
THE COX PARTIAL LIKELIHOOD

AS A LIMIT FROM A PIECEWISE EXPONENTIAL MODEL

Suppose we have survival data with maximum follow-up time τ ∗. Let us partition the

interval [0, τ ∗] into K subintervals (τk−1, τk], k = 1, . . . , K, with τk = kh, k = 0, . . . , K,

where h = τ ∗/K. Consider the following version of the Cox model with a piecewise

constant hazard:

λ(t|z) = λ0(t)e
βT z,

with

λ0(t) = λ0k, t ∈ (τk−1, τk], k = 1, . . . , K.

We can write

λ0(t) =
K∑

k=1

λ0kξk(t), ξk(t) = I(t ∈ (τk−1, τk]).

We have Λ(t|z) = Λ0(t)e
βT z with Λ0(t) =

∫ t

0
λ0(u)du. We can express Λ0(t) as

Λ0(t) =
K∑

k=1

λ0k∆k(t),

where

∆k(t) =

∫ t

0

ξk(u)du =


0 if t ≤ τk−1

t− τk−1 if t ∈ (τk−1, τk]

h if t > τk−1

.

We have now a parametric survival model where the parameters are β and λ01, . . . , λ0k.

As usual, denote by Xi the follow-up time on subject i and by δi the event status (1=event,

0=censoring). The log-likelihood is then given by

` =
n∑

i=1

δi log λ(Xi|Zi)−
n∑

i=1

Λ(Xi|Zi)

=
n∑

i=1

δi log

[
eβT Zi

K∑
k=1

λ0kξk(Xi)

]
−

n∑
i=1

[
eβT Zi

K∑
k=1

λ0k∆k(Xi)

]

=
n∑

i=1

δiβ
TZi +

n∑
i=1

δi log

[
K∑

k=1

λ0kξk(Xi)

]
−

n∑
i=1

eβT Zi

[
K∑

k=1

λ0k∆k(Xi)

]
.

Differentiating with respect to λ0q, we obtain

∂`

∂λ0q

=
n∑

i=1

δiξq(Xi)∑K
k=1 λ0kξk(Xi)

−
n∑

i=1

eβT Zi∆q(Xi)

= λ−1
0q

n∑
i=1

δiξq(Xi)−
n∑

i=1

eβT Zi∆q(Xi).
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The last step follows from the fact that ξq(t) = 1 implies ξk(t) = 0 for k 6= q. Setting the

derivative equal to zero yields

λ̂0q =

∑n
i=1 δiξq(Xi)∑n

i=1 eβT Zi∆q(Xi)
.

Let us now substitute this result back into the expression for the log-likelihood, ob-

taining a profile log-likelihood for β. We get

` =
n∑

i=1

δiβ
TZi +

n∑
i=1

δi log

[
K∑

k=1

( ∑n
j=1 δjξk(Xj)∑n

j=1 eβT Zj∆k(Xj)

)
ξk(Xi)

]

−
n∑

i=1

eβT Zi

[
K∑

k=1

( ∑n
j=1 δjξk(Xj)∑n

j=1 eβT Zj∆k(Xj)

)
∆k(Xi)

]

=
n∑

i=1

δiβ
TZi +

n∑
i=1

δi

[
K∑

k=1

ξk(Xi) log

( ∑n
j=1 δjξk(Xj)∑n

j=1 eβT Zj∆k(Xj)

)]

−
K∑

k=1

[( ∑n
j=1 δjξk(Xj)∑n

j=1 eβT Zj∆k(Xj)

)(
n∑

i=1

eβT Zi∆k(Xi)

)]
.

In the last step, the expression for the second term is obtained by using the fact that, for

a given t, the value of ξk(t) is equal to 1 for exactly one k and 0 for the others, so that

the sum over k in the corresponding term in the preceding line includes only one nonzero

summand. The expression for the third term is obtained by interchanging the order of

summation. At this point, note that a cancellation takes place in the third term. We thus

find that ` is given by

` = C1 +
n∑

i=1

δiβ
TZi −

n∑
i=1

δi

K∑
k=1

ξk(Xi) log

[
n∑

j=1

eβT Zj∆k(Xj)

]

= C2 +
n∑

i=1

δiβ
TZi −

n∑
i=1

δi log

[
n∑

j=1

eβT Zjh−1∆k(i)(Xj)

]
,

where C1 and C2 denote constants that do not depend on β, and k(i) denotes the index

k for which Xi ∈ (τj−1, τk]. Now for small h, the probability that Xi and Xj will fall in

the same interval is O(h2). Hence, recalling the definition of ∆k(t), we find that for small

h we have h−1∆k(i)(Xj)
.
= I(Xj ≥ Xi). We thus find that, as h → 0, the function ` tends

to the following (up to a constant that does not depend on β):

n∑
i=1

δi

{
βTZi − log

[
n∑

j=1

I(Xj ≥ Xi)e
βT Zj

]}
.

This last expression is precisely the log of the Cox partial likelihood.
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