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Observational Study

Observational Studies Defined

In the ideal, the effects caused by treatments are
investigated in experiments that randomly assign sub-
jects to treatment or control, thereby ensuring that
comparable groups are compared under competing
treatments [1, 5, 15, 23]. In such an experiment,
comparable groups prior to treatment ensure that dif-
ferences in outcomes after treatment reflect effects of
the treatment (see Clinical Trials and Intervention
Studies). Random assignment uses chance to form
comparable groups; it does not use measured charac-
teristics describing the subjects before treatment. As
a consequence, random assignment tends to make the
groups comparable both in terms of measured char-
acteristics and characteristics that were not or could
not be measured. It is the unmeasured characteristics
that present the largest difficulties when randomiza-
tion is not used. More precisely, random assignment
ensures that the only differences between treated and
control groups prior to treatment are due to chance –
the flip of a coin in assigning one subject to treat-
ment, another to control – so if a common statistical
test rejects the hypothesis that the difference is due
to chance, then a treatment effect is demonstrated
[18, 22].

Experiments with human subjects are often ethical
and feasible when (a) all of the competing treat-
ments under study are either harmless or intended
and expected to benefit the recipients, (b) the best
treatment is not known, and in light of this, subjects
consent to be randomized, and (c) the investigator
can control the assignment and delivery of treatments.
Experiments cannot ethically be used to study treat-
ments that are harmful or unwanted, and experiments
are not practical when subjects refuse to cede control
of treatment assignment to the experimenter. When
experiments are not ethical or not feasible, the effects
of treatments are examined in an observational study.
Cochran [12] defined an observational study as an
empiric comparison of treated and control groups in
which:

the objective is to elucidate cause-and-effect rela-
tionships [. . . in which it] is not feasible to use
controlled experimentation, in the sense of being able
to impose the procedures or treatments whose effects

it is desired to discover, or to assign subjects at ran-
dom to different procedures.

When subjects are not assigned to treatment or con-
trol at random, when subjects select their own treat-
ments or their environments inflict treatments upon
them, differing outcomes may reflect these initial
differences rather than effects of the treatments [12,
59]. Pretreatment differences or selection biases are
of two kinds: those that have been accurately mea-
sured, called overt biases, and those that have not
be measured but are suspected to exist, called hid-
den biases. Removing overt biases and addressing
uncertainty about hidden biases are central issues
in observational studies. Overt biases are removed
by adjustments, such as matching, stratification or
covariance adjustment (see Analysis of Covariance),
which are discussed in the Section titled ‘Adjusting
for Biases Visible in Observed Covariates’. Hidden
biases are addressed partly in the design of an obser-
vational study, discussed in the Section titled ‘Design
of Observational Studies’ and ‘Elaborate Theories’,
and partly in the analysis of the study, discussed in the
Section titled ‘Appraising Sensitivity to Hidden Bias’
and ‘Elaborate Theories’ (see Quasi-experimental
Designs; Internal Validity; and External Validity).

Examples of Observational Studies

Several examples of observational studies are
described. Later sections refer to these examples.

Long-term Psychological Effects of the Death of a
Close Relative

In an attempt to estimate the long-term psychologi-
cal effects of bereavement, Lehman, Wortman, and
Williams [30] collected data following the sudden
death of a spouse or a child in a car crash. They
matched 80 bereaved spouses and parents to 80 con-
trols drawn from 7581 individuals who came to renew
a drivers license. Specifically, they matched for gen-
der, age, family income before the crash, education
level, number, and ages of children. Contrasting their
findings with the views of Bowlby and Freud, they
concluded:

Contrary to what some early writers have sug-
gested about the duration of the major symptoms
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of bereavement . . . both spouses and parents in our
study showed clear evidence of depression and lack
of resolution at the time of the interview, which was
5 to 7 years after the loss occurred.

Effects on Criminal Violence of Laws Limiting
Access to Handguns

Do laws that ban purchases of handguns by convicted
felons reduce criminal violence? It would be difficult,
perhaps impossible, to study this in a randomized
experiment, and yet an observational study faces sub-
stantial difficulties as well. One could not reasonably
estimate the effects of such a law by comparing
the rate of criminal violence among convicted felons
barred from handgun purchases to the rate among
all other individuals permitted to purchase handguns.
After all, convicted felons may be more prone to
criminal violence and may have greater access to
illegally purchased guns than typical purchasers of
handguns without felony convictions. For instance, in
his ethnographic account of violent criminals, Athens
(1997, p. 68) depicts their sporadic violent behav-
ior as consistent with stable patterns of thought and
interaction, and writes: “. . . the self-images of vio-
lent criminals are always congruent with their violent
criminal actions.”

Wright, Wintemute, and Rivara [68] compared
two groups of individuals in California: (a) indi-
viduals who attempted to purchase a handgun but
whose purchase was denied because of a prior felony
conviction, and (b) individuals whose purchase was
approved because their prior felony arrest had not
resulted in a conviction. The comparison looked for-
ward in time from the attempt to purchase a hand-
gun, recording arrest charges for new offenses in the
subsequent three years. Presumably, group (b) is a
mixture of some individuals who did not commit
the felony for which they were arrested and others
who did. If this presumption were correct, group (a)
would be more similar to group (b) than to typical
purchasers of handguns, but substantial biases may
remain.

Effects on Children of Occupational Exposures to
Lead

Morton, Saah, Silberg, Owens, Roberts, and
Saah [39] asked whether children were harmed by
lead brought home in the clothes and hair of parents

who were exposed to lead at work. They matched 33
children whose parents worked in a battery factory to
33 unexposed control children of the same age and
neighborhood, and used Wilcoxon’s signed rank test
to compare the level of lead found in the children’s
blood, finding elevated levels of lead in exposed
children.

In addition, they compared exposed children
whose parents had varied levels of exposure to lead
at the factory, finding that parents who had higher
exposures on the job in turn had children with more
lead in their blood. Finally, they compared exposed
children whose parents had varied hygiene upon leav-
ing the factory at the end of the day, finding that poor
hygiene of the parent predicted higher levels of lead
in the blood of the child.

Design of Observational Studies

Observational studies are sometimes referred to
as natural experiments [36, 56] or as quasi-
experiments [61] (see Quasi-experimental Designs).
These differences in terminology reflect certain
differences in emphasis, but a shared theme is that the
early stages of planning or designing an observational
study attempt to reproduce, as nearly as possible,
some of the strengths of an experiment [47].

A treatment is a program, policy, or intervention
which, in principle, may be applied to or withheld
from any subject under study. A variable measured
prior to treatment is not affected by the treatment and
is called a covariate. A variable measured after treat-
ment may have been affected by the treatment and is
called an outcome. An analysis that does not carefully
distinguish covariates and outcomes can introduce
biases into the analysis where none existed previ-
ously [43]. The effect caused by a treatment is a
comparison of the outcome a subject exhibited under
the treatment the subject actually received with the
potential but unobserved outcome the subject would
have exhibited under the alternative treatment [40,
59]. Causal effects so defined are sometimes said
to be counterfactual (see Counterfactual Reason-
ing), in the specific sense that they contrast what
did happen to a subject under one treatment with
what would have happened under the other treatment.
Causal effects cannot be calculated for individuals,
because each individual is observed under treatment
or under control, but not both. However, in a random-
ized experiment, the treated-minus-control difference
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in mean outcomes is an unbiased and consistent esti-
mate of the average effect of the treatment on the
subjects in the experiment.

In planning an observational study, one attempts
to identify circumstances in which some or all of the
following elements are available [47].

• Key covariates and outcomes are available for
treated and control groups. The most basic ele-
ments of an observational study are treated and
control groups, with important covariates mea-
sured before treatment, and outcomes measured
after treatment. If data are carefully collected
over time as events occur, as in a longitudi-
nal study (see Longitudinal Data Analysis),
then the temporal order of events is typically
clear, and the distinction between covariates and
outcomes is clear as well. In contrast, if data
are collected from subjects at a single time, as
in a cross-sectional study (see Cross-sectional
Design) based on a single survey interview,
then the distinction between covariates and out-
comes depends critically on the subjects’ recall,
and may not be sharp for some variables; this
is a weakness of cross-sectional studies. Age
and sex are covariates whenever they are mea-
sured, but current recall of past diseases, expe-
riences, moods, habits, and so forth can easily
be affected by subsequent events.

• Haphazard treatment assignment rather than
self-selection. When randomization is not used,
treated and control groups are often formed
by deliberate choices reflecting either the per-
sonal preferences of the subjects themselves or
else the view of some provider of treatment
that certain subjects would benefit from treat-
ment. Deliberate selection of this sort can lead
to substantial biases in observational studies.
For instance, Campbell and Boruch [10] dis-
cuss the substantial systematic biases in many
observational studies of compensatory programs
intended to offset some disadvantage, such as
the US Head Start Program for preschool chil-
dren. Campbell and Boruch note that the typical
study compares disadvantaged subjects eligi-
ble for the program to controls who were not
eligible because they were not sufficiently dis-
advantaged. When randomization is not possi-
ble, one should try to identify circumstances in
which an ostensibly irrelevant event, rather than

deliberate choice, assigned subjects to treatment
or control. For instance, in the United States,
class sizes in government run schools are largely
determined by the degree of wealth in the local
region, but in Israel, a rule proposed by Mai-
monides in the 12th century still requires that
a class of 41 must be divided into two sepa-
rate classes. In Israel, what separates a class of
size 40 from classes half as large is the enroll-
ment of one more student. Angrist and Lavy [2]
exploited Maimonides rule in their study of the
effects of class size on academic achievement
in Israel. Similarly, Oreopoulos [41] studies the
economic effects of living in a poor neigh-
borhood by exploiting the policy of Toronto’s
public housing program of assigning people to
housing in quite different neighborhoods simply
based on their position in a waiting list. Lehman
et al. [30], in their study of bereavement in the
Section titled ‘Long-term Psychological Effects
of the Death of a Close Relative’, limited the
study to car crashes for which the driver was
not responsible, on the grounds that car crashes
for which the driver was responsible were rela-
tively less haphazard events, perhaps reflecting
forms of addiction or psychopathology. Random
assignment is a fact, but haphazard assignment
is a judgment, perhaps a mistaken one; however,
haphazard assignments are preferred to assign-
ments known to be severely biased.

• Special populations offering reduced self-
selection. Restriction to certain subpopulations
may diminish, albeit not eliminate, biases due
to self-selection. In their study of the effects of
adolescent abortion, Zabin, Hirsch, and Emer-
son [69] used as controls young women who
visited a clinic for a pregnancy test, but whose
test result came back negative, thereby ensuring
that the controls were also sexually active. The
use in the Section titled ‘Effects on Criminal
Violence of Laws Limiting Access to Handguns’
of controls who had felony arrests without con-
victions may also reduce hidden bias.

• Biases of known direction. In some settings, the
direction of unobserved biases is quite clear
even if their magnitude is not, and in cer-
tain special circumstances, a treatment effect
that overcomes a bias working against it may
yield a relatively unambiguous conclusion. For
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instance, in the Section titled ‘Effects on Crimi-
nal Violence of Laws Limiting Access to Hand-
guns’, one expects that the group of convicted
felons denied handguns contains fewer inno-
cent individuals than does the arrested-but-not-
convicted group who were permitted to purchase
handguns. Nonetheless, Wright et al. [68] found
fewer subsequent arrests for gun and violent
offenses among the convicted felons, suggest-
ing that the denial of handguns may have had an
effect large enough to overcome a bias working
in the opposite direction. Similarly, it is often
claimed that payments from disability insurance
provided by US Social Security deter recipients
from returning to work by providing a finan-
cial disincentive. Bound [6] examined this claim
by comparing disability recipients to rejected
applicants, where the rejection was based on an
administrative judgment that the injury or dis-
ability was not sufficiently severe. Here, too, the
direction of bias seems clear: rejected applicants
should be healthier. However, Bound found that
even among the rejected applicants, relatively
few returned to work, suggesting that even
fewer of the recipients would return to work
without insurance. Some general theory about
studies that exploit biases of known direction is
given in Section 6.5 of [49].

• An abrupt start to intense treatments. In an
experiment, the treated and control conditions
are markedly distinct, and these conditions
become active at a specific known time. Lehman
et al.’s [30] study of the psychological effects
of bereavement in the Section titled ‘Long-term
Psychological Effects of the Death of a Close
Relative’ resembles an experiment in this sense.
The study concerned the effects of the sudden
loss of a spouse or a child in a car crash. In
contrast, the loss of a distant relative or the grad-
ual loss of a parent to chronic disease might
possibly have effects that are smaller, more
ambiguous, more difficult to discern. In a gen-
eral discussion of studies of stress and depres-
sion, Kessler [28] makes this point clearly:

“. . . a major problem in interpret[ation] . . . is
that both chronic role-related stresses and the
chronic depression by definition have occurred
for so long that deciding unambiguously which
came first is difficult . . . The researcher,
however, may focus on stresses that can

be assumed to have occurred randomly with
respect to other risk factors of depression and
to be inescapable, in which case matched com-
parison can be used to make causal inferences
about long-term stress effects. A good exam-
ple is the matched comparison of the parents
of children having cancer, diabetes, or some
other serious childhood physical disorder with
the parents of healthy children. Disorders of
this sort are quite common and occur, in most
cases, for reasons that are unrelated to other
risk factors for parental psychiatric disorder.
The small amount of research shows that these
childhood physical disorders have significant
psychiatric effects on the family.” (p. 197)

• Additional structural features in quasi-experi-
ments intended to provide information about
hidden biases. The term quasi-experiment is
often used to suggest a design in which certain
structural features are added in an effort to
provide information about hidden biases; see
Section titled ‘Elaborate Theories’ for detailed
discussion. In the Section titled ‘Effects on Chil-
dren of Occupational Exposures to Lead’, for
instance, data were collected for control chil-
dren whose parents were not exposed to lead,
together with data about the level of lead expo-
sure and the hygiene of parents exposed to lead.
An actual effect of lead should produce a quite
specific pattern of associations: more lead in the
blood of exposed children, more lead when the
level of exposure is higher, more lead when
the hygiene is poor. In general terms, Cook
et al. [14] write that:

“. . . the warrant for causal inferences from
quasi-experiments rests [on] structural ele-
ments of design other than random assign-
ment–pretests, comparison groups, the way
treatments are scheduled across groups . . . –
[which] provide the best way of ruling out
threats to internal validity . . . [C]onclusions
are more plausible if they are based on evi-
dence that corroborates numerous, complex, or
numerically precise predictions drawn from a
descriptive causal hypothesis.” (pp. 570-1)

Randomization will produce treated and control
groups that were comparable prior to treatment, and
it will do this mechanically, with no understanding
of the context in which the study is being conducted.
When randomization is not used, an understand-
ing of the context becomes much more important.
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Context is important whether one is trying to iden-
tify what covariates to measure, or to locate set-
tings that afford haphazard treatment assignments
or subpopulations with reduced selection biases, or
to determine the direction of hidden biases. Ethno-
graphic and other qualitative studies (e.g., [3, 21])
may provide familiarity with context needed in plan-
ning an observational study, and moreover quali-
tative methods may be integrated with quantitative
studies [55].

Because even the most carefully designed obser-
vational study will have weaknesses and ambiguities,
a single observational study is often not decisive,
and replication is often necessary. In replicating an
observational study, one should seek to replicate
the actual treatment effects, if any, without replicat-
ing any biases that may have affected the original
study. Some strategies for doing this are discussed
in [48].

Adjusting for Biases Visible in Observed
Covariates

Matched Sampling

Selecting from a Reservoir of Potential Controls.
Among methods of adjustment for overt biases, the
most direct and intuitive is matching, which compares
each treated individual to one or more controls who
appear comparable in terms of observed covariates.
Matched sampling is most common when a small
treated group is available together with a large
reservoir of potential controls [57].

The structure of the study of bereavement by
Lehman et al. [30] in the Section titled ‘Long-term
Psychological Effects of the Death of a Close Rel-
ative’ is typical. There were 80 bereaved spouses
and parents and 7581 potential controls, from whom
80 matched controls were selected. Routine admin-
istrative records were used to identify and match
bereaved and control subjects, but additional informa-
tion was needed from matched subjects for research
purposes, namely, psychiatric outcomes. It is neither
practical nor important to obtain psychiatric outcomes
for all 7581 potential controls, and instead, match-
ing selected 80 controls who appear comparable to
treated subjects.

Most commonly, as in both Lehman et al.’s [30]
study of bereavement in the Section titled ‘Long-
term Psychological Effects of the Death of a Close

Relative’ and Morton et al.’s [39] study of lead expo-
sure in the Section titled ‘Effects on Children of
Occupational Exposures to Lead’, each treated sub-
ject is matched to exactly one control, but other
matching structures may yield either greater bias
reduction or estimates with smaller standard errors
or both. In particular, if the reservoir of potential
controls is large, and if obtaining data from con-
trols is not prohibitively expensive, then the standard
errors of estimated treatment effects can be substan-
tially reduced by matching each treated subject to
several controls [62]. When several controls are used,
substantially greater bias reduction is possible if the
number of controls is not constant, instead varying
from one treated subject to another [37].

Multivariate Matching Using Propensity Scores.
In matching, the first impulse is to try to match each
treated subject to a control who appears nearly the
same in terms of observed covariates; however, this
is quickly seen to be impractical when there are many
covariates. For instance, with 20 binary covariates,
there are 220 or about a million types of individuals,
so even with thousands of potential controls, it will
often be difficult to find a control who matches a
treated subject on all 20 covariates.

Randomization produces covariate balance, not
perfect matches. Perfect matches are not needed to
balance observed covariates. Multivariate matching
methods attempt to produce matched pairs or sets that
balance observed covariates, so that, in aggregate,
the distributions of observed covariates are similar
in treated and control groups. Of course, unlike ran-
domization, matching cannot be expected to balance
unobserved covariates.

The propensity score is the conditional probabil-
ity (see Probability: An Introduction) of receiv-
ing the treatment rather than the control given the
observed covariates [52]. Typically, the propensity
score is unknown and must be estimated, for instance,
using logistic regression [19] of the binary category,
treatment/control on the observed covariates. The
propensity score is defined in terms of the observed
covariates, even when there are concerns about hid-
den biases due to unobserved covariates, so estimat-
ing the propensity score is straightforward because
the needed data are available. For nontechnical sur-
veys of methods using propensity scores, see [7, 27],
and see [33] for discussion of propensity scores for
doses of treatment.
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Matching on one variable, the propensity score,
tends to balance all of the observed covariates, even
though matched individuals will typically differ on
many observed covariates. As an alternative, match-
ing on the propensity score and one or two other
key covariates will also tend to balance all of the
observed covariates. If it suffices to adjust for the
observed covariates – that is, if there is no hidden bias
due to unobserved covariates – then it also suffices
to adjust for the propensity score alone. These results
are Theorems 1 through 4 of [52]. A study of the
psychological effects of prenatal exposures to barbi-
turates balanced 20 observed covariates by matching
on an estimated propensity score and sex [54].

One can and should check to confirm that the
propensity score has done its job. That is, one
should check that, after matching, the distributions of
observed covariates are similar in treated and control
groups; see [53, 54] for examples of this simple pro-
cess. Because theory says that a correctly estimated
propensity score should balance observed covariates,
this check on covariate balance is also a check on
the model used to estimate the propensity score. If
some covariates are not balanced, consider adding to
the logit model interactions or quadratics involving
these covariates; then check covariate balance with
the new propensity score.

Bergstralh, Kosanke, and Jacobsen [4] provide
SAS software for an optimal matching algorithm.

Stratification

Stratification is an alternative to matching in which
subjects are grouped rather than paired. Cochran [13]
showed that five strata formed from a single contin-
uous covariate can remove about 90% of the bias in
that covariate. Strata that balance many covariates at
once can often be formed by forming five strata at the
quintiles of an estimated propensity score. A study
of coronary bypass surgery balanced 74 covariates
using five strata formed from an estimated propensity
score [53].

The optimal stratification – that is, the stratifica-
tion that makes treated and control subjects as similar
as possible within strata – is a type of matching
called full matching in which a treated subject can
be matched to several controls or a control can be
matched to several treated subjects [45]. An optimal
full matching, hence also an optimal stratification, can
be determined using network optimization.

Model-based Adjustments

Unlike matched sampling and stratification, which
compare treated subjects directly to actual controls
who appear comparable in terms of observed covari-
ates, model-based adjustments, such as covariance
adjustment, use data on treated and control subjects
without regard to their comparability, relying on a
model, such as a linear regression model, to predict
how subjects would have responded under treatments
they did not receive. In a case study from labor
economics, Dehejia and Wahba [20] compared the
performance of model-based adjustments and match-
ing, and Rubin [58, 60] compared performance using
simulation. Rubin found that model-based adjust-
ments yielded smaller standard errors than matching
when the model is precisely correct, but model-based
adjustments were less robust than matching when the
model is wrong. Indeed, he found that if the model is
substantially incorrect, model-based adjustments may
not only fail to remove overt biases, they may even
increase them, whereas matching and stratification are
fairly consistent at reducing overt biases. Rubin found
that the combined use of matching and model-based
adjustments was both robust and efficient, and he rec-
ommended this strategy in practice.

Appraising Sensitivity to Hidden Bias

With care, matching, stratification, model-based
adjustments and combinations of these techniques
may often be used to remove overt biases accurately
recorded in the data at hand, that is, biases visible
in imbalances in observed covariates. However,
when observational studies are subjected to critical
evaluation, a common concern is that the adjustments
failed to control for some covariate that was not
measured. In other words, the concern is that
treated and control subjects were not comparable
prior to treatment with respect to this unobserved
covariate, and had this covariate been measured
and controlled by adjustments, then the conclusions
about treatment effects would have been different.
This is not a concern in randomized experiments,
because randomization balances both observed and
unobserved covariates. In an observational study,
a sensitivity analysis (see Sensitivity Analysis in
Observational Studies) asks how such hidden biases
of various magnitudes might alter the conclusions of
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the study. Observational studies vary greatly in their
sensitivity to hidden bias.

Cornfield et al. [17] conducted the first formal
sensitivity analysis in a discussion of the effects of
cigarette smoking on health. The objection had been
raised that smoking might not cause lung cancer, but
rather that there might be a genetic predisposition
both to smoke and to develop lung cancer, and that
this, not an effect of smoking, was responsible for
the association between smoking and lung cancer.
Cornfield et al. [17] wrote:

. . . if cigarette smokers have 9 times the risk of
nonsmokers for developing lung cancer, and this is
not because cigarette smoke is a causal agent, but
only because cigarette smokers produce hormone X,
then the proportion of hormone X-producers among
cigarette smokers must be at least 9 times greater
than among nonsmokers. (p. 40)

Though straightforward to compute, their sensitivity
analysis is an important step beyond the familiar
fact that association does not imply causation. A
sensitivity analysis is a specific statement about the
magnitude of hidden bias that would need to be
present to explain the associations actually observed.
Weak associations in small studies can be explained
away by very small biases, but only a very large bias
can explain a strong association in a large study.

A simple, general method of sensitivity analysis
introduces a single sensitivity parameter � that mea-
sures the degree of departure from random assign-
ment of treatments. Two subjects with the same
observed covariates may differ in their odds of receiv-
ing the treatment by at most a factor of �. In an
experiment, random assignment of treatments ensures
that � = 1, so no sensitivity analysis is needed. In
an observational study with � = 2, if two subjects
were matched exactly for observed covariates, then
one might be twice as likely as the other to receive the
treatment because they differ in terms of a covariate
not observed. Of course, in an observational study,
� is unknown. A sensitivity analysis tries out sev-
eral values of � to see how the conclusions might
change. Would small departures from random assign-
ment alter the conclusions? Or, as in the studies
of smoking and lung cancer, would only very large
departures from random assignment alter the conclu-
sions? For each value of �, it is possible to place
bounds on a statistical inference – perhaps for � = 3,
the true P value is unknown, but must be between

0.0001 and 0.041. Analogous bounds may be com-
puted for point estimates and confidence intervals.
How large must � be before the conclusions of the
study are qualitatively altered? If for � = 9, the P

value for testing no effect is between 0.00001 and
0.02, then the results are highly insensitive to bias –
only an enormous departure from random assignment
of treatments could explain away the observed associ-
ation between treatment and outcome. However, if for
� = 1.1, the P value for testing no effect is between
0.01 and 0.3, then the study is extremely sensitive
to hidden bias – a tiny bias could explain away the
observed association. This method of sensitivity anal-
ysis is discussed in detail with many examples in
Section 4 of [49] and the references given there.

For instance, Morton et al.’s [39] study in the
Section titled ‘Effects on Children of Occupational
Exposures to Lead’ used Wilcoxon’s signed-ranks
test to compare blood lead levels of 33 exposed
and 33 matched control children. The pattern of
matched pair differences they observed would yield
a P value less than 10−5 in a randomized exper-
iment. For � = 3, the range of possible P values
is from about 10−15 to 0.014, so a bias of this
magnitude could not explain the higher lead lev-
els among exposed children. In words, if Morton
et al. [39] had failed to control by matching a vari-
able strongly related to blood lead levels and three
times more common among exposed children, this
would not have been likely to produce a difference
in lead levels as large as the one they observed.
The upper bound on the P value is just about 0.05
when � = 4.35, so the study is quite insensitive to
hidden bias, but not as insensitive as the studies
of heavy smoking and lung cancer. For � = 5 and
� = 6, the upper bounds on the P value are 0.07 and
0.12, respectively, so biases of this magnitude could
explain the observed association. Sensitivity analy-
ses for point estimates and confidence intervals for
this example are in Section 4.3.4 and Section 4.3.5
of [49].

Several other methods of sensitivity analysis are
discussed in [16, 24, 26], and [31].

Elaborate Theories

Elaborate Theories and Pattern Specificity

What can be observed to provide evidence about
hidden biases, that is, biases due to covariates that
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were not observed? Cochran [12] summarizes the
view of Sir Ronald Fisher, the inventor of the
randomized experiment:

About 20 years ago, when asked in a meeting
what can be done in observational studies to clarify
the step from association to causation, Sir Ronald
Fisher replied: “Make your theories elaborate.” The
reply puzzled me at first, since by Occam’s razor,
the advice usually given is to make theories as
simple as is consistent with known data. What Sir
Ronald meant, as subsequent discussion showed,
was that when constructing a causal hypothesis one
should envisage as many different consequences of
its truth as possible, and plan observational studies
to discover whether each of these consequences is
found to hold.

Similarly, Cook & Shadish [15] (1994, p. 565): “Suc-
cessful prediction of a complex pattern of multi-
variate results often leaves few plausible alternative
explanations. (p. 95)” Some patterns of response are
scientifically plausible as treatment effects, but others
are not [25], [65]. “[W]ith more pattern specificity,”
writes Trochim [63], “it is generally less likely that
plausible alternative explanations for the observed
effect pattern will be forthcoming. (p. 580)”

Example of Reduced Sensitivity to Hidden Bias
Due to Pattern Specificity

Morton et al.’s [39] study of lead exposures in the
Section titled ‘Effects on Children of Occupational
Exposures to Lead’ provides an illustration. Their
elaborate theory predicted: (a) higher lead levels
in the blood of exposed children than in matched
control children, (b) higher lead levels in exposed
children whose parents had higher lead exposure
on the job, and (c) higher lead levels in exposed
children whose parents practiced poorer hygiene upon
leaving the factory. Since each of these predictions
was consistent with observed data, to attribute the
observed associations to hidden bias rather than
an actual effect of lead exposure, one would need
to postulate biases that could produce all three
associations.

In a formal sense, elaborate theories play two
roles: (a) they can aid in detecting hidden biases [49],
and (b) they can make a study less sensitive to
hidden bias [50, 51]. In Section titled ‘Effects on
Children of Occupational Exposures to Lead’, if
exposed children had lower lead levels than controls,

or if higher exposure predicted lower lead levels, or
if poor hygiene predicted lower lead levels, then this
would be difficult to explain as an effect caused by
lead exposure, and would likely be understood as a
consequence of some unmeasured bias, some way
children who appeared comparable were in fact not
comparable. Indeed, the pattern specific comparison
is less sensitive to hidden bias. In detail, suppose that
the exposure levels are assigned numerical scores, 1
for a child whose father had either low exposure or
good hygiene, 2 for a father with high exposure and
poor hygiene, and 1.5 for the several intermediate
situations. The sensitivity analysis discussed in the
Section titled ‘Appraising Sensitivity to Hidden Bias’
used the signed rank test to compare lead levels of the
33 exposed children and their 33 matched controls,
and it became sensitive to hidden bias at � = 4.35,
because the upper bound on the P value for testing
no effect had just reached 0.05. Instead, using the
dose-signed-rank statistic [46, 50] to incorporate the
predicted pattern, the comparison becomes sensitive
at � = 4.75; that is, again, the upper bound on
the P value for testing no effect is 0.05. In other
words, some biases that would explain away the
higher lead levels of exposure children are not large
enough to explain away the pattern of associations
predicted by the elaborate theory. To explain the
entire pattern, noticeably larger biases would need
to be present.

A reduction in sensitivity to hidden bias can occur
when a correct elaborate theory is strongly confirmed
by the data, but an increase in sensitivity can occur
if the pattern is contradicted [50]. It is possible to
contrast competing design strategies in terms of their
‘design sensitivity;’ that is, their ability to reduce
sensitivity to hidden bias [51].

Common Forms of Pattern Specificity

There are several common forms of pattern specificity
or elaborate theories [44, 49, 61].

• Two control groups.Campbell [8] advocated
selecting two control groups to systematically
vary an unobserved covariate, that is, to
select two different groups not exposed to
the treatment, but known to differ in terms
of certain unobserved covariates. For instance,
Card and Krueger [11] examined the common
claim among economists that increases in the
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minimum wage cause many minimum wage
earners to loose their jobs. They did this by
looking at changes in employment at fast food
restaurants – Burger Kings, Wendy’s, KFCs,
and Roy Rogers’ – when New Jersey increased
its minimum wage by about 20%, from $4.25
to $5.05 per hour, on 1 April 1992, comparing
employment before and after the increase. In
certain analyses, they compared New Jersey
restaurants initially paying $4.25 to two control
groups: (a) restaurants in the same chains
across the Delaware River in Pennsylvania
where the minimum wage had not increased,
and (b) restaurants in the same chains in
affluent sections of New Jersey where the
starting wage was at least $5.00 before 1 April
1992. An actual effect of raising the minimum
wage should have negligible effects on both
control groups. In contrast, one anticipates
differences between the two control groups
if, say, Pennsylvania Burger Kings were poor
controls for New Jersey Burger Kings, or
if employment changes in relatively affluent
sections of New Jersey are very different
from those in less affluent sections. Card and
Krueger found similar changes in employment
in the two control groups, and similar results
in their comparisons of the treated group
with either control group. An algorithm for
optimal pair matching with two control groups
is illustrated with Card and Krueger’s study
in [32].

• Coherence among several outcomes and/or sev-
eral doses. Hill [25] emphasized the importance
of a coherent pattern of associations and of dose-
response relationships, and Weiss [66] further
developed these ideas. Campbell [9] wrote: “. . .
great inferential strength is added when each
theoretical parameter is exemplified in two or
more ways, each mode being as independent
as possible of the other, as far as the theoret-
ically irrelevant components are concerned (p.
33).” Webb [64] speaks of triangulation. The
lead example in the Section titled ‘Example
of Reduced Sensitivity to Hidden Bias Due
to Pattern Specificity’ provides one illustration
and Reynolds and West [42] provide another.
Related statistical theory is in [46, 51] and the
references given there.

• Unaffected outcomes; ineffective treatments.An
elaborate theory may predict that certain out-
comes should not be affected by the treat-
ment or certain treatments should not affect
the outcome; see Section 6 of [49] and [67].
For instance, in a case-crossover study [34],
Mittleman et al. [38] asked whether bouts of
anger might cause myocardial infarctions or
heart attacks, finding a moderately strong and
highly significant association. Although there
are reasons to think that bouts of anger might
cause heart attacks, there are also reasons to
doubt that bouts of curiosity cause heart attacks.
Mittleman et al. found curiosity was not asso-
ciated with myocardial infarction, writing: “the
specificity observed for anger . . . as opposed to
curiosity . . . argue against recall bias.” McKil-
lip [35] suggests that an unaffected or ‘control’
outcome might sometimes serve in place of a
control group, and Legorreta et al. [29] illus-
trate this possibility in a study of changes in the
demand for a type of surgery following a tech-
nological change that reduced cost and increased
safety.

Summary

In the design of an observational study, an attempt
is made to reconstruct some of the structure and
strengths of an experiment. Analytical adjustments,
such as matching, are used to control for overt biases,
that is, pretreatment differences between treated and
control groups that are visible in observed covariates.
Analytical adjustments may fail because of hidden
biases, that is, important covariates that were not
measured and therefore not controlled by adjust-
ments. Sensitivity analysis indicates the magnitude
of hidden bias that would need to be present to
alter the qualitative conclusions of the study. Obser-
vational studies vary markedly in their sensitivity
to hidden bias; therefore, it is important to know
whether a particular study is sensitive to small biases
or insensitive to quite large biases. Hidden biases
may leave visible traces in observed data, and a
variety of tactics involving pattern specificity are
aimed at distinguishing actual treatment effects from
hidden biases. Pattern specificity may aid in detect-
ing hidden bias or in reducing sensitivity to hidden
bias.
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