserved units
does not help, because for i¢ swe do not observe any unit. Thus similar to the
previous section, the predictor of the non-sample finite cluster total is:

-l:i(i & 5): E, [(Eu (Ti | 1 ))]: lel éf(é“ (yij | 1 )) (56)

Let us study this predictor under different sampling design for the first stage, and
since we do not observe any unit in the second stage therefore no sampling design is
considered of the second stage.

1. First stage noninformative: Under this sampling design our predictor is given by:

- H Mi ’ P [
Tnn(l eS)ZZ(Xijly'i_Ziy) (57)
j=1
2. First stage informative:
Under the exponential model we have the following predictor:

A Mi . b&z exp(50+z'5+51( '7?)+05512A2)
Toligs + - I 58
|n( ) JZ_: Z7 leﬁ 1— exp(b +Zb+b1(Z 7/)+05b2’\2) ( )

Under the linear model, the predictor is given by:

18



Ta(ies) M§i X B a9,
: = A x'.. 8-
! j=t R 1_(50 +Z;5+§1(Z;7;))

(59)
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