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How a Court Accepted an Impossible Explanation

Joseph GASTWIRTH, Abba KRIEGER, and Paul ROSENBAUM

Although it is often true that the association between two
variables may be due to some unobserved third variable,
the plausiblity of such arguments needs careful examina-
tion. In 1987, a Canadian court accepted an explanation
offered by the National Revenue Service of Canada that,
in a test for promotion, lower pass rates among women
than among men were explained by differences in rates
of college attendance, a variable that was not directly ob-
served by the court. We show that this explanation is not
merely implausible. It is impossible. We conclude with a
brief discussion of the role of a statistician in an argument
involving an unobserved variable.

KEY WORDS: Contingency table; Law and statistics,
Mantel-Haenszel statistic; Sensitivity analysis; Unob-
served variable.

1. A VARIABLE THAT NEVER WAS

“An association may be spurious.” “The association be-
tween two variables may be due to some unobserved third
variable.” True as these statements are, not every such
argument is plausible. We tell the tale of a court that ac-
cepted an argument involving an unobserved variable—a
variable that, as we show, cannot exist. The tale is told in
Section 1. A formal demonstration is given in Section 2.
The moral of the tale and some practical advice are sum-
marized in Section 3.

In the case of Maloley v. National Revenue Service
of Canada, as described by Juriansz (1987), the Revenue
Service had promoted employees to the position of col-
lections enforcement clerk using a psychological test, the
General Intelligence Test. On the basis of this test, 59%
of males passed and 27% of females passed; see Table 1.
Under Canadian law, the Revenue Service had to prove the
test was a reliable and valid way of selecting candidates
according to their merit. When challenged in court, the
Revenue Service defended its use of the test with reference
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Table 1. Frequency of Passing

Passed Failed Total Percentage Passed

Female 68 183 251 27% -
Male 68 47 115 59%
Total 136 230 366 37%

to Table 2, which showed that 52% of males and 25% of
females had some college education. The Appeals Board
accepted the Revenue Service’s claim that the difference
between male and female pass rates was not discrimina-
tory because it merely reflected a difference in cognitive
ability that was also evident in the data on college educa-
tion. The Appeals Board concluded that the frequencies
of passing were simply in line with the frequencies of col-
lege education even though the Revenue Service did not
offer pass rate data by sex and education into evidence.

Was the Board’s judgement in error given the evidence
it chose to examine? Is the difference in passing rates for
males and females consistent with the difference in college
attendance rates? Would males and females who were the
same in term of college attendance have similar passing
rates? Or is the difference in passing rates too large to
merely reflect a difference in college attendance?

The data are unusual. Tables 1 and 2 are two 2 X 2 mar-
gins of a 2 x 2 x 2 table, but the Appeals Board did not
request and never saw the full 2 x 2 x 2 table. In legal pro-
ceedings, the parties, not the Appeals Board or jury, have
the burden of producing evidence. Arguments about unob-
served variables are often executed poorly. The argument
the Board accepted about these tables is not merely implau-
sible; it is impossible. The example is important because
it shows that some claims about unobserved variables are
not just strained or far fetched—some are just wrong.

If the 2 x 2 x 2 table had been observed, the standard
analysis would have compared passing rates for females
and males, adjusting for education using the Mantel-

Table 2. Frequency of College Attendance

Some College No College Total Percentage College

Female 63 188 251 25%
Male 60 55 115 52%
Total 123 243 366 34%
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Haenszel (1959) or MH statistic; see, for instance Bickel,
Hammel, and O’Connell (1975), Fleiss (1981), Gastwirth
(1988), or Agresti (1990). One can consider every possi-
ble 2 x 2 x 2 table that can produce Tables 1 and 2—there
are finitely many—and calculate the MH statistic for each
of them. A simpler calculation producing the same result
is discussed in Section 2. When this is done, the largest
normal deviate that can be produced from 2 x 2 x 2 tables
compatible with Tables 1 and 2 is the deviate —3.11 with
p value .002. Thus there is no 2 x 2 x 2 table compatible
with Tables 1 and 2 in which college attendance can ex-
plain the difference in passing rates for men and women.
There may or may not be discrimination against women,
but whether there is or is not, the explanation the Appeals
Board accepted is simply wrong. The difference in pass-
ing rates is far larger than can be explained based on the
difference in proportions attending college.

2. THE EXTREME MANTEL-HAENSZEL
STATISTIC FROM A 2 x 2 x 2 WITH
GIVEN MARGINALS

Consider the 2 x 2 X 2 table n,,, recording Education
(e)x Gender (g)x Passing (p), where e = 1 for college
and e = 2 otherwise, g = 1 for a female and g = 2 for
a male, and p = 1 for passed and p = 2 failed. Write
m for the number of passing individuals who attended
college, that is, m = n;.;, so m cannot be determined from
Tables 1 and 2. The 2 x 2 X 2 table has one additional
margin, in addition to Tables 1 and 2, namely, Table 3. The
Mantel-Haenszel standardized deviate comparing passing
rates for males and females within strata defined by college
education is
na — (M + 1121.(n..|—-m))

ni.. na..

T(m) =

nu.ny2.m(ny.. —m) + a1y (o —m)(ng. m—n_.)
n? (m..—1) n2 (n2..—1)

ey

Notice that m is the only quantity in (1) not determined
from Tables 1 and 2. It is interesting to note that m deter-
mines the MH statistic and its large sample significance
level, but m does not determine the exact significance level
that requires the specification of additional quantities.

Although m is unknown, it is constrained by the ob-
served data, a < m < b and a = max(0,n.;; — nay.) +
max(O, n. —Nnp.) and b = min(n.”, n”.)+min(n.21, ni.).
A direct approach tries each m in this range, finding that
max{7T(m)} = —3.11 with approximate significance level
.002. In other words, even though m is not observed, there
is no possible value of m such that an adjustment for col-
lege education would have explained the different passing
rates for males and females.

Table 3. The Unobserved?2 x 2 Margin

Passed Failed Total
College Educated m m..—m m.. =123
Not College
Educated nq4—m n.—n.4—n.+m n. =243
Total n.; =136 n..—n. =230 n... =366
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Table 4. The Table That Makes the Mantel-Haenszel Statistic as
Close to Zero as Possible

Passed Failed Total
College Educated 116 7 123
Not College Educated 20 223 243
Total 136 230 366

NOTE: Odds Ratio = 184.8.

Actually, it is not necessary to try each possible value
of m. Viewing T'(m) as a differentiable function of a real
argument m with derivative T’(m), the following lemma
can be proved.

Lemma. Fora < m < b, the derivative T'(m) is zero for
at most one value of m.

Proof. 'Write T(m) = N(m)/+/D(m) in (1), so

N(m)D'(m)
N'(m)v/D(m) — ———— -
T'(m) = e 2vDim) g

Since D(m) > 0, the sign of 7’(m) in (2) is the same as the
sign of T'(m){D(m)}*/* = N'(m)D(m) — (1/2)N(m)D' (m).
From (1), for certain constants d,e,f, g, and A that de-
pend on the observed margins but not on m,N(m) =
d +em,D(m) = f + gm + hm?, so

N'(m)D(m) — %N(m)D'(m) = (ef — 5125-) +m(52‘g - dh) ,

which is linear in m, proving the lemma. O

The lemma implies that, for integer m between a and
b, the deviate T'(mm) is either monotone in m or else T(m)
is monotone from a to an integer r, with a < r < b, and
then monotone in the opposite direction from r to b. In
any event the minimum value of T(m) fora < m < b is
min{7(a), T(r), T(b)} and the maximum value of T(m) is
max{7(a), T(r),T(b)}.

Recall that m is the number of passing individuals who
attended college, thatis, m = ny.,; see Table 3. For the data
in Section 1, m = 116 gives maximum Mantel-Haenszel
deviate (1) of —3.11 with its associated maximum signifi-
cance level of .002. Table 4 shows what Table 3 would be
if m = 116. Notice that the odds ratio in Table 4 is 185,
so a person with some college is 185 times more likely to
pass the test than a person with no college, an extraordi-
narily strong relationship. If one were willing to assume
that the odds ratio linking college with passing the test in
Table 3 is somewhat smaller, then the maximum Mantel-
Haenszel deviate and significance level would be smaller.
For instance, if the odds ratio were no more than 10, the
maximum Mantel-Haenszel deviate would be —3.97 with
significance level less than .0001.

3. THE MORAL OF THE TALE

Some arguments involving unobserved variables are
just wrong. Others are possible in principle but not plau-
sible. Others are entirely plausible. Faced with an argu-
ment involving an unobserved variable, the statistician’s



responsibility is to clarify what that argument objectively
entails and implies so listeners may appraise whether the
argument is plausible.

Some general methods for appraising arguments about
unobserved variables are described in Gastwirth (1992),
Greenhouse (1982), Rosenbaum and Krieger (1990), and
Rosenbaum (1991, 1993, in press).
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Simultaneous Confidence Intervals in Multiple Regression

Thomas P. LANE and William H. DUMOUCHEL

We describe a hybrid method for computing confidence in-
tervals for linear combinations of coefficients in multiple
regression, with an emphasis on intervals for fitted values.
The hybrid method combines the Bonferroni and Scheffé
approaches, and itis applicable when there are both contin-
uous and discrete predictors. It often leads to intervals that
are narrower than those produced by the Scheffé method.
We also describe how the method can create simultaneous
prediction intervals for new observations.

KEY WORDS: Bonferroni;
Scheffé.

Multiple comparisons;

1. INTRODUCTION
Consider the general linear regression model
i =X B+e, )
where y; is an observed response value for the ith obser-
vation, x; is a p-dimensional vector of known predictor
values, 8 is a p-dimensional vector of unknown coeffi-
cients, and ¢; is a normal random error with mean 0 and
unknown variance o, A statistician observes n indepen-
dent response values y,...,y,, and the corresponding
predictor vectors X, ..., X,, and wants to compute con-
fidence bounds for the unknown mean x’ 3 so the confi-
dence bounds hold simultaneously over all values of x.
These bounds form a simultaneous confidence region for
the entire regression surface.
The vector x will typically contain a 1 for the inter-
cept and may contain actual values of continuous predic-
tors, dummy variable values for categorical predictors, and
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products and powers of these values. Consequently, this
general regression model includes ordinary multiple re-
gression, polynomial regression, and analysis of variance
as special cases.

There are many well-known methods for computing si-
multaneous confidence intervals for fitted values and for
other linear combinations of regression coefficients. Two
commonly used procedures are, the Scheffé method and
the Bonferroni method. These methods are described in
many books on regression such as Seber (1977), and also
in books on simultaneous inference such as Miller (1981)
and Hochberg and Tamhane (1987).

The Scheffé method provides simultaneous confidence
over all possible linear combinations of coefficients. It
can be used in any regression problem, but it is most use-
ful when the predictors are continuous, as in polynomial
regression. The Bonferroni method provides simultane-
ous confidence over a finite set of linear combinations.
It cannot be used with continuous predictors without re-
stricting the number of possible predictor values to a fi-
nite set. When predictors are categorical, as they are in
analysis of variance, confidence intervals produced by the
Bonferroni method are often narrower than those produced
by the Scheffé method.

We describe a hybrid method that is useful when there
are both continuous and categorical predictors. Our meth-
od includes both the Bonferroni and Scheffé methods as
special cases.

In Section 2 we review the Bonferroni and Scheftfé meth-
ods and describe the hybrid method. In Section 3 we ex-
amine some specific regression models and compare the
relative width of intervals computed by different meth-
ods. In Section 4 we show how the hybrid method can be
extended as in Carlstein (1986) to compute simultaneous
prediction intervals for new observations.
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