Score Tests

Consider a statistical problem involving an unknown parameter $\theta \in \mathbb{R}^{p}$. Denote the loglikelihood $\ell(\theta)$, its gradient (vector of first derivatives) by $U(\theta)$, and its Hessian (matrix of second derivatives) by $J(\theta)$. Let θ^{*} denote the true value of θ. In the development below, all expectations and variances are computed under the distribution resulting from θ^{*}. Recall that the Fisher information matrix is defined by $\mathcal{I}(\theta)=-E[J(\theta)]$. In typical settings, we have the following results:

$$
\begin{align*}
& E\left[U\left(\theta^{*}\right)\right]=0, \tag{1}\\
& \operatorname{Cov}\left(U\left(\theta^{*}\right)\right]=\mathcal{I}\left(\theta^{*}\right), \tag{2}\\
& U\left(\theta^{*}\right) \dot{\sim} N\left(0, \mathcal{I}\left(\theta^{*}\right)\right), \tag{3}\\
& \mathcal{I}\left(\theta^{*}\right)^{-1} J\left(\theta^{*}\right) \xrightarrow{P} I, \tag{4}\\
& U\left(\theta^{*}\right) \dot{\sim} N\left(0, J\left(\theta^{*}\right)\right) . \tag{5}
\end{align*}
$$

Suppose we want to test the hypothesis $H_{0}: \theta=\theta_{0}$ for some special value θ_{0}. Define

$$
\begin{equation*}
S(\theta)=U(\theta)^{T} J(\theta)^{-1} U(\theta) \tag{6}
\end{equation*}
$$

From equation (5) above we get that

$$
\begin{equation*}
S\left(\theta_{0}\right) \dot{\sim} \chi_{p}^{2} \quad \text { under } H_{0} \tag{7}
\end{equation*}
$$

We can thus use $S\left(\theta_{0}\right)$ as a test statistic for testing H_{0}. This test is called the "score test."

We can extend the development to testing a subset of the elements of θ while estimating the others. Let us partition θ as $\theta=(\phi, \psi)$, where $\phi \in \mathbb{R}^{q}$ is the vector of parameters of interest and $\psi \in \mathbb{R}^{p-q}$ is the vector of remaining parameters (so-called "nuisance parameters"). Partition U correspondingly as $U(\phi, \psi)=\left[U_{\phi}(\phi, \psi) \quad U_{\psi}(\phi, \psi)\right]$, partition \mathcal{I} as

$$
\mathcal{I}(\phi, \psi)=\left[\begin{array}{ll}
\mathcal{I}_{\phi \phi}(\phi, \psi) & \mathcal{I}_{\phi \psi}(\phi, \psi) \\
\mathcal{I}_{\psi \phi}(\phi, \psi) & \mathcal{I}_{\psi \psi}(\phi, \psi)
\end{array}\right]
$$

and partition J similarly. Note that $\mathcal{I}_{\psi \phi}=\mathcal{I}_{\phi \psi}^{T}$ and similarly for J. Denote the true values of ϕ and ψ by ϕ^{*} and ψ^{*}.

Denote by $\hat{\psi}(\phi)$ the MLE of ψ with ϕ held fixed at the specified value. We have that $\hat{\psi}(\phi)$ is the solution to the equation

$$
\begin{equation*}
U_{\psi}(\phi, \hat{\psi}(\phi))=0 . \tag{8}
\end{equation*}
$$

By the same kind of standard Taylor expansion argument as is used to develop the asymptotic properties of the MLE in general, we have

$$
\begin{equation*}
\hat{\psi}\left(\phi^{*}\right)-\psi^{*} \doteq-J_{\psi \psi}\left(\phi^{*}, \psi^{*}\right)^{-1} U_{\psi}\left(\phi^{*}, \psi^{*}\right) \tag{9}
\end{equation*}
$$

Now, suppose we want to test $H_{0}: \phi=\phi_{0}$. We can build a test statistic based on $U_{\phi}\left(\phi_{0}, \hat{\psi}\left(\phi_{0}\right)\right)$. We need to work out the asymptotic distribution of this quantity under H_{0}. Assume for now that H_{0} holds. We then have

$$
\begin{align*}
U_{\phi}\left(\phi_{0}, \hat{\psi}\left(\phi_{0}\right)\right) & \doteq U_{\phi}\left(\phi_{0}, \psi^{*}\right)+J_{\phi \psi}\left(\psi_{0}, \psi^{*}\right)\left(\hat{\psi}\left(\phi_{0}\right)-\psi^{*}\right) \\
& \doteq U_{\phi}\left(\phi_{0}, \psi^{*}\right)-\mathcal{I}_{\phi \psi}\left(\phi_{0}, \psi^{*}\right) \mathcal{I}_{\psi \psi}\left(\phi_{0}, \psi^{*}\right)^{-1} U_{\psi}\left(\phi_{0}, \psi^{*}\right) \tag{10}
\end{align*}
$$

where the first step is based on a Taylor expansion and the second step is based on (4) and (9). Using the results (1)-(3), we find that $U_{\phi}\left(\phi_{0}, \hat{\psi}\left(\phi_{0}\right)\right)$ is asymptotically mean-zero multivariate normal with covariance matrix given as follows (where U_{ϕ}, U_{ψ}, and the various blocks of the matrix \mathcal{I} are all evaluated at $\left(\phi_{0}, \psi^{*}\right)$, but we omit these arguments for brevity):

$$
\begin{align*}
\Omega & =\operatorname{Cov}\left(U_{\phi}, U_{\phi}\right)-\operatorname{Cov}\left(U_{\phi}, U_{\psi}\right) \mathcal{I}_{\psi \psi}^{-1} \mathcal{I}_{\phi \psi}^{T}-\mathcal{I}_{\phi \psi} \mathcal{I}_{\psi \psi}^{-1} \operatorname{Cov}\left(U_{\psi}, U_{\phi}\right)+\mathcal{I}_{\phi \psi} \mathcal{I}_{\psi \psi}^{-1} \operatorname{Cov}\left(U_{\psi}, U_{\psi}\right) \mathcal{I}_{\psi \psi}^{-1} \mathcal{I}_{\phi \psi}^{T} \\
& =\mathcal{I}_{\phi \phi}-\mathcal{I}_{\phi \psi} \mathcal{I}_{\psi \psi}^{-1} \mathcal{I}_{\phi \psi}^{T}-\mathcal{I}_{\phi \psi} \mathcal{I}_{\psi \psi}^{-1} \mathcal{I}_{\psi \phi}+\mathcal{I}_{\phi \psi} \mathcal{I}_{\psi \psi}^{-1} \mathcal{I}_{\phi \psi}^{T} \mathcal{I}_{\phi \psi} \mathcal{I}_{\psi \psi}^{-1} \mathcal{I}_{\psi \psi} \mathcal{I}_{\psi \psi}^{-1} \mathcal{I}_{\phi \psi}^{T} \\
& =\mathcal{I}_{\phi \phi}-\mathcal{I}_{\phi \psi} \mathcal{I}_{\psi \psi}^{-1} \mathcal{I}_{\psi \phi} \tag{11}
\end{align*}
$$

We can form an estimate $\hat{\Omega}\left(\phi_{0}\right)$ of Ω by replacing $\mathcal{I}\left(\phi_{0}, \psi^{*}\right)$ with $J\left(\phi_{0}, \hat{\psi}\left(\phi_{0}\right)\right)$ throughout. We then get the score statistic

$$
\begin{equation*}
S\left(\phi_{0}\right)=U_{\phi}\left(\phi_{0}, \hat{\psi}\left(\phi_{0}\right)\right)^{T} \hat{\Omega}\left(\phi_{0}\right)^{-1} U_{\phi}\left(\phi_{0}, \hat{\psi}\left(\phi_{0}\right)\right), \tag{12}
\end{equation*}
$$

for which we have

$$
\begin{equation*}
S\left(\phi_{0}\right) \dot{\sim} \chi_{q}^{2} \quad \text { under } H_{0} \tag{13}
\end{equation*}
$$

Remark: By the formula for the inverse of a partitioned matrix, the matrix $\hat{\Omega}\left(\phi_{0}\right)^{-1}$ is equal to the $\phi \phi$ block of $J\left(\phi_{0}, \hat{\psi}\left(\phi_{0}\right)\right)^{-1}$.

