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SUMMARY

Sequential monitoring has been a topic of major interest in clincal trials methodology over the past two
decades. This paper presents a unified conceptual framework for sequential monitoring that covers a wide
variety of monitoring procedures in a wide variety of clinical trial settings. The central elements of this
framework consist of a suitable concept of statistical information and a scheme for using this concept as
a basis for summarizing the accumulating results of a trial in a standardized form, through a stochastic
process that can be shown to approximate classical Brownian motion. The ideas are developed in a simple
step-by-step fashion and illustrated by several practical exampies.

1. INTRODUCTION

In a clinical trial comparing a new treatment with placebo or a standard regimen, ethical
considerations usually require periodic examination of the data accruing from the trial for
evidence of treatment benefit or harm. It is often appropriate for the trial protocol to include
a formal sequential monitoring plan, whereby, upon extreme evidence of treatment benefit, the
trial may be terminated early and the investigators may claim that a statistically signficant
treatment benefit has been demonstrated.

The mathematical theory of sequential analysis was introduced in the 1940s, motivated by
industrial applications, and has continued to develop actively.!*? Over the past 20 years, there has
been extensive development in the biostatistics literature concerning the sequential monitoring of
clinical trials. Seminal contributions were made by Armitage et al.,> Pocock* and O’Brien and
Fleming.® Lan and DeMets® developed a general framework for monitoring trials that empha-
sizes the role of Brownian motion, thereby making more explicit how monitoring of clinical trials
is related to the theory of sequential analysis developed in the mathematical statistics literature.
In describing the application of this general framework, Lan and DeMets’ discuss the rolc played
by the concept of statistical information, but only in informal terms.

The purpose of this expository paper is to describe the role of information and Brownian
motion in the sequential monitoring of trials in a manner that is easily accessible to clinical trials
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biostatisticians. In Section 2 we introduce the concept of statistical information and illustrate this
concept through two one-sample non-sequential examples. In Section 3 we begin the develop-
ment of a general framework for sequential monitoring by introducing certain important
stochastic processes, taking as a starting point the simple problem of inference for a one-sample
mean. The development continues in Section 4 with the introduction of the Brownian motion
process in the context of inference for a one-sample mean. In Section 5, the general framework for
sequential monitoring is described in full form. In Section 6 we describe how the general
framework is applied to the following common clinical trials situations: (1) two-sample testing
with a single continuous endpoint, (2) two-sample testing with longitudinal (that is, repeated
measures) data, and (3) two-sample testing with a survival endpoint. Finally, in Section 7 we give
a brief summary.

2. MEASURING STATISTICAL INFORMATION

In sequential monitoring, the statistically appropriate measure of how far a trial has progressed is
not the sample size enrolled but rather the amount of statistical information accumulated. The
amount of information accumulated is reflected fully by the sample size in certain special cases,
but not in general. This section presents a simple introduction to the concept of statistical
information through two examples in a one-sample non-sequential framework. Application of the
concept to common two-sample clinical trial designs with sequential monitoring is described later
in the paper.

A statistical problem typically can be cast as a problem of drawing inference about a parameter
0, such as a population mean. In this section we consider testing the null hypothesis H,: 0 = 8,
using a test statistic Z that is based on an estimate § of §. The test statistic Z is of the form

Z = (0 — 80)/</var(8). | . 1)

The statistical information about 6 provided by the data is defined to be simply the inverse of
var(). The idea of defining information as the inverse of the variance of a parameter estimate has
obvious intuitive appeal: a higher inverse variance means a lower variance, which means a greater
degree of precision in the estimate, which intuitively means a greater level of information about
the parameter. The intuitive appeal of this definition should help to explain it to physicians and
other investigators. :

The two examples below illustrate the definition and show how the amount of information
available is related to the power of the test statistic Z to detect departures from H,. The
presentation deals with one-sided testing, but the same arguments apply to two-sided testing.

Example 1: one-sample problem

Suppose that X, ..., Xy are independent and identically distributed (i.i.d.) observations with
mean 8 and variance ¢2, and that we wish to draw an inference about the mean 6. The
observations could represent measurements of a clinical response variable on each of N patients.
Assume for simplicity that ¢* is known; assume further that the data have been normalized to

make ¢ equal to one. The most commonly used estimator for § is the sample mean,

Xy=@+ ... + Xy)/N. When the Xs are normally distributed, Xy is the maximum likeli-
hood estimate (MLE) of 4.

The variance var (Xy) of Xy is 1/N. Therefore, by the definition given above, the information
I provided by the data is equal to the sample size N. : '
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INFORMATION AND BROWNIAN MOTION IN SEQUENTIAL TRIALS 755

Now consider testing the null hypothesis Ho: 6 = 6,. The test statistic (1) is given by
Z = (\/N)(Xy — 0,). The expected value of Z for general 8 is given by &,[Z] = (/N — 6,).
This equation can be rewritten as

&[Z] = (D3, @

where 6 = 6 — 0, is the difference between the true value of the parameter 6 and the null
hypothesis value. By construction, var(Z) = 1. When the Xs have a normal distribution, Z also
has a normal distribution. For Xs with an arbitrary distribution, the central limit theorem
indicates that when N is large, Z is approximately normally distributed. With Z regarded as
normally distributed, the test rule is to reject the null hypothesis when Z > z,, where z, is the
standard normal critical value corresponding to the desired type I error level (for example,
z, = 1'96 for a one-sided level of « = 0-025). In addition, the power of the test statistic Z to reject
H, is given by

power = Pry(Z > z,) = Pro(Z — 64[Z] > 2, — 6[Z]) = ®(8[Z] — z.), ®

where @ denotes the standard normal distribution function. To achieve a desired power of 1 — §
one needs &[Z] = z, + z5, where z; is the approximate standard normal critical value (for
example, z; = 1-28 for 90 per cent power). Using (2), it follows that the information required to.

achieve the desired power is _
2
I* = (f_“;ﬁ> . : @

For this example, the required sample size is N* = I*,
The next example involves the linear random effects model for longitudinal data. Readers
unfamiliar with this setting may wish to skim over this example at a first reading.

Example 2: linear random effects model

Consider a longitudinal study in which a clinical response variable is measured on each of
N patients at successive timepoints, with patient i measured at timepoints xel=1,...,L}
The number of measurements available may vary from patient to patient because of staggered
entry into the study. Let ¥; denote the response of patient i at time x;. Suppose that the ¥s satisfy
the linear random effects model, defined as

Y=y +0x + &,

where y; is a patient-specific intercept, §; is a patient-specific slope, and the ¢, are i.i.d. error terms,
independent of the y; and 6;, with mean zero and variance o7 (cf. Laird and Ware®). Assume also
that the random vectors (y;, 6;) are i.i.d. across patients, with mean (, 8) and covariance matrix
given by var(y;) = a7, var(6;) = 6} and cov(y;, 6;) = 0,5. The development below deals with
inference for the mean slope 6.

The least squares estimate of the patient-specific slope 6; is given by

i = S — %)Yy
D Y C TR A

where X; = (x; + -+ + x,)/L;. The variance of 0, is

v =0p + [af/ i (x; — X,-)il.
I=1
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Each 6; can be regarded as a separate estimate of the mean slope 6. By the general definition of
information stated at the beginning of this section, the amount of information associated with §,
as an estimate of is v 1. A natural overall estimate of 6 is obtained by forming a weighted linear
combination of the 6;, with each 6; weighted according to the amount of information associated
with it. The resulting estimate is

(Ee(ie)

The estimate § can be shown to be the MLE of 6 under the normal model in which (y:, 0:) is
bivariate normally distributed and &; is normally dlstnbuted

The variance of 6 is given by var(f) = [v; ! + oyt Accordingly, the amount of
information about 0 provided by the data is I = var((?)‘l =v;'+ -+ + vy’ For testing the
null hypothesis Hy: 8 = 6, the development proceeds as in Example 1.

Notice that the total amount of information provided by the data is equal to the sum over i of
the amount of information associated with B The notion that total information may be
expressed as the sum of individual contributions of information is reflected in Proposition 2 of
Section 3.

The amount of information v;”! that individual i provides about § may be re-expressed as

L; -1
wrma(ion) f e
1=1

where R = ¢2/03. It is easy to show that Z , {(x; — X;)* increases as L, increases. Assume that
the data have been normalized so that ¢ = 1 Then, as }:, | (x; — X;)? increases to infinity,
v; ! increases to 1. Thus, an individual’s information contribution increases gradually from 0 to

1 as more measurements are taken. This situation differs from Example 1, in which the amount -

of information associated with an individual jumps from O to 1 when the individual has the
single measurement taken, with no further increase in the mdmdual’s information contribution
thereafter.

The ideas of the foregoing examples carry over to any statistical problem involving a test of the
form (1). Once an expression for the statistical information provided by the data is derived, the
general expressions (3) and (4) can be exploited.

In certain settings, such as two sample with survival data (Section 6.3), it is more natural to deal
with the test statistic Z, or a related test statistic, than with the parameter estimate 6. In this case,
an expression for the statistical information can be derived by inverting (2), to obtain

I =(&[Z]/6)>. | (©)

In all of the above examples, the statistical information I does not depend upon the value of the
parameter 6. This result holds typically in models that are linear in 6 but not in models that are
non-linear in 6, such as the binomial model or the survival model of Section 6.3. When I depends
on 8, it is generally convenient to take the null hypothesis value Iy, as an approximate working
definition of the statistical information. This approximation is usually adequate for practical
purposes under moderate deviations from the null hypothesis, such as those represented by the
moderate treatment effects that commonly arise in large-scale clinical trials.
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3. SEQUENTIAL MONITORING AND STOCHASTIC PROCESSES

The foregoing discussion is now extended to the context of sequential monitoring. A key element
in formulating a unified theory is the introduction of various relevant stochastic processes. The
initial development here is carried out for the simple one-sample testing problem with a single
continuous variable (Example 1 of Section 2). In Section 6 we will describe how the results can be
applied to two-sample testing with more complex response variables.

Recall that the simple one-sample problem involves i.i.d. observations X, . .., Xy with mean
6 and variance o>, For simplicity, the assumption is made again that 6> = 1. The null hypothesis
is H 0. 8=0.

Define the partial sum S; by So =0and Sy =X, + -+ + X; for k= 1,..., N. Elementary
calculations establish that -

(P1): &S] = kb
(P2): . var(Sy) =k
(P3): cov(Sy, S;) = min {k, I}.

Also, by the central limit theorem, (S — k)/./k tends to the standard normal distribution N (0, 1)
as k tends to infinity.

The variance var(S;) = k is equal to the amount of information accrued when there are
k observations in the study. Furthermore, the expectation £[S,] = k6 grows linearly with the
amount of information. This linear relationship can be used to examine the data ‘trend’ over the
course of the study, as discussed and illustrated graphically by Lan and Wittes.® As the study
progresses, the amount of information k grows from 0 to N, the final sample size. The quantity
7, = k/N represents the fraction of information available at the kth observation, relative to the
total information N associated with the planned end of the study. This quantity 7, will be-called
the "information time’ associated with the calendar time of the kth observation.”

Some important stochastic processes associated with sequential monitoring can now be
described. Let ¢ represent elapsed calendar time over the course of the study (¢ = 0 is the start of
the study and t = T is the planned end of the study), and-let k(f) denote the number of
observations accumulated by calendar time ¢. Also, let I{t) = k(f) denote the amount of informa-
tion available as of calendar time ¢, and let t, denote the calendar time at which the kth
observation is taken. Define S(t) = Sy). Then, if an interim analysis were conducted at calendar
time ¢, the estimate of the mean 6 would be E(t) = S(t)/k(t) and the test statistic for testing Hy:
8§ = 0 would be Z(r) = S(t)//(k(2)).

Properties (P1)~(P3) for the partial sums {S,} lead to the following properties for the processes
{S@®):te[0,T1}, {E():tety, T]} and {Z(t): te [t,, T]}:

(S1): E[S®)] = 1()0

(S2): var(S(t)) = I{t)

(83): cov(S(t), S(u)) = min {I(z), I(u)}.
(El):‘ , E[E@®)] =9

(E2): \ var(E(t)) = I(1)~"

(E3):: | cov(E(t), E(u)) = min {I(t)~*, I(u)™'}.
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(21): e[Z(®)] =/ (1()0
(Z2): " var(Z(t)) = 1 v
(Z3): cov(Z(t), Zw) = [I(t)/I(w)]'? fort < u.

In general, a stochastic process satisfying (S1)—(S3), (E1)~(E3) or (Z1)—~Z3), respectively, will be
referred to as an S-process, an E-process or a Z-process, with mean 8 and information function o
I(t). For a Z-process, the total information I(7") must be specified separately because it is not 2
uniquely determined by the mean and covariance structure of the process. Given an S-process, an
E-process or a Z-process, one may easily obtain processes of the remaining two types through the E
equations

S) = HOE®) = JU@)Z() n e
E@®) = S@)/10) = 2/ I()) ® 0
Z() = S©)//U®) = JUD)EQ). ) h

The concepts of an S-process, an E-process and a Z-process are useful because many sequential
monitoring situations can be expressed in terms of an (S, E, Z)-process structure, as will be shown
in Section 6. In clinical trials practice, study results are most familiarly expressed in terms of
a Z-process (representing a sequence of Z-values) or an E-process (representing a sequence of
treatment effect estimates), but for the theoretical development in Sections 4 and 5 the most
natural starting point is an S-brocess. The following two simple propositions provide useful tools
for formulating sequential schemes in clinical trial settings.

0.0 h e <

Proposition 1 Let {Eq(t)} and {E, ()} be independent E-processes with respective means 8, and
6, and respective information functions I,(t) and I, (t). Then the process E(t) = E,(t) — Eo(t) is an
E-process with mean 6 = §, — 6, and information function I(t) = [Io()"* + I, (1) 1]~ .

[}

Proposition 2 Let {S;(t)} and {S,(t)} be independent S-processes with common mean 6 and
respective information functions I,(t) and I,(t). Then the process S(t) = S;(t) + S,(t) is an
S-process with mean 6 and information function I(t) = I,(t) + I,(¢).

IR

The result () = I;(t) + 1,(t) in Proposition 2 represents a formalized version of the notion that
the total amount of information provided by two independent pieces of an S-process, represented
by S, and S, is the sum of the amounts of information associated with each piece.

Lo I S W LIRS o

4. BROWNIAN MOTION

In this section we introduce Brownian motion, which plays a central role in the theory of

sequential data monitoring. The presentation here continues with the one-sample problem

discussed in the preceding section, and all the notation of that section carries over here. Denote
. the set of information times by .# = {t,, . .., ty}. Define a new process By(z:) for 7, € . by

N A e 4

-  Batw)= m(%) = S/YN = SG/VUD). (10) | :

The quantity By(t) is the B-value defined by Lan and Wittes.® ' ' ¢




: 1at

INFORMATION AND BROWNIAN MOTION IN SEQUENTIAL TRIALS 759

Straightforward calculations based on Properties (S1)-(S3) show the following for two
information times t and 7', with ® =(,/N)8 (corresponding to ® =(,/N)u in Lan and
Wittes®): ‘

(B1): E[By(7)]1 =01
(B2): var(By(t)) =t
(B3): cov(By(t), By(t')) = min{z, 7'}

Note that By is defined only at the discrete information times in #. Its definition may be extended
to the continuous time scale (se[0,1]) by setting By(s)=0 for s<t,=1/N and
By(s) = By(ti) = By(k/N) for s in the interval [t:, Tx+1) In other words, By(s)=
By([Ns]/N), with [Ns] denoting the greatest integer k such that k < N.

The resuiting extended version of By is an S-process over s in the interval [0, 1] with
information function I*(s) = 1, in the interval [t;, 7, + 1 ). In particular, the total information I*(1)
is equal to one. Thus, the process By may be viewed simply as a ‘standardized’ version of the
S-process {S(t)} obtained by (a) changing the time scale from calendar time ¢ to information time
s and (b) rescaling the ordinate so that the total information is normalized to a value of one.

Suppose now that 8 = 0 (so that ® = 0). Then &[By(s)] = 0 and

cov(By(s1), By(s,)) = min { @I;—lﬂ , [N_AS’:J} =min{sy, s;},

where the approximate equality applies for large N. Now for fixed s, [Ns] tends to infinity as
N tends to infinity. Therefore, by the central limit theorem result for S, the random variable
Sinsi/+/ [Ns] converges in distribution to N(0, 1) as N tends to infinity. In addition, for fixed s, the
quantity [Ns]/N converges to s as N tends to infinity. It follows that By(s) converges in
distribution, as N tends to infinity, to the normal distribution N(0, s).

More generally, it can be shown that for any given set of information times s,, . . ., s, in the
interval [0, 1], the random vector (By(s;), - . . , Bn(s,)) converges in distribution, as N tends to
infinity, to a multivariate normal random vector (B*(s,),. .., B*(s,)) with mean zero and
covariance given by cov(B*(s,), B*(s,)) = min{s,, s, }.

This result implies that the process {By(t)} may be approximated by a stochastic process
known as Brownian motion. The Brownian motion process is defined to be a stochastic process
{B(s): s € [0, 1]} such that for any s,, .. ., s,in [0, 1], the random vector (B(s,), . . ., B(s,)) has
a multivariate normal distribution with mean =zero and covariance given by
cov(B(s,), B(s,)) = min {s,, s,}. The Brownian motion process is well known in the stochastic
process literature and has been extensively studied.'?

In the case when 8 is not equal to 0, arguments similar to those above show that the random
vector [(Bw(s1), . . ., By(sp)) — (\/N )0(s1, . . ., sp)] converges in distribution to (B(s,), . . ., B(s,)).
Roughly speaking, this means that for large N the process By is approximately equal in
distribution to the process Bg(s) = B(s) + s, which is called Brownian motion with drift ®. The
case when € is not equal to O plays a key role in conditional power calculations and stochastic
curtailment in clinial trials, as discussed by Lan and Wittes.?

5. 'GENERAL MONITORING FRAMEWORK BASED ON BROWNIAN MOTION

The éroundwork has now been laid for the presentation of a general framework for sequential
monitoring. This general framework allows monitoring in a complex clinical trial setting to be
carried out using standard methods*~% that can be expressed in terms of Brownian motion,
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provided that the setting conforms to an (S, E, Z)-process structure. The concept of information
time plays a key role in this general framework.

Because most clinical trialists tend to think in terms of Z-values, a natural starting point is the
Z-process {Z(z)}, with mean 6 and information function I(t), that comprises the test statistic
Z-values corresponding to the interim data at each calendar time t. It is of great importance to
note that {Z(¢)} must have the special covariance structure described by (Z3) to qualify as
a Z-process; it does not suffice simply to have Z(z) distributed approximately as N(0, 1) in large
samples for each separate t. Let t(t) = I(t)/I(T) represents the information time corresponding to
calendar time t. Assume that I(t) jumps at Ky calendar times ¢,,...,tx, as increments of
information are accrued (for the one-sample example of Sections 3 and 4, a jump occurs each time
a new observation is added). Let 7, = () be the information time at the kth of these jumps. Let
{8()} be the S-process corresponding to {Z(t)}, as given in (7). By analogy with (10), define

By(ti) = S(t)// (D)) = (V1) Z(ta).

As was the case in the setting of the previous section, Properties (S1)—(S3) of the S-process imply
that {By(7;)} satisfies (B1)—~(B3) with ® = (I(T))6. .

In other words, {By(t,)} has the mean and covariance structure of Brownian motion with drift
® = . /(I(T))8. As in the preceding section, the definition of By may be extended to general s by
setting By(s) = O for s < 7; and By(s) = By(t;) for s in [ty, 4+ ). Furthermore, in typical clinical
trial applications, asymptotic arguments analogous to those in the preceding section show that
{Bn(s): s € [0, 1]} may be regarded as approximately equal to Brownian motion with drift .-

These results allows existing monitoring methods based on Brownian motion to be applied to
general situations. For a given calendar time ¢ corresponding to information time s, By(s) is
related to Z(z) by the equation

By(s) = (V/9)Z(0). | (11)

Thus, in carrying out a monitoring procedure, Z(t) can be converted into By(s) directly, without
having to form the S-process {S(¢)} explicitly.

The application of this transformation to Brownian motion in monitoring proceeds as follows.
In general, implementing a monitoring scheme involves evaluating probability expressions of the
form

= PYHO(Z(tT) <Crseeny Z(t:—l) < Cp—la Z(t:) = cp)’

where t7,. . ., t are the calendar times of the first p looks and c, . . ., ¢, are the corresponding
critical values. The quantity IT represents the probability of crossing the boundary at the pth look
(but not before). Using (11), IT may be re-expressed as

I1 = Pry,(By(sy) < &,. . ., Ba(s,~1) < &1, Byls,) = &,), (12)

where ¢, = c,\/ s,. Because By behaves asymptotically like an ordinary Brownian motion process
{B(s)} under H,, the expression on the right side of (12) is asymptotically equal to the corres-
ponding expression with By replaced by B. In turn, the asymptotic expression involving B may be
evaluated using numerical techniques described by Lan and DeMets® for sequential monitoring
of a Browhian motion process. :

In situations where the information function I(f) depends on the parameter 6, it is convenient to
approximate Io(t) by its null hypothesis value I,,(t), as suggested in Section 2. This approximation
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avoids the problems associated with using an estimate of @ in the implementation of the
sequential scheme. Again, the approximation typically is quite reasonable under moderate
deviations from the null hypothesis.

In the sequential setting, the expression (3) for power no longer strictly applies. When
a procedure of the O’Brien-Fleming type is used, though, the effect of sequential monitoring on
power is minimal, that is, of the order of 2 percentage points of power.

In short, monitoring the Z-process {Z()} (or the corresponding S-process or E-process) at
tT,...,t, is exactly the same as monitoring the Brownian motion process {B(s)} at sy, . .. s,.
This key idea can be used to adapt any sequential procedure based on Brownian motion to any
setting with (S, E, Z)-process structure.

6. MONITORING IN TYPICAL CLINICAL TRIAL SETTINGS

In this section we provide an outline of how the general monitoring framework presented in
Section 5 may be applied to some common clinical trial settings.

6.1. A two-sample trial with a single continuous endpoint

Let X,,..., Xy, denote iid. observations on treatment and let Yy,..., Yy, denote-iid.
observations on control. Let N = N, + N, denote the total planned sample size. Denote the
mean of the Xs by u +  and the mean of the ¥s by u. Assume that the Xs and the Ys have
a common variance of 1. The goal is to test the null hypothesis Hy: 6 = 0.

Let X, and 7, denote the sample means for treatment and control, respectively, based on the
data available as of calendar time . The standard estimate of 8 for this problem based on the data
as of time ¢ is the mean difference 4(t) = X, — ¥,. Because the treatment group data and the
control group data can each be viewed separately as independent sets of one-sample data, the
development in Section 3 indicates that the processes {X,} and {Y,} are independent E-processes.
The process {X,} has mean u + § and information function I 1(t) = N(t), where N(t) is the
sample size in the treatment group as of calendar time t. The process {Y,} has mean y and
information function I,(f) = N, (t), where Ny(t) is the sample size in the control group as of
calendar time t. Therefore, by Proposition 1 of Section 3, the difference process o(t) is an
E-process with mean é and information function '

1 1 \! -
I(t)=<No(t>+N1(t)) ‘ 13

Arguments based on the central limit theorem analogous to those in Section 5 show that the
process {By(s)} obtained from the E-process {5(t)} can be approximated by a Brownian motion
process. Accordingly, a monitoring scheme for the trial may be formulated as described in
Section 5. ‘

The information time (t) = I(z)/I(T) obtained from (13) differs from the sample size ratio
#(t) = (No(t) + N1()/(No + N,), referred to as the ‘process time’ by Lan et al.!! However, £(t) is
nearly equal to t(f) in many circumstances. Accordingly, in data monitoring meetings, a rough
description in terms of #(t) often will be appropriate, though actual calculations should use the
rigorous expression for 7(t) based on (13). :

A similar development may be given for the case of a two-sample trial with a binomial
~ endpoint. In this case, though, the development involves the approximation I =1,,.
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6.2. A two-sample trial with repeated measurements

Consider a longitudinal study in which successive measurements are taken over time on a series of
patients (planned total sample size of N), each belonging to one of two independent groups:
a control group (group 0) and a treatment group (group 1). Specifically, individual i in group g is
measured at timepoints {x;: / = 1,..., L,}. The number of measurements available may vary
from patient to patient as in Example 2 of Section 2. Let Y,; denote the response of patient (g, i)
at time x;. The Ys are assumed to follow the model '

Ygil = Ygi + ggixl + egil:

where the (7,;, 0,;) are i.i.d. across i, with mean (y,, 6,) and common covariance matrix given by
var(y,) = o2, var(6,) = o5 and cov(y,, 0,) = 6,9, and the ¢, are iid. with mean zero and
variance o7 and are independent of y,; and Oy

In developing a sequential monitoring scheme for this setting, the first step is to develop results
for a specific individual (g, i). For calendar time ¢, let L,(t) denote the number of measurements
available on individual (g, i) and let Gg,(t) denote the estimate of the individual-specific slope

'6,; based on these measurements, computed in the manner described in Example 2 of Section 2.

Further, let t%9 denote the earliest calendar time ¢ for which L(t) is equal to or greater than 2,

that is, the earliest calendar time ¢ for which 6,(¢) can be defined. Note that 6,(t) — 6,; may be

written as

Lgi -
150 (x, — %u(1)) Egu

st:(I)(xl _ xg; t))z ?

where Xg(t) = (x4 + - + Xp_.»)/ Lyi(t). Consider now two calendar times ¢ and ¢’ with ¢ >
and L(t), L({t") = 2. Vlewmg 0,:(t) and 0,,(t') as estimates of 8,; and conditioning on the value of
0,:, one obtains

égi(t) - Ogi =

fgi:n( - Xgi(1)) €gar ZLK'U ' (x, — Xgi(t'))egu
YO0 — 2a0)? T — Ze))
1210 (60— %gu(8) (51 — Kit'))
Z’*“" (1 — Za@)E = (xr — Zault))?)
T (= Zlt))?
e o — 2@ (- %:(0))?)

cov(8,u(t), ,(t)16,1) = cov

=O’e

/ Y (x ~ %u0)

Unconditionally, viewed as estimates of §,, the random variables ﬁqi(t) and ég,-(t’) satisfy
cov(@(t), 0,u(t")) = cov(& [0,:(1)183:1, €[0,:(2')10,:1) + E[cov(Gu(t), B,u(t'))16,)] = i),

where -
N

‘ Lgi(®)
Ugl(t) - var(Bg,(t)) = UB + |: / Z (X, - xgt(t)) ]
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Thus, for given g, i, the process {ég,-(t)} is an E-process with mean 6, and information function
Iu(t) = vu(®)™'. By (7), the process {S,(t)} defined by S,()=0 for ¢< 99 and
S4i(t) = vyi(t) ™ 6,(2) for ¢ > t¥” is an S-process.

The next step is to combine the results across individuals within a group. In particular, because
the individuals (g, i) within group g are independent, Proposition 2 of Section 3 implies the
process {S,(t)} defined by S,(t) = S,,(8) + - - - + San,(?) is also an S-process, with mean 6, and
information function I,(t) = v, (t)"* + - -+ + v,n, (). The E-process that corresponds to
{S,(t)} in accordance with (8) is given by :

~ NZ ~ NB
0,(2) =( > vgi(t)—legi(t)>/< > vgi(t)_l>‘

i=1 i=1

The quantity ég(t) is the weighted-average overall estimate of 6, analogous to (5) for the data
accumulated up to calendar time ¢.

The final step is to consider the comparison of the two groups. Because the treatment and
control groups are independent, the E-processes {6,(1)} and {f,(t)} are independent. Therefore, -
by Propostion 1 of Section 3, the process d(t) = 6, (f) — 6o(t) is an E-process with mean & and
information function I(t) = [Io(t)"! + I,(t)~ ']~ ". As for the case of a single continuous end-
point, arguments analogous to those in Section 4 show that the process {Bn(s)} obtained from the
E-process {6(z)} can be approximated by a Brownian motion process. Thus, a monitoring scheme
for the trial again may be formulated as described in Section 5. A similar development for a more
complicated repeated measyrements model is given by Wu and Lan.!2

6.3. A two-sample trial with a survival endpoint

Consider a two-sample survival trial, having a total planned sample size of N, with hazard
function 44(u) in the control group and hazard function A, () in the treatment group, where u is
the time from randomization. The most popular test statistic for testing the null hypothesis that
the survival patterns in the two groups are identical is the logrank statistic introduced by -
Mantel'? and by Peto and Peto.!* The logrank statistic is well known to have desirable
optimality properties under the Cox'® proportional hazards model, which postulates that
A1(u) = e % (u) for some scalar parameter § (with the null hypothesis corresponding to 6 = 0). In
deriving an expression for statistical information, the most natural starting point is the logrank

test itself rather than the associated estimate of the parameter 4.

Let Z(¢) denote the logrank Z-value based on the data available at calendar time . Also let
N,(¢) denote the sample size in group g as of calendar time ¢, let N(t) = N o(t) + N(t) denote the
total sample size as of calendar time ¢, and let 4°(z) denote the expected total number of failures
among both groups combined as of calendar time ¢ under the null hypothesis Hy: 6 = 0.

Assume that the proportional hazards model holds and that the log hazard ratio 6 is small.

‘Then, as indicated by Schoenfeld'® and Freedman,!’ the expected value of Z(f) when

No(t) = N,(t) is given approximately by &[Z(t)] = 0\/ (d°()/4). Accordingly, from (6); the
appropriate expression for the statistical information I(t) at calendar time ¢t when N, o) =N(®)is
I(t) = d°(t)/4. For general N,(t) and N, (t), similar reasoning shows that the information I(z) is

given\by
(1 t \! d°(t)>
1) = (No(r) * Nl(t)> (N(t) '
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The process {Z(t)} does not satisfy the precise definition of a Z-process, because Properties (Z1)
and (Z3) hold exactly only for § = 0 and approximately only for suitably small 8. Nevertheless,
one may formally define S(¢) by (7) and By(s) as described in Section 4. Asymptotic arguments
given by various authors'®~ 2! imply that {By(f)} may be approximated for large N by
a Brownian motion process under the null hypothesis § = 0 and by a Brownian motion process
with drift for large N and suitably small 6. Thus, the framework of Section 5 may be employed to
develop a sequential monitoring scheme for the trial.

7. SUMMARY

Most clinical trials require some form of periodic examination of accruing data for ethical
reasons. Often a formal sequential monitoring scheme is appropriate. Accordingly, there has been
much attention in the biostatistics literature to sequential monitoring of clinical trials. The
literature has focused mainly on the simple case of a two-sample trial with a single continuous
endpoint. Many clinical trials, however, involve a more complex data structure.

This paper has presented a general framework for sequential monitoring that may be applied to
a wide variety of clinical trial situations. A key role in this framework is played by the concept of
statistical information, defined as the inverse of the variance of the parameter estimate of interest,
and by the concept of ‘information time’, defined as the ratio of the amount of information
available at a given study calendar time to the amount of information that is to be available at the
planned end of the study. ' '

The crucial step is the application of a suitable transformation to the sequence of treatment
effect estimates or Z-values observed over the course of the study. In typical clinical trial
applications, the sequence of estimates or Z-values at hand describes an E-process or a Z-process,
as defined in Section 3, and therefore may be converted to an S-process by (7).

This S-process, in turn, may be converted to a standardized By-type form by rescaling the time
axis from calendar time to information time and normalizing the process to make the total
information equal to one. The By-process thereby obtained, in typical clinical trial applications,
can be approximated by a Brownian motion process. This result allows clinical trials with
complex data structures to be monitored using procedures for monitoring a Brownian motion
process.

This approach has been illustrated for three typical clinical trial settings: the two-sample trial
with a single continuous endpoint, the two-sample trial with repeated measurements, and the
two-sample trial with a survival endpoint. The resuits given for these situations have direct
practical application in clinical trial monitoring. In addition, the same general approach may be
used to develop sequential monitoring schemes for other situations.
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