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Summary. The aims of this article are twofold: first estimate the parameters of the superpopulation 
model for two-stage cluster sampling from a finite population when the sampling design for the both 
stages is informative. Second predict the finite population total, cluster-specific effects for clusters in 
the sample and clusters not in the sample, and predict the cluster totals for clusters in the sample and 
clusters not in the sample. To achieve this we derive the sample and complement-sample distributions 
and the moments of the first stage and second stage measurements. Also we derive the conditional 
sample and conditional sample-complement distributions and the moments of the cluster-specific 
effects given the cluster measurements. 
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1. Introduction 
 
Two-stage cluster sampling is frequently used in health and social sciences. Classical 
theory underlying the use of this sampling mechanism involves simple random 
sampling for each of the two stages or unequal probabilities of selection at one or 
more of the two stages- see Cochran (1977), Sarndal, Swensson, and Wretman (1997), 
and Lohr (1999) for discussion and examples. In such cases the relationship between 
the response variable and the covariates in the sample is the same as modeled for the 
population. When the selection probabilities are related to the values of the response 
variable even after conditioning on concomitant variables included in the population 
model, we obtain what is known as informative sampling, which results in selection 
bias, consequently the relationship between the response variable and the covariates in 
the sample differs from the population model, so that standard estimates of the 
population model parameters severely biased, leading possibly to false inference-for 
more discussion, see Pfeffermann, Krieger and Rinott (1998).  
In a recent master thesis Amin (2000) consider the estimation of the variance 
components model parameters when the sampling design for the first stage is 
informative with exponential sampling while for the second stage is noninformative.  
In (2001) Pfeffermann, Moura and Silva estimate the parameters of the two-level 
model under informative sampling design for both stages using the Markov Chain 
Monte Carlo algorithm. The authors noted that the sample models used for this 
experiment are correct. In practice the relationship between the sample selection 
probabilities and the model dependent variables need to be identified from the sample.  
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Neither of the above studies considers maximum likelihood estimation method, 
prediction of finite population total, cluster-specific effects for sample and non-
sample clusters, and prediction of cluster totals for sample and non-sample clusters 
when the sampling design for any of the stages is informative.  
The aims of the present study are twofold: estimation and prediction when the 
sampling design for the both stages is informative. Special cases are those in which 
sampling at one or neither of the stages is informative. In order to do that we extract 
the sample distributions of the first and second stages using the population model and 
first order inclusion probabilities, extract the sample marginal and sample posterior 
distributions, and then find sample and complement-sample moments of these 
distributions. We can thereby use the resulting sample, complement-sample and their 
moments for estimation of the population model parameters and prediction of finite 
population total, cluster-specific effects for sample and non-sample clusters, and 
prediction of cluster totals for sample and non-sample clusters when the sampling 
design for both stages is informative.  
In Section 2 we define the population model for two-stage cluster sampling. Section3 
defines the sampling designs. In section 4 we extract the sample pdf’s for the first and 
second stages. In section 5 we derive the marginal and posterior sample distributions 
and their moments. In Section 6 we study the variance components model for two-
stage informative cluster sampling. Section 7 is devoted to the estimation of 
population parameter and prediction of sample and non-sample cluster-specific 
effects. In Section 8 we predict the finite population total under-two stage informative 
cluster sampling. In Section 9 we predict the sample and non-sample cluster totals, 
and Section 10 for simulation study (later). 
 
2. Population model and sampling design for two-stage cluster sampling 
 
Consider a finite population U of N  primary sampling units (psu’s) or clusters 
labelled },...,1{ ,,...,1 NUN = where N  is a known number. Let NiM i ,...,1 , =  be the 
number of secondary sampling units (ssu’s) in the ith  psu. Let 

iij MjNiy ,...,1 ,,...,1 , == be the value of the response variable y  for the ssu j  

belonging to the psu .i Assume that cluster-specific auxiliary data ( )′= iqii zz ,...,1z  and 

element-specific auxiliary data ( )′= ijpijji xx ,...,1x  are available for all clusters and 
population elements, respectively.  
Consider the following two-stage superpopulation model that includes random-
intercept effects:     
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22 and

( )  ,...,1
′

= qγγγ are vectors of unknown fixed regression parameters. We assume that 
all the  '  and ' sse iij η are independent. Here the cluster-specific effects iµ  are 
modeled as linear functions of known auxiliary variables iz . The first-stage cluster-
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specific effects iη accounts for the variation of the random cluster-specific effects not 
explained by the repressor variables iz . 
 
For this model we have: 

( ) ( ) ( )
( )   ,0,

 ,,   ,   , 222

riyyCov
kjyyCovyVaryE

rkijp

ikijpeijpijiijp

≠=

≠=+=′+′=
µµ

σσσβγ xz
         (2) 

The purpose of this study is to estimate the population parameters 22  and , , ,
µ

σσβγ e , 
predicting the cluster-specific effects for clusters in the sample and clusters not in the 
sample, the prediction of the finite population total, and the prediction of  cluster 
totals for sample and non-sample clusters. 
Particular cases of model (1) are model, which depend on the data available, and are 
widely used in small area estimation, for example: 
1. Random effects model or variance components model: for this model we assume 
that no auxiliary variables are available for both stages: 
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                                             (3) 

In matrix notation this model can be expressed as: 
( ) ( ) ( )

iii MeMiipiipipiMi CovEE IJVuuu0uu1y 22, , σσµ
µ

+===′=+=          (4) 

where ( )′= 1,...,1
iM1 is a vector of length iM  and consequently ( )iMpi i

N V1y ,~ µ . 

This random effects model is proposed by Scott and Smith (1969) as a 
superpopulation model for two-stage cluster sampling from a finite population. 
2. Nested error unit level regression model: in this case element-specific auxiliary data 
are available for all population elements: 
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This model employed originally by Battese et al. (1988). 
3. Area level random effects model: in this model cluster-specific auxiliary data are 
available for all clusters: 

( )

( ) tindependen are  and ,,0~,

,0~,
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4. The model used by Fay and Herriot (1979) is defined by:  
( )

( ) tindependen are  and ,,0~,

,0~,~
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z
             (7) 

where iµ
~  is the direct sample estimate of iµ . 

We assume two-stage cluster sampling design with informative sampling for the first 
and second stages. Special cases are those in which sampling at only one or neither of 
the stages is informative. 
Let iiji MjNidd ,...,1 ,,...,1 , , ==  be design variables (considered as random), used 
for the sample selection but not included in the working model under consideration.At 
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the first stage a sample s of size n  psu’s (clusters) is selected with inclusion 
probabilities:  

( ) ( )iiiiiii dhdsi ,,,,|Pr 1 zz µµπ =∈=  for some function 1h  and all psu’s Ui∈ .  
At the second stage a sample, is , of size im  ssu’s is selected from the thi'  selected 
psu with conditional inclusion probabilities:  

( ) ( )
.spsu' all and

sssu' allfor function somefor ,,Pr 22i|

U i
U j ,  h d,yh,ds,y|isj iijijijijijijij

∈

∈=∈∈= xxπ

 

In fact these first order selection probabilities are a function of observed auxiliary 
variables which are related to iµ and ijy . For simplicity we consider the first order 
inclusion probabilities to depend on the unobserved iµ and ijy  instead of the actual 
variables for selection, which are related to them. 
In the following we use only the conditional expectations of the inclusion 
probabilities ( ).,| i iipE zµπ and ( )ijijijp yE ,|| xπ . 
Comment 1: If i|jπ =1, then we are in single-stage cluster sampling.  
  
3. Sample model and sample moments for two-stage informative cluster 
sampling 
 
In this section we will derive the sample distributions and their moments for the 
cluster-specific effects iµ (first stage), for i| µijy (second stage), and derive their 
moments.  
 
3.1 Sample distribution and sample moments for the cluster-specific effects 
 
Following Pfeffermann, Krieger and Rinott (1998), the first stage sample distribution 
of the cluster-specific effects iµ  is:     

( )
( )

( )
( )iip

iip
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f z
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µπ
µ =                                       (8) 

( ) ( ) ( )           .|,|| where i iiipiipiip dfEE µµµππ ∫= zzz  
Note that the sample distribution is different from the population distribution unless 

( ) ( ) UiEE iipiip ∈=  allfor  |,| i zz πµπ . In such cases the sampling design is 
ignorable. Also the sample distribution of iµ  is fully determined by the conditional 
expectation ( )iipE z,| iµπ  and the superpopulation model distribution ( )ipf z|iµ . 
Suppose the sample inclusion probabilities have an approximate expectation: 
A. Exponential model:                    ( ) ( ) ( )iieiip bbgE µµπ 10i exp,| += zz                 (9a)              
B. Linear model:                             ( ) ( )iliiip gaaE zz ++= µµπ 10i ,|                      (9b) 
where eg and lg are some functions of iz  and { } ,,, 1010 bbaa are unknown parameters 
to be estimated from the sample data (see the section on estimation) . 
Under the exponential model, we can show that, the sample pdf of iµ  is given by: 

      ( ) ( ) ( )( )




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
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
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Hence the sample and population models belong to the normal distribution, but the 
mean of the sample model shifts by the constant 2

1 µ
σb , so that 

( ) ( ) 22
1  and 

µµ
σµσγµ =′|+′=′| iisiiis VarbE zzz                             (11) 

Note that the sample pdf of iµ  is independent of 0b  and. If 01 =b , then the sample 
and population distributions are the same, in such cases the sampling mechanism for 
the second stage is ignorable. 
Under the linear model, the sample pdf of iµ  is given by: 

( ) ( ) ( )ii
w

piipiis fAfAf zzz || | 10 µµµ +==                                  (12)             

where ( )
( ) 01
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z
z

z
|
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| ii
ii

µ

µµ
µ = .                               

That is, ( )i| zisf µ  is a mixture of normal and weighted normal distribution of iµ  
given iz  in the population.       
Note that the sample and population pdf’s are different unless 01 =a , in which case 
the sampling mechanism for the first stage is noninformative. Also 
if ( ) 0 and 0, ,0 01 ==≠ aga il z , then ( ) ( )ii || zz i

w
pis ff µµ = , the weighted 

distribution of iµ .  
Now, we can show thatthe mean and the variance under the sample pdf of iµ  in (12) 
are:  
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                             (13a) 
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Here the mean and the variance are changing. Thus according to (10) and (12) the 
change in the population parameters depends on the model of the conditional 
expectation: ( )iipE z,| iµπ . Also note that, according to (13bb), 

( ) ( )iipiis VarVar zz ′|≤′| µµ  with equality if and if 01 =a , that is when the sampling 
design is noninformative. 
 
3.2 Sample distribution and sample moments of second stage measurements 
 
Similarly to Section 3.1, the conditional sample pdf of igiven  µijy and ijx  is given 
by:  

                     ( )
( )
( )

( )ijiijp
ijiijp

ijijiijp
ijiijs yf

E
yE

yf x
x

x
x ,|

,|
,,|

,|
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|
µ

µπ

µπ
µ =                      (14) 

Consider the following model assumption for the conditional expectation of the 
sample selection probabilities. 
A. Exponential model:           ( ) ( ) ( )ijijeiijijijp yddkyE 10| exp,,| += xx µπ               (15a)     
B. Linear model:          ( ) ( )ijlijiijijijp kyccyE xx ++= 10| ,,| µπ                               (15b) 
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where el kk  and are some functions of iij µ and x and { }1010 ,,, ccdd  are unknown 
parameters to be estimated from the sample data (see the section on estimation). 
 
Then under the exponential model, the conditional sample pdf of igiven  µijy  is given 
by:  

( ) ( ) ( )( ) 







+′+−−=

− 22
12

5.02

2
1exp2,| eijiij

e
eijiijs dyyf σβµ

σ
πσµ xx               (16) 

Also, ( ) ( ) 22
1   and  eiiseijiiijs VardyE σµσβµµ =′|+′+=| zx .                                     

Similarly under the linear model we have:  
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The mean and the variance under this sample model are: 
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4. Sample marginal distributions of cluster measurements 
 
In this section we are interested in deriving the sample marginal distribution of 

( )
iimii yy ,...,1=y  and the conditional sample distribution of ii y|µ , and their 

moments and complement-sample moments, when the sampling design for the first 
stage and second stage is informative. Special cases are those in which sampling at 
one or neither of the stages is informative. Under this sampling mechanism, we 
showed that the sample and population distributions for the first and second stages are 
different-see Section 3. The sample model and sample moments of ijy  for the two-
stage depend on the sample model of the cluster-specific effects (first stage) and the 
sample model of i| µijy  (second stage). So that we have different combinations to 
consider, depending on the modelling of the conditional expectation assumed for the 
first order inclusion probabilities of selecting clusters in the first stage and selecting 
units in the second stage from the selected clusters in the first stage. As an illustration 
let us consider the following two cases:  
Case1: Model (9a) ( ) ( ) ( )iieiip bbgE µµπ 10i exp,| += zz  and 
           Model (15a) ( ) ( ) ( )ijijeiijijp yddkyE 10ij exp,,| +=


xx µπ  

Using the results of Sections 3.1and 3.2 and method of conditioning, we can show 
that: 
The mean of ijy  under the sample model is: 

  ( )      2
1

2
1 µ

σσβγ bdyE eijiijs ++′+′= xz                   (18a)       
The variance of ijy  under the sample model is: 

( ) 22
µ

σσ += eijs yVar                                       (18b)      
The covariance between ikij yy  and under the sample model is: 
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( )  , 2
µ

σ=ikijs yyCov                                             (18c)                      
Note that in this case the mean changes, while the variance and covariance do not 
change. 
For this case let us find the marginal sample pdf of ( )

iimi yy ,...,1  .Using (10), (16) and 
since ( ) niyy iimi i

,...,1 ,|,...,1 =µ are asymptotically independent, then we can show 
that: 
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Notice that the sample and population marginal distributions belong to the same 
family, but the mean under the sample model is shifts by the constant 2

1
2

1 edb σσ µ + , 
this constant represent the effect of informative sampling for both stages. 
This sample pdf's can be used for estimating the population parameters 

22  and ,, eσσβγ
µ

. 
Case 2: Model (9b) ( ) ( )iliiip gaaE zz ++= µµπ 10i ,|  and 
           Model (15a)  ( ) ( ) ( )ijijeiijijp yddkyE 10ij exp,,| +=


xx µπ  

Similar to Case 1, we can show that: 
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and  
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Also we can show that: 
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where 
( )

( ) ( ) 01
10

0
0 1 , AA

aga
gaA

iil

il
−=

′++

+
=

γzz
z and ( )ish y  is the marginal distribution of iy  

when the sampling design for the first stage is noninformative and for the second 
stage is informative, which is the marginal distribution given in (19) with 01 =b .  
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5. Estimation of population parameters 
 
We are interested in estimating the vector of unknown population 
parameters, ( )22 ,,, ep σσθ

µ
βγ= , that characterize the population models given in (1). 

We base the inference on the sample models derived in Section 4. We consider two 
methods of estimation, the two-step and pseudo maximum likelihood estimation 
methods. 
 
5.1 Two-setp method: 
 
Case 1: Model (9a) ( ) ( )iiiip bE zbz ′+= µµπ 1i exp,|  and 
           Model (15a) ( ) ( )ijijiijijijp ydyE xdx ′+=

 1exp,,| µπ  
where 

( ) ( ) ( ) ( )′=
′

=
′

=
′

= ijpijijpiqiiq xxdddzzbbb ,...,,1 and ,...,,,,...,,1,,...,, 120120 xdzb .  
Under this approximation, some of the parameters of the sample model are not 
identifiable, so that we estimate the parameters of the population model based on the 
sample models in two steps.  
Step-one: the coefficients b and 1b  and d and 1d  are estimated via the relationship 
between the moments under the sample and population models- see Pfeffermann and 
Sverchkov (1999). Thus we have: 

( ) ( )( )iiiis bwE zb′+−= µµ 1exp|                                      (22a) 
and  

( ) ( )( )ijijiijs ydwE xd′+−= 1| exp| µ                                    (22b) 

where 1−
= iiw π  and 1

||
−

= ijijw π . 
The problem in estimating b and 1b  is that, the iµ are unobserved, one possible 

solution is to estimate iµ by ∑
=

−

=

im

j
ijii ymy

1

1  and use measurement error model. 

Another possibility for estimating b and 1b is to replace iµ  in (22a) by iy .                  

Thus the OLS estimators of ( )′′−−= bB ,1b is given by: 

( ) ( ) WZZZbB ′′=
′
′−−=

−1
1

~,~~ b ,  ( )′= iii y zZ ,                                  (23) 

where ( )′= iii y zZ , . 

Similarly, using (22b), the OLS estimators of ( )′′−= dD ,1d is given by: 

( ) ( ) ( )∑∑
==

−

′′=
′

−−=

n

i
ii

n

i
iid

11

1
1

~,~~ WXXXdD                                    (24) 

where ( ) ( ) niww imiiiii i
,...,1,log,...,log and, 1 ==′′=


WxyX . 

Step-two: having estimating ( )11,db , we substitute these estimates in (19) and then the 
next step is to estimate the parameters, ( )22 ,,,

µ
σσθ eγβ= , of the superpopulation 

model given in (4.1) via the ML estimation method. 
According to (19), the contribution to the log-likelihood function for the ith  sampled 
cluster can be written as: 
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Thus the full log-likelihood function to be maximized is given by: 

 ( ) ( )∑
=

=

n

i
ersers iLL

1

2222 ,,,,,,
µµ

σσσσ γβγβ                                   (25b) 

This function can be maximized using S-PLUS statistical software. 
Case 2: Model (9b) ( ) ( )iiiiip aE zaz ′+= µµπ 1,|  and 
           Model (15a)  ( ) ( )ijijiijijijp ydyE xdx ′+=

 1,,| µπ , where 

( ) ( ) ( ) ( )′=
′

=
′

=
′

= ijpijijpiqiiq xxdddzzaaa ,...,,1 and ,...,,,,...,,1,,...,, 120120 xdza . 
We estimate the population model parameters in the same way as Case 1.  
Step-one: Estimation of ( ) ( )da , and , 11 da . 
The estimates of ( )d, 1d  is given by (24), while the estimates of ( ) ,1 aa are similar to 

(23) but ni
ww imi

i

i

,...,1,1,...,1

1

=













=



W . 

Step-two: having estimating the informativeness parameters under the two stages we 
substitute these estimates in (21) and then the next step is to estimate the parameters, 

( )22 ,,,
µ

σσθ eγβ= , of the superpopulation model given in (1) via the ML estimation 
method. 
According to (21), the contribution to the log-likelihood function for the ith  sampled 
cluster can be written as:   

( ) ( ) ( ) ( )

( )( )

( )( )
( )( )

( ) ( )

          

~

log(                        

ˆ
2

                          

~
2

1                          

log5.0log15.0,,,

22
1

22
1

2

1
0

2

1

2
1222

2

1

22
12

22222



















+

′+−′−

′
++









+′+′−

+
+

+′+′−−

+−−−=

∑

∑

∑

=

=

=

ei

m

j
ieeijij

i

m

j
eiijij

eie

m

j
eiijij

e

eieiers

m

dy
AA

dy
m

dy

mmL

i

i

i
i

σσ

σσσ

σ

σσσ

σ

σ

σ

σσσσσ

µ

µ

µ

µ

µµ

γzβx

γz

γzβx

γzβx

γβ

       (26a) 

Thus the full log-likelihood function to be maximized is given by: 

( ) ( )∑
=

=

n

i
ersers iLL

1

2222 ,,,,,,
µµ

σσσσ γβγβ                                   (26b) 

This function can be maximized using S-PLUS software. 
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Pseudo maximum likelihood estimation 
 
Now we extend the idea of PML to two-stage cluster sampling. According to Section 
2 , the first stage inclusion probabilities are denoted by Nii ,...,1, =π and the second 
stage inclusion probabilities are denoted by iij Mj ,...,1, =


π . So that the joint 

inclusion probabilities are given by iijiij MjNi ,...,1;,...,1, === πππ . Therefore the 

joint sampling weights are iijiiiij MjNiwwwww
ijij

,...,1;,...,1,,, 11
=====

−


−


ππ . 

Under the conditions of model (1), the contribution of the ith  cluster to the census 
log-likelihood function is given by: 

( ) ( ) ( ) ( )

( )( )

( )( )
( )( )

2

1
222

2

1

2
2

22222

2
                          

2
1                          

log5.0log15.0,,,











′+′−

+
+

′+′−−

+−−−=

∑

∑

=

=

i

i

i

M

j
iijij

eie

M

j
iijij

e

eieieC

y
M

y

MML

γzβx

γzβx

γβ

σσσ

σ

σ

σσσσσ

µ

µ

µµ

            (27a) 

Thus the full census log-likelihood function to be maximized is given by: 

( ) ( )∑
=

=

N

i
eCeC i

LL
1

2222 ,,,,,,
µµ

σσσσ γβγβ                                   (27b) 

Now the probability weighted estimator of ( )22 ,,,
µ

σσ eCiL γβ  is given by: 

( ) ( ) ( ) ( )

( )( )

( )( )
( )( )

          
2

                          

2
1                          

log5.0log15.0,,,ˆ

2

1
222

2

1

2
2

22222











′+′−

+
+

′+′−−

+−−−=

∑

∑

=

=





i

ij

i

ij

i

m

j
iijij

eie

m

j
iijij

e

eieieC

yw
m

yw

mmL

γzβx

γzβx

γβ

σσσ

σ

σ

σσσσσ

µ

µ

µµ

                 (27c) 

Thus the PML estimator is defined as the solution of following estimating equation: 

( ) ( )∑
=

=

n

i
eCieC iLwL

1

2222 ,,,ˆ,,,ˆ
µµ

σσσσ γβγβ                     (27d) 

This function can be maximized using S-PLUS software. 
 
6. Prediction of Cluster-Specific Effects 
 
In order to predict the cluster-specific effects for cluster in the sample and cluster not 
in the sample, we first derive the conditional sample distribution of iimii yy ,...,| 1µ , 
and their moments and complement-sample moments, when the sampling design for 
the first stage and second stage is informative. Special cases are those in which 
sampling at one or neither of the stages is informative. Under this sampling 
mechanism, we showed that the sample and population distributions for the first and 
second stages are different-see Sections 3.1 and 3.2. The conditional sample model 
and conditional sample moments of iimii yy ,...,| 1µ  depend on the sample model of 
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the cluster-specific effects (first stage) and the sample model of iijy µ|  (second 
stage). So that we have different combinations to consider, depending on the 
modelling of the conditional expectation assumed for the first order inclusion 
probabilities of selecting clusters in the first stage and selecting units in the second 
stage from the selected clusters in the first stage. As an illustration let us consider the 
following two cases:  
Case 1: Model (9a) ( ) ( )iiiip bE zbz ′+= µµπ 1i exp,|  and 
           Model (15a) ( ) ( )ijijiijijijp ydyE xdx ′+=

 1exp,,| µπ  

In this case we can show that, the conditional sample pdf of ii y|µ is given by: 

( ) ( )
   ,~| 22

22

22
1

2
1

22
1

2





















++

+′+−′−∑
=

ei

e

ei

m

j
ieeijij

sii mm

bdy
N

i

σσ

σσ

σσ

σγσσβσ

µ
µ

µ

µ

µµ
zx

y        (28)          

Thus after some calculations we can show that: 

( )

( ) ( )

( ) ( )              --1                 

|

2
1

2
1

22
1

2
1

22
1

2

eiiiip

ei

m

j
ieeijij

iis

dbE

m

bdy
E

i

σφσφµ

σσ

σγσσβσ

µ

µ

µ

µµ

+=

+

+′+−′−

=
∑
=

y

zx
y               (29)             

              
where 

( ) ( )( )                           .  and -1
22

2

1

1

ei

i
iii

m

j
ijiiiiip

m

m
myE

i

σσ

σ
φγφβφµ

µ

µ

+
=′+














′−= ∑

=

− zxy  

This conditional expectation can be written as: 

( )
( )
( )

( )( ) ( )                   | isisi
is

is
iis EyEy

yVar
Var

E µ
µ

µ +−=y               (30) 

where ( ) ( )  1

1

2
1

2
1∑

=

++′+′=

im

j
eiij

i
is db

m
yE σσγβ µzx , ( ) 2

1 µσγµ bE iis +′= z  and 

( )
i

ei
is m

m
yVar

22
σσ

µ
+

= .  

Also (29) can be interpreted as a weighted average of ∑
=

−

−′−

im

j
eijii dmy

1

2
1

1
σβx and 

2
1 µσγ bi +′z  with weights















++ 22

2

22

2
 -1 and 

ei

i

ei

i

m

m

m

m

σσ

σ

σσ

σ

µ

µ

µ

µ respectively. 

 
Prediction of cluster-specific effects for clusters in the sample: 
 
Simple calculations show that for known variances ( )22 , eσσ

µ
, and known 

informativeness parameters ( )11,db , the best linear unbiased predictor (BLUP) of the 
cluster-specific effects for clusters in the sample is given by: 
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( )( ) ( )

( )( ) ( )                          --1ˆ-1 ˆ           

,--1ˆ-1ˆˆ

2
1

2
1,

2
1

2
1

1

1
,

eiiiisui

eiiii

m

j
ijiiissi

db

dbmy
i

σφσφγφµ

σφσφγφβφµ

µ

µ

+′+=

+′+







′−= ∑

=

−

zy

zxy               (31a) 

where 

22

2

 
ei

i
i m

m
σσ

σ
φ

µ

µ

+

= and sui y,µ̂ = ( )( )γφβφ ˆ-1ˆ
1

1
ii

m

j
ijiii

i
my zx ′+








′− ∑

=

−  is the BLUP under 

noninformative probability sampling for both stages. 
In practice, the variances ( )22 , eσσ

µ
 and the informativeness parameters ( )11,db  are 

unknown. A suggested procedure is to replace the variances ( )22 , eσσ
µ

 in the BLUP by 
standard variance components estimates like ML estimators, PML estimators or 
ANOVA estimators and to replace the informativeness parameters ( )11,db  by their 
estimates-see Section 5. The resulting predictors are known as the Empirical BLUP 
(EBLUP). Thus the EBLUP of cluster-specific effects for clusters in the sample is 
given by: 

( )( ) ( ) 2
1

2
1

1

1
, ˆ~ˆ-~ˆ-1ˆˆ-1ˆˆˆ eiiii

m

j
ijiiissi dbmy

i
σφσφγφβφµ µ+′+














′−= ∑

=

− zxy      (31b) 

where  22

2

ˆˆ

ˆ
 ˆ

ei

i
i m

m
σσ

σ
φ

µ

µ

+

= .        

 
Prediction of cluster-specific effects for clusters not in the sample: 
 
Let us now find the complement-sample conditional mean of 

nj yy ,...,| 1µ where sj ∉ .  
Sverchkov and Pfeffermann (2001) proved the following formula:  
 

( ) ( )( )
( )( )jjp

jjjp
jjc xE

xyE
xyE

−

−
=

π

π

1

1
                                             (32) 

 
Using this formula, and if ( ) ( ) ( )jjejjp bbgE µµπ 10j exp,| += zz  then we can show 
that: 

( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )( )
( ) ( )( )22

110

22
110

2
1

22
110

22
110

2
1

1

5.0exp1
5.0exp

                          

5.0exp1
5.0exp

,...,

µ

µµ

µ

µµ

σγ

σγσ
µ

σγ

σγσ
γµ

bbbg
bbbbg

E

bbbg
bbbbg

E

jje

jje
jjp

jje

jje
jnjc

+′+−

+′+
−=

+′+−

+′+
−′=

zz
zz

z

zz
zz

zyy

           (33a)          

Thus the EBLUP of cluster-specific effects for clusters not in the sample is given by: 

           
( ) ( )( )

( ) ( )( )
        

ˆ5.0ˆ~exp~1

ˆ~5.0ˆ~~expˆ~~
ˆˆ

22
110

22
110

2
1

,
µ

µµ

σγ

σγσ
γµ

bbbg
bbbbg

jje

jje
jscj

+′+−

+′+
−′=

zz
zz

zy             (33b)  

Remark 1: Notice that BLUP of cluster-specific effects for clusters in the sample, 
given in (31a), depends on the informative parameters 11  and db for both stages, while 
the BLUP of cluster-specific effects for clusters not in the sample given by (33a) 
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depends only on the informative parameters   and 10 bb of the first stage. This is 
intuitively reasonable because for non-sample clusters we do not do any 
subsampling.  
Case 2: Model (9b) ( ) ( )iliiip gaaE zz ++= µµπ 10i ,|  and 
              Model (15a) ( ) ( ) ( )ijijeiijijp yddkyE 10ij exp,,| +=


xx µπ  

Similar to Case 1, using the results of Sections 4 and using Bayes theorem, we can 
show that, the conditional sample pdf of ( )

iimii yy ,...,| 1µ is given by:  

         ( )

( )

( )iis

iih
i

i
i

iis h
E

A
A

A
A

f y
y

z

z
y |

|
|

1
0

1
0

µ

µ
γ

µ
γ

µ










′
+










′
+

=                         (34)                    

where
( )

( ) ( ) 01
10

0
0 1 , AA

aga
gaA

iil

il
−=

′++

+
=

γzz
z

 and 

( )
( ) ( )

  , is | 22

22

22
1

22
1

2





















++

′+−′−∑
=

ei

e

ei

m

j
ieeijij

iis mm

dy
Nh

i

σσ

σσ

σσ

γσσβσ

µ
µ

µ

µ

µ
zx

y               (35) 

Notice that sh is the conditional sample distribution of ii ygiven  µ when the sampling 
design for the first stage is noninformative, while for the second stage is informative 
with exponential sampling.  Also (34) can be written as a mixture of conditional 
sample distribution, ( )iish y|µ ,and weighted conditional sample 

distributions, ( )ii
w
sh y|µ , as follows: 

   
( ) ( ) ( )         || | 10 ii

w
sisiis hAhAf yy µµµ ′+′=                          (36) 

where 

( )
 1,

|
01

1
0

0
0 AA

EAA

AA

iih
i

s

′−=′










′
+

=′

y
z

µ
γ

and ( )
( )
( )iih

iisi
ii

w
s

s
E

hh
y
yy

|
|

| 
µ

µµ
µ = .  

These conditional sample pdf can be used for predicting iµ . 
Now we can show that the mean of the conditional sample distribution is: 
 

( ) ( )
( )

( ) ( )

 
|

|
|| 

1
0

1










′
+′

+=

iih
i

i

iih
iihiis

s

s

s

EAA

VarA
EE

y
z

z

y
yy

µ
γ

γ

µ
µµ                             (37) 

where 

( )

( ) ( )

( ) ieiip

ei

m

j
ieeijij

iih

dE

m

dy
E

i

s

φσµ

σσ

γσσβσ

µ
µ

µ

2
1

22
1

22
1

2

|                                

|

−=

+

′+−′−

=

∑
=

y

zx
y               (38a)               

and 
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( ) ( )iip
ei

e
iih Var

m
Var

s
yy || 22

22

µ
σσ

σσ
µ

µ

µ

=

+

=                        (38b) 

Notice that ( ) ( )iihiis s
EE yy |=| µµ  if and only if 01 =A , and this happens when 

01 =a , that is, when the sampling design for the first stage is noninformative. Also 
( ) ( )iipiih EE

s
yy |=| µµ  if and only if 01 =d , that is the sampling design for the 

second stage is noninformative. 
Under this sample conditional pdf, simple calculations show the EBLUP of cluster-
specific effects for clusters in the sample is given by: 
 

( )
( )

( ) ( )

 
|ˆ

ˆ

~
~ˆ

|ˆ~
|ˆ|ˆ 

1
0

1
,












′
+′

+=

iih
i

i

iih
iihssi

s

s

s

EAA

arVA
E

y
z

z

y
yy

µ
γ

γ

µ
µµ                    (39a) 

where 

( )
( ) ( )

22
1

22
1

2

ˆˆ

ˆˆˆ~ˆˆ
|ˆ

ei

m

j
ieeijij

iih m

dy
E

i

s σσ

γσσβσ

µ
µ

µ

+

′+−′−

=

∑
=

zx
y , ( )

22

22

ˆˆ

ˆˆ
|ˆ

ei

e
iih

m
arV

s
σσ

σσ

µ

µ

µ

+

=y

( )
( ) ( ) 01

10

0
0

~1~ and 
ˆ~~~

~~~ AA
aga

ga
A

iil

il
−=

′++

+
=

γzz
z

.                                                              

 
Prediction of cluster-specific effects for clusters not in the sample: 
 
Let us now find the conditional complement-sample mean of 

( )′=
iimiinj yy ,...,   ;,...,| 11 yyyµ where sj ∉ . Similar to Case 1, but 

here: ( ) ( )( )jjljjp agaE µµπ 10j ,| ++= zz . In this case we can show that the EBLUP 
of cluster-specific effects for clusters not in the sample is given by:       

                      
( ) ( )( )γ

σ
γµ

µ

ˆ~~~1
ˆ~

ˆˆ
10

2
1

,
jjl

jscj aga
a

zz
zy

′++−
−′=                               (40)  

Remark 1: Notice that EBLUP of cluster-specific effects for clusters in the sample, 
given in (39a), depends on the informative parameters 110  and  , daa for both stages, 
while the EBLUP of cluster-specific effects for clusters not in the sample given by 
(40) depends only on the informative parameters   and 10 aa of the first stage. This is 
intuitively reasonable because for non-sample clusters we do not do any 
subsampling.  
 
7. Prediction of finite population total under two-stage informative cluster 
sampling 
 
 Assume two-stage population model (1). Let 

∑ ∑ ∑∑∑∑∑∑
= += += == == =

++==

n

i

M

mj

N

ni

M

j
ijij

n

i

m

j
ij

N

i

M

j
ij

i

i

iii

yyyyT
1 1 1 11 11 1

                      (41) 
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define the population total that we want to predict using the sample data from two 
stages and possibly values of auxiliary variables that may contains some or all the 
design variables. 
Notice that the population total is decomposed into three components: the first 
component represents the total for observed units, the second component represents 
the total for unobserved units in sample clusters, and the third component represent 
the total for non-sample clusters. 
For the prediction process we have the following available information:  
A. The information that comes from the first stage denoted 
by: ( ){ }siUiIO iii ∈∈= ,,,,1 πz . 
B. Information that comes from the second stage denoted 
by: ( ) ( ){ }iijijiijij UjUiIsjsiyO ∈∈∈∈= ,,,,,,, ||2 xπ . 
 
Thus the available information, from both stages, for the prediction process 
is 21 OOOs s= . 

Let ( )sOTT ˆˆ
=  define the predictor of T  based on sO . The mean square error (MSE) 

of sOT given  ˆ with respect to the population pdf is defined by:  

( ) ( ) ( )

( ) ( )( )

( )( ) ( )spsP

ssPsPP

siIIIsPP

OTVarOTET

OTOTEOTETE

OTTEEOTTETMSE

||ˆ                

|||ˆ                

||ˆ|ˆˆ

2

2

22

+−=






 −+−=





 





 −=





 −= µ

                    (42) 

Using routine differentiation, we can show that (42) is minimized when 
( )( )sO||ˆ

iIII TEET µ= , where ( ) ( )  and ⋅⋅ III EE denote the expectations under the 
population distributions for the first and second stages, respectively.  Now we 
consider the following: 

( )( )[ ]




































++= ∑ ∑ ∑∑∑∑

= += += == =

s
1 1 1 11 1

s O||O|| i

n

i

M

mj

N

ni

M

j
ijij

n

i

m

j
ijIIIiIII

i

i

ii

yyyEETEE µµ  (43)                  

Thus the general predictor for the finite population total under two-stage informative 
cluster sampling is: 

( )( ) ( )( )∑ ∑ ∑∑∑∑
= += += == =

++=

n

i

M

mj

N

ni

M

j
iijII

c
Iiij

c
II

s
I

n

i

m

j
ij

i

i

ii

yEEyEEyT
1 1 1 1

s
1 1

|ˆˆO||ˆˆˆ µµ         (44) 

So that, the prediction problem reduces to the prediction of, ( )( ) O|| siµij
c
II

s
I yEE and  

( )( ) | iµijII
c
I yEE , where ( ) ( ) ( ) ( )   and , , , ⋅⋅⋅⋅

s
II

c
II

c
I

s
I EEEE denote the expectations under 

the sample, sample-complement distributions for the first and second stages, 
respectively. 
 
The predictor given in (43) represents the prediction of the finite population total for 
two-stage sampling when the sampling mechanisms for the two stages are 
informative. We now consider the following particular cases: 
1. First stage is noninformative and second stage is noninformative: here the predictor 
is given by: 
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   ( )( ) ( )( )∑ ∑ ∑∑∑∑
= += += == =

++=

n

i

M

mj

N

ni

M

j
iijIIIiijIII

n

i

m

j
ijnn

i

i

ii

yEEyEEyT
1 1 1 1

s
1 1

|ˆˆO||ˆˆˆ µµ          (45a)                               

Using (29) with 011 == db , we can show that:  

          
( )( )

( )∑∑

∑ ∑ ∑∑∑

+= =

= += =

−

= =

′+′

+













′−+










′−+′+=

N

ni

M

j
iij

n

i

M

mj
ii

m

j
ijiiiij

n

i

m

j
ijnn

i

i

i

ii

myyT

1 1

1 1 1

1

1 1

ˆˆ         

ˆˆ1ˆˆˆ ˆ

γβ

γφβφβ

zx

zxx
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Notice that in nnT̂ , non-sample units in sample cluster i  are predicted 

by, ( )( )γφβφβ ˆˆ1ˆˆˆ
1
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−  while all units in non-sample clusters are 

predicted by, γβ ˆˆ
iij zx ′+ .   

This predictor was obtained and studied by Scott and Smith (1969) using Bayesian 
approach and by Royal (1976) using non-Bayesian approach. So here a new 
justification of the Royal predictor, and also a generalization from variance 
components model to linear mixed models, and in the following a generalization to 
two-stage informative cluster sampling. 
2. First stage is informative and second stage is noninformative: in this case our 
predictor is: 
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This predictor is fully determined by the modelling of the first order inclusion 
probabilities iπ . Consider the following conditional expectations: 
Exponential model: ( ) ( )bz iiiiiI bbzE ′++= µµπ 10exp,|                                     
Under this model of first order inclusion probabilities we can show that: 
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Linear model: ( ) ( ) ,| 10 az iiiiiI aazE ′++= µµπ                                                  
Here we can show that:  
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where 

( )siI OE µ = ( )( )γφβφ ii
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Other cases: first stage noninformative and second stage informative and  first and 
second stages informative can be treated in the same way but in these cases predictors 
have no closed forms so Taylor approximation or Monte Carlo simulation are 
adopted.  
 
8. Prediction of finite population totals for sampled and non-sampled clusters 
 
In Section 8 we obtained predictors of the finite population total. But in some 
applications like small area estimation we are interested in predicting the small area 
totals for sampled and non-sampled small areas. 
Assume two-stage population model (5.1). Let 

                                   ∑
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j
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define the population total for cluster Ui∈  that we want to predict using the sample 
data from two stages and possibly values of auxiliary variables that may contains 
some or all the design variables. 
 
Prediction of cluster totals for clusters in the sample: 
 
In order to do that, let us decompose iT  into two components: the first component 
represents the total for observed units, and the second component represents the total 
for unobserved units in sample clusters that is:  
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Let ( )si OT̂  denotes the predictor of iT  based on sO . So as in Section 8, the mean 

square error with respect to the population model of iT̂  is minimised when 

( )( )siiIIIi OTEET ||ˆ µ= . Thus we have: 
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Thus the general predictor for the finite cluster total under two-stage informative 
cluster sampling is: 
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 So that, the prediction problem reduces to the prediction of, 
( )( ) || i sij

c
II

s
I OyEE µ under a specified sampling design. 

1. First stage is noninformative and second stage is noninformative: here the predictor 
is given by: 
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Notice that in ( )siTnn ∈
ˆ , non-sample units in sample cluster i  are predicted by, 

( )( )γφβφβ ˆˆ1ˆˆˆ
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2. First stage is informative and second stage is noninformative: in this case if the 
conditional expectation of the first order inclusion probabilities is exponential, then  
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Now if the conditional expectation of the first order inclusion probabilities is linear, 
then we have: 
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where 

( )siI OE µ = ( )( )γφβφ ii
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Similar procedures for other cases. 
 
Prediction of cluster totals for clusters not in the sample 
 
Here the decomposition of the finite cluster total into observed and unobserved units 
does not help, because for si∉ we do not observe any unit. Thus similar to the 
previous section, the predictor of the non-sample finite cluster total is: 
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Let us study this predictor under different sampling design for the first stage, and 
since we do not observe any unit in the second stage therefore no sampling design is 
considered of the second stage. 
1. First stage noninformative: Under this sampling design our predictor is given by: 
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2. First stage informative:  
Under the exponential model we have the following predictor: 
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Under the linear model, the predictor is given by: 
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