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1 RANDOMIZATION
INFERENCE—INTRODUCTION

Randomization—allocation of study treat-
ments to subjects in a random fashion—is
a fundamental pillar of the modern con-
trolled clinical trial. Randomization bolsters
the internal validity of a trial in three major
respects:

1. It prevents possible investigator bias
(which may otherwise exist even unin-
tentionally) in the allocation of subjects
to treatments.

2. It generates study groups that, on aver-
age, are balanced with respect to both
known and unknown factors.

3. It provides a probability structure
whereby the study results may be eval-
uated statistically without exogenous
statistical modeling assumptions.

The purpose of this article is to elaborate
on the last of these three points.

To begin, we note that many, proba-
bly most, statistical analyses in empiri-
cal research, especially in nonexperimental
studies, involve some statistical modeling
assumptions. For example, to take a sim-
ple case, the classical two-sample t-test for
comparing two groups makes the following
assumptions:

1. Each observation in each group is equal
to the sum of a fixed group-specific pop-
ulation mean value plus a mean zero
random error term.

2. All random error terms, both within
and between groups, are statistically
independent.

3. The random error terms have a normal
distribution.
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4. Within each group, the error terms all
have the same variance. (On occasion
it is also assumed that the variance is
the same in the two groups, although
this assumption can be avoided.)

Obviously, the more complex the statis-
tical analysis, the more assumptions are
involved. In a thorough statistical analysis,
efforts are made to check the validity of the
assumptions and to examine the sensitivity
of the results to departures from the assump-
tions. In routine analyses, however, these
checks are often skipped. Moreover, and more
critically, the checks are not foolproof, and
even after the checks, some unquantifiable
element of uncertainty remains.

In an experiment in which treatments
have been assigned to subjects by random-
ization, however, it is possible to apply a
statistical method for testing treatment effect
that does not require any statistical assump-
tions about the data beyond those inherently
satisfied due to the randomization itself. This
method is called a permutation test (or ran-
domization test). The ability thus afforded
to compute a P-value for testing treatment
effect without relying on uncertain statisti-
cal assumptions is a major strength of the
randomized trial.

2 PERMUTATION TESTS—HOW THEY
WORK

The classic exposition of the randomized
experiment in general, and the permuta-
tion test in particular, was given by R. A.
Fisher (1). Rosenberger and Lachin (2) give
an up-to-date comprehensive exposition. This
article will describe how a permutation test
works in the simple context of comparing
two groups, a treatment group and a control
group, but the idea applies more generally to
multi-arm trials. The classical formulation of
the permutation test is as a test of the null
hypothesis that the treatment has no effect
whatsoever on the subject’s response; that is,
each subject would exhibit exactly the same
response whether given the study treatment
or the control regimen. This null hypothesis
is referred to by some authors as the ‘‘strong’’
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null hypothesis. Some remarks will be made
later in this article on an alternative form
of null hypothesis and the performance of
permutation tests in that context. For now,
however, we will stick with the null hypoth-
esis that each subject would exhibit exactly
the same response irrespective of the regimen
given.

We will illustrate how the test works in
the context of an example presented in Refer-
ence 3. We first must review the concept of a
P-value in general. Given a statistic aimed
at comparing the two groups—the differ-
ence between the means, for example—the
P-value is defined as the probability that the
statistic would be equal to or more extreme
than the value actually observed if the null
hypothesis were in fact true. A small P-value
means that the observed value of the statistic
is so extreme that it is unlikely to have arisen
if the null hypothesis were true, and is thus
an (indirect) indicator that the null hypoth-
esis is false. It is conventional to say that
there is ‘‘statistically significant’’ evidence
of a treatment difference if the two-sided
P-value (i.e., considering extremes in both
directions) is less than 0.05.

With this background, we may now turn
to the example. Suppose eight subjects were
randomly assigned to either treatment or
control on an equal basis (four per group).
By ‘‘randomly assigned,’’ we mean that the
researchers chose the actual allocation at
random from among the 70 possible ways
of dividing eight subjects into two groups of
four subjects each, with each possible alloca-
tion having an equal 1/70 chance of being
employed. Suppose further that the final
results with respect to some response vari-
able were follows:

Table 1. Illustrative Experimental Data

Subject Group Response

A Control 18
B Control 13
C Control 3
D Control 17
E Treatment 9
F Treatment 16
G Treatment 17
H Treatment 17

The groups are to be compared by examin-
ing the difference in sample means between
the treatment and control groups. The
observed sample means are 14.75 for treat-
ment and 12.75 for control, so that the
observed mean difference is 2.00. We wish
to evaluate the statistical significance of this
result. We argue as follows. As noted, there
are 70 possible ways of dividing the eight
subjects into two groups of four subjects each.
Under the null hypothesis that the treatment
has no effect whatsoever on the response,
the responses of all eight subjects would be
the same no matter what the allocation was.
The only thing that differs from allocation to
allocation is who received which regimen.

By way of analogy, imagine a deck of eight
cards, one corresponding to each subject, with
the subject’s eventual end of study response
written on the face of the card. At the begin-
ning, all cards are face down, corresponding
to the fact that at the beginning we do not
know the response values. We shuffle the
cards well, and then split the deck into two
packs of four cards each, one pack correspond-
ing to treatment and the other to control. We
wait some period of time, during which the
numbers on all cards remain the same, cor-
responding to the fact that the treatment has
no effect. Finally, we are allowed to turn the
cards face up and see the response values. We
can then can compute the mean difference
between the groups. We wish to determine
the probability of obtaining a mean difference
as extreme or more so than that observed
through mere ‘‘luck of the draw’’ in splitting
the deck into the two packs.

Given the final observed response
values—the numbers on each of the eight
cards—we may enumerate easily all the pos-
sible realizations that could have eventuated
in this experiment with the given subjects
under the null hypothesis. The list of real-
izations consists simply of the list of the 70
possible ways of dividing the eight subjects
into the two groups, with the response value
associated with each subject being in every
case the value observed in fact in the actual
experiment—because, again, under the null
hypothesis, the treatment does not affect the
response at all. Each of these possible real-
izations has an equal chance of 1/70 of having
arisen, because the allocation was chosen at
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Table 2. List of Possible Realizations of the Experiment Under the Null Hypothesis

Subjects On Observations On Observations On Mean Response Mean
Case Treatment Treatment Control Treatment Control Diff

1 EFGH 9, 16, 17, 17 18, 13, 3, 17 14.75 12.75 2.00
2 DEFG 17, 9, 16, 17 18, 13, 3, 17 14.75 12.75 2.00
3 DFGH 17, 16, 17, 17 18, 13, 3, 16 16.75 10.75 6.00
.
.
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.
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.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

70 ABCD 18, 13, 3, 17 9, 16, 17, 17 12.75 14.75 −2.00

Table 3. Null Hypothesis Distribution of the Mean Difference

Mean Diff −7 −6.5 −6 −5 −4.5 −4
Probability 1/70 3/70 1/70 3/70 4/70 3/70

Mean Diff −3 −2.5 −2 −1 −0.5 0
Probability 3/70 4/70 3/70 3/70 4/70 6/70

Mean Diff 0.5 1 2 2.5 3 4
Probability 4/70 3/70 3/70 4/70 3/70 3/70

Mean Diff 4.5 5 6 6.5 7
Probability 4/70 3/70 1/70 3/70 1/70

random. For each possible realization (case)
listed, we may compute the mean difference
between treatment and control that arises
under that realization. We obtain a list of the
form shown in Table 2.

Keeping in mind that each of these cases
has a 1/70 chance of having occurred, we may
obtain from this list the null hypothesis prob-
ability distribution—called the ‘‘permutation
distribution’’—for the mean difference. Table
3 displays this null distribution: the table
provides a list of the various possible val-
ues of the mean difference, along with the
probability of obtaining each value.

The mean difference observed in the actual
experiment was 2.00. We can compute the
probability of observing a difference of this
magnitude or greater under the null hypoth-
esis, by pure chance, from the probability
distribution in Table 3. For a two-sided test
we work with the absolute value of the dif-
ference. The probability is found to be 50/70,
which equals 0.71. Thus, the permutation
test two-sided P-value for testing the null
hypothesis in this experiment is P = 0.71.

Note that in the calculation above, no
assumptions whatsoever were made about
the behavior of the response value. The cal-
culation depended only on the following basic
facts.

1. The treatment allocation followed was
chosen at random, on an equally likely
basis, from the 70 possible allocations
of eight subjects to two groups of four
subjects each.

2. The null hypothesis says that the treat-
ment does not affect the response val-
ues in any way.

3. In light of Fact 2, we can—after
the fact, given the observed data—
construct a list of all possible real-
izations of the experiment with the
given subjects under the null hypoth-
esis, with each realization having the
same 1/70 chance of having eventuated.

4. Given the list of realizations, we can,
for each possible value of the observed
mean difference, calculate the proba-
bility of observing that value with the
given subjects under the null hypothe-
sis.

In the case of 2 × 2 table analysis with a
dichotomous response variable, the permuta-
tion test is known as the Fisher exact test
and is available in many standard statisti-
cal routines such as SAS PROC FREQ (SAS
Institute Inc., Cary, NC).

It is possible to adapt the permutation test
method to more complex statistical models.



4 PERMUTATION TESTS IN CLINICAL TRIALS

See References 2 and 4 for a discussion on
how this adaptation is carried out.

In an experiment with a extremely small
number of subjects, such as in the above
example, the range of possible P-values that
can arise is limited, and so the capacity to
test the null hypothesis is limited. But with
a moderate-to-large sample size, the range of
possible P-values is typically large.

Similarly, in an experiment with a very
small number of subjects, it is possible to
list all possible outcomes and compute the
P-value in a direct fashion. But as the sam-
ple size increases, the calculation quickly
becomes formidable. For example, in an
experiment with 5 subjects per group, there
are 252 possible allocations; with 6 subjects
per group, there are 924 possible allocations;
with 10 subjects per group, there are 184,756
possible allocations; and with 20 subjects per
group, there are about 138 billion possible
allocations. With modern computing power
and special algorithms, however, it is possi-
ble to perform permutation test calculations
easily for experiments with 20–30 subjects
or more per group. A well-known software
package for such calculations is the StatXact
package (Cytel Inc., Cambridge, MA). The
calculations can also be performed in SAS
PROC NPAR1WAY (SAS Institute Inc., Cary,
NC), using the SCORES=DATA and EXACT
options. At a certain point, however, the cal-
culations become unmanageable, and a large
sample approximation is employed. Section
(3) discusses this approximation.

3 NORMAL APPROXIMATION TO
PERMUTATION TESTS

Generally speaking, for a sample size suf-
ficiently large, the permutation distribution
of a statistic for testing the null hypothe-
sis can be well approximated by a normal
distribution. This result is a generalized ver-
sion of the familiar classical central limit
theorem of probability, which says that the
distribution of the average of a large number
of independent observations tends to a nor-
mal bell-curve distribution. The setup here is
somewhat different from that of the classical
theorem, but the nature of the final result is
essentially the same. The normal limit result

for permutation tests was proven mathemat-
ically around 40–50 years ago (5–8).

This limit theorem provides justification
for the application of classical statistical
tests, such as the two-sample t-test described
in Section 1, to randomized experiments
without relying on the classical assumptions
underlying the tests. The classical test simply
serves as an approximation—with theoreti-
cal backing—to the exact permutation test.
Essentially, when the sample size is large,
the two tests are approximately equivalent
(9). Often, as in the two-sample t-test, the
t-distribution is used as an approximating
distribution rather than the normal distri-
bution, which improves the approximation
to some extent by matching the first two
moments (10–12).

In practice, for a continuous response vari-
able such as blood pressure, with 30–40
subjects per group the normal-theory test is
quite adequate unless the distribution of the
response variable is very peculiar. For 2 × 2
table analysis for a dichotomous response
variable, the standard recommendation is to
use the normal-theory chi-square test (the
continuity correction usually improves the
approximation) if the expected cell size, given
the table margins, is five or more in all four
cells, and otherwise to fall back to the Fisher
exact test.

Thus, in general, it is common practice to
use the normal-theory tests unless the study
involves a small sample size or small number
of events. Again, the normal-theory tests are
justified as approximations to a permutation
test. When the sample size or number of
events is small, the proper course is to use an
exact permutation test.

4 ANALYZE AS YOU RANDOMIZE

For a permutation-based analysis (either an
exact permutation test or a corresponding
normal approximation) to be valid without
added assumptions, as described above, the
form of analysis must match the random-
ization scheme. This fact is known as the
‘‘analyze as you randomize’’ principle. Thus,
if a matched-pairs design has been used, with
randomization carried out within each pair,
then the pairing must be accounted for in the
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analysis. Similarly, if stratified randomiza-
tion has been carried out, then the analysis
must account for the stratification. Failure to
include matching or stratification factors in
the analysis can lead to inaccurate P-values.
The level of error tends to be small in tri-
als with a continuous endpoint and a large
sample size, but it can be more substantial
in very small trials or dichotomous endpoint
trials with a low event rate.

Another case calling for emphasis on the
need to ‘‘analyze as you randomize’’ is the
cluster randomization design (or group ran-
domization design). Here the unit of ran-
domization is some aggregate of individuals.
This design is common in community-based
and school-based trials, which often involve
aggregate-level interventions. In cluster ran-
domization trials, the unit of analysis must
be the cluster rather than the individual.
This is necessary to preserve the validity of
the permutation-based analysis, as indicated
above, and also to take proper account of
between-cluster variation and thereby avoid
serious type I error inflation (13, 14).

To provide statistically rigorous results, a
cluster randomization trial must include an
adequate number of clusters. Many cluster
randomization studies involve a very small
number of clusters per arm, such as two or
four. In such a study, it is almost impossi-
ble for permutation-based analysis to yield
a statistically significant result. A normal-
theory procedure such as the t-test has no
justification in this case. With a trial of
this small size, the normality assumption
cannot be effectively checked, and the cen-
tral limit theorem argument presented in
the preceding section to justify the use of
a normal-theory analysis as an approxima-
tion to a permutation-based analysis does
not apply. A trial of such a small size may
be useful as a pilot study, but it cannot yield
statistically definitive conclusions. By con-
trast, studies such as CATCH (15, 16) (96
schools) and COMMIT (17, 18) (11 matched
pairs of communities) included enough units
for meaningful statistical analysis. In COM-
MIT, because of the relatively small number
of units, an exact permutation test was used
rather than a normal-theory test. In Refer-
ences 16 and 19, methods are described that
allow individual-level explanatory variables

to be accounted for while maintaining the
cluster as the primary unit of analysis. An
article by Donner and Klar in this encyclope-
dia provides further discussion on statistical
analysis of group-randomization trials.

5 INTERPRETATION OF PERMUTATION
ANALYSIS RESULTS

When a permutation-based analysis yields
a statistically significant result, this is evi-
dence against the null hypothesis that the
treatment has no effect whatsoever on any
subject’s response. If the result is in the pos-
itive direction, the inference to be made is
that there are at least some individuals for
whom the treatment regimen is better than
the control regimen. It cannot necessarily be
inferred that treatment is better than control
for all individuals or even that treatment is
better than control on an ‘‘average’’ basis; the
only truly definitive statement that can be
made is that some individuals do better with
treatment than with control. This conclusion
is admittedly one of limited scope, but it is
nonetheless meaningful and is achieved with
a high degree of certainty, in that it does not
rely on any outside assumptions.

Note, however, that along with the conclu-
sion that the treatment is better than control
for some people comes the proviso that treat-
ment might be the same or worse than control
for other people, so that ‘‘on average’’ there
might be no difference between the two regi-
mens.

Usually clinical trial investigators like to
go further and try to infer that treatment
is better than control on some ‘‘average’’
basis. It must first be understood how this
objective can be formulated from a formal
statistical standpoint. In a typical clinical
trial, patients are recruited on a volunteer,
‘‘catch-as-catch can’’ basis, and the set of
patients entering the trial does not represent
a formal random statistical sample from any
particular defined population. Accordingly,
we must suppose the trial patients behave
like a random sample from some hypothet-
ical superpopulation. This supposition has
some plausibility in some circumstances, but
it must be realized that it is essentially a
statistical modeling assumption.
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Given that we are willing to make the
above-described supposition, in trials with
large sample sizes, the classical normal-
theory procedures generally will provide valid
tests of the ‘‘population-level’’ null hypothesis
that the superpopulation mean response is
the same for treatment as for control, against
the alternative that it is better on treat-
ment (or worse, or different). There remains
the question of what happens in trials with
small sample sizes, and in particular how
permutation tests perform in relation to the
‘‘population-level’’ null hypothesis. This ques-
tion has been investigated in References
(20–22). Overall, these investigations have
shown that permutation tests generally can
have inflated type I error relative to the
‘‘population-level’’ null hypothesis, but if the
number of subjects (or units, in a cluster
randomized trial) is the same in the two
experimental arms, then the type I error level
is typically close to the desired level.

If the ‘‘population-level’’ null hypothesis
has been rejected with results in the positive
direction, the inference to be made is that
treatment is superior to control on an ‘‘aver-
age’’ basis for individuals similar to those
who participated in the trial. Generalization
of the results to other types of individuals
requires careful judgment.

6 SUMMARY

The permutation test is a method for ana-
lyzing randomized trials through which the
null hypothesis that the treatment has no
effect whatsoever on the response may be
assessed statistically without statistical dis-
tribution assumptions beyond those arising
from the randomization process itself. With
a sufficiently large sample size, the permuta-
tion test can be approximated satisfactorily
by a classical normal-theory test. This result
provides clear justification for application of
normal-theory tests in trials with moderate-
to-large sample sizes. In very small trials, it
is preferable to perform an exact permutation
test.
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