CONFIDENCE INTERVALS FOR THE SURVIVOR FUNCTION IN THE COX REGRESSION MODEL

In the Cox model, the survival function is given by $S(t|\mathbf{z}) = \exp(-e^{\boldsymbol{\beta}^T \mathbf{z}} \Lambda_0(t))$. It is estimated by $\hat{S}(t|\mathbf{z}) = \exp(-e^{\hat{\boldsymbol{\beta}}^T \mathbf{z}} \hat{\Lambda}_0(t)))$, where $\hat{\boldsymbol{\beta}}$ is the Cox partial likelihood estimate of $\boldsymbol{\beta}$ and $\hat{\Lambda}_0(t)$ is the corresponding Breslow estimate of the cumulative hazard function:

$$\hat{\Lambda}_0(t) = \sum_{i:X_i \le t} \frac{\delta_i}{\sum_{j=1}^n Y_j(X_i) e^{\hat{\boldsymbol{\beta}}^T \mathbf{Z}_j}}.$$
(1)

The purpose of these notes is to develop a confidence interval for $S(t|\mathbf{z})$. We do this by developing a confidence interval for $\Lambda(t|\mathbf{z})$ and then transforming this interval into a confidence interval for $S(t|\mathbf{z})$.

In the development below, we will use the symbol \doteq to denote approximate equality. This means that the difference between the two sides of the \doteq symbol is negligible for large n.

We have

$$\Lambda(t|\mathbf{z}) = \Lambda_0(t)e^{\boldsymbol{\beta}^T \mathbf{z}}, \quad \hat{\Lambda}(t|\mathbf{z}) = \hat{\Lambda}_0(t)e^{\hat{\boldsymbol{\beta}}^T \mathbf{z}}.$$

By Taylor expansion we have

$$e^{\hat{\boldsymbol{\beta}}^T \mathbf{z}} \doteq e^{\boldsymbol{\beta}^T \mathbf{z}} + e^{\boldsymbol{\beta}^T \mathbf{z}} \mathbf{z}^T (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}).$$

Hence

$$\hat{\Lambda}(t|\mathbf{z}) = \hat{\Lambda}_{0}(t)e^{\hat{\beta}^{T}\mathbf{z}}$$

$$\doteq \hat{\Lambda}_{0}(t)[e^{\beta^{T}\mathbf{z}} + e^{\beta^{T}\mathbf{z}}\mathbf{z}^{T}(\hat{\beta} - \beta)]$$

$$= \Lambda_{0}(t)[e^{\beta^{T}\mathbf{z}} + e^{\beta^{T}\mathbf{z}}\mathbf{z}^{T}(\hat{\beta} - \beta)] + [\hat{\Lambda}_{0}(t) - \Lambda_{0}(t)][e^{\beta^{T}\mathbf{z}} + e^{\beta^{T}\mathbf{z}}\mathbf{z}^{T}(\hat{\beta} - \beta)]$$

$$= \Lambda_{0}(t)e^{\beta^{T}\mathbf{z}} + \Lambda_{0}(t)e^{\beta^{T}\mathbf{z}}\mathbf{z}^{T}(\hat{\beta} - \beta) + e^{\beta^{T}\mathbf{z}}[\hat{\Lambda}_{0}(t) - \Lambda_{0}(t)]$$

$$+ e^{\beta^{T}\mathbf{z}}[\hat{\Lambda}_{0}(t) - \Lambda_{0}(t)][\mathbf{z}^{T}(\hat{\beta} - \beta)]$$

$$= \Lambda(t|\mathbf{z}) + \Lambda_{0}(t)e^{\beta^{T}\mathbf{z}}\mathbf{z}^{T}(\hat{\beta} - \beta) + e^{\beta^{T}\mathbf{z}}[\hat{\Lambda}_{0}(t) - \Lambda_{0}(t)]$$

$$+ e^{\beta^{T}\mathbf{z}}[\hat{\Lambda}_{0}(t) - \Lambda_{0}(t)][\mathbf{z}^{T}(\hat{\beta} - \beta)].$$
(2)

Now, $\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}$ and $\hat{\Lambda}_0(t) - \Lambda_0(t)$ are both $O_p(n^{-\frac{1}{2}})$, and thus $[\hat{\Lambda}_0(t) - \Lambda_0(t)][\mathbf{z}^T(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]$ is $O_p(n^{-1})$. It follows that the last term on the right hand side of (2) is negligible in comparison with the preceding two terms.

We thus get

$$\hat{\Lambda}(t|\mathbf{z}) - \Lambda(t|\mathbf{z}) \doteq \Lambda_0(t) e^{\boldsymbol{\beta}^T \mathbf{z}} \mathbf{z}^T (\boldsymbol{\hat{\beta}} - \boldsymbol{\beta}) + e^{\boldsymbol{\beta}^T \mathbf{z}} [\hat{\Lambda}_0(t) - \Lambda_0(t)].$$

Applying a Taylor approximation to (1), we get

$$\hat{\Lambda}_0(t) \doteq \tilde{\Lambda}_0(t) - \mathbf{C}(t)^T (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}),$$

where

$$\tilde{\Lambda}_0(t) = \sum_{i:X_i \leq t} \frac{\delta_i}{\sum_{j=1}^n Y_j(X_i) e^{\boldsymbol{\beta}^T \mathbf{Z}_j}}, \quad \mathbf{C}(t,\boldsymbol{\beta}) = \sum_{i:X_i \leq t} \frac{\sum_{j=1}^n Y_j(X_i) e^{\boldsymbol{\beta}^T \mathbf{Z}_j} \mathbf{Z}_j}{[\sum_{j=1}^n Y_j(X_i) e^{\boldsymbol{\beta}^T \mathbf{Z}_j}]^2}.$$

Thus,

$$\hat{\Lambda}(t|\mathbf{z}) - \Lambda(t|\mathbf{z}) \doteq e^{\boldsymbol{\beta}^T \mathbf{z}} \left[\sum_{i:X_i \leq t} \frac{\delta_i}{\sum_{j=1}^n Y_i(X_i) e^{\boldsymbol{\beta}^T \mathbf{z}_j}} - \Lambda_0(t) \right] + e^{\boldsymbol{\beta}^T \mathbf{z}} \mathbf{Q}(t, \mathbf{z}, \boldsymbol{\beta})^T (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}),$$

where

$$\mathbf{Q}(t, \mathbf{z}, \boldsymbol{\beta}) = \Lambda_0(t)\mathbf{z} + \mathbf{C}(t, \boldsymbol{\beta}).$$

Now, it can be shown that the variance of $\tilde{\Lambda}_0(t)$ can be estimated by

$$\widehat{\operatorname{Var}}(\widetilde{\Lambda}_0(t)) = \sum_{i:X_i \leq t} \frac{\delta_i}{[\sum_{j=1}^n Y_j(X_i) e^{\widehat{\boldsymbol{\beta}}^T \mathbf{Z}_j}]^2} \,.$$

This variance expression is analogous to the variance expression for the Nelson-Aalen cumulative hazard function estimator for the case of univariate data. In addition, it can be shown that $\tilde{\Lambda}_0(t) - \Lambda_0(t)$ is asymptotically independent of $\hat{\beta} - \beta$. (The proof of this requires advanced methods; see Andersen and Gill (1982, Ann. Stat.), page 1104.)

We thus get

$$\widehat{\operatorname{Var}}(\widehat{\Lambda}_0(t)) = (e^{\widehat{\boldsymbol{\beta}}^T \mathbf{z}})^2 \left[\sum_{i:X_i \le t} \frac{\delta_i}{\left[\sum_{j=1}^n Y_j(X_i) e^{\widehat{\boldsymbol{\beta}}^T \mathbf{z}_j}\right]^2} \right] + \mathbf{Q}(t, \mathbf{z}, \widehat{\boldsymbol{\beta}})^T \widehat{\operatorname{Cov}}(\widehat{\boldsymbol{\beta}}) \mathbf{Q}(t, \mathbf{z}, \widehat{\boldsymbol{\beta}}),$$

with $\widehat{\text{Cov}}(\hat{\boldsymbol{\beta}})$ obtained in the standard manner.