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LOGISTIC REGRESSION DIAGNOSTICS'

By DARYL PREGIBON

Princeton University

A maximum likelihood fit of a logistic regression model (and other similar
models) is extremely sensitive to outlying responses and extreme points in the
design space. We develop diagnostic measures to aid the analyst in detecting
such observations and in quantifying their effect on various aspects of the
maximum likelihood fit. The elements of the fitting process which constitute
the usual output (parameter estimates, standard errors, residuals, etc.) will be
used for this purpose. With a properly designed computing package for fitting
the usual maximume-likelihood model, the diagnostics are essentially “free for
the asking.” In particular, good data analysis for logistic regression models
need not be expensive or time-consuming.

1. Introduction. Classically, logistic regression models were fit to data obtained
under experimental conditions, for example, bioassay and related dose-response applica-
tions. The current use of logistic regression methods includes the analysis of data obtained
in observational studies. In contrast to controlled experimentation, data from such studies
can be notoriously “bad”—bad” from the point of view of outlying responses (y), and
“bad” from the point of view of extreme points in the design space (X). The usual method
of fitting logistic regression models, maximum likelihood, has good optimality properties
in ideal settings, but is extremely sensitive to “bad” data of the above types.

For the normal-theory linear model, much is known about the effect on a least-squares
fit of outlying responses and extreme design points, the latter frequently called “high-
leverage points.” An overview of diagnostic measures used in the analysis of linear models
is discussed in Section 2.

An important extension of these diagnostic approaches is to nonlinear regression models,
where presumably the effects of outliers and leverage points could be worse. This paper
proposes diagnostic measures which should accompany the “usual” output from a maxi-
mum likelihood fit of a logistic regression model. As this model is a member of the class of
generalized linear models (Nelder and Wedderburn, 1972), the methods described here
were developed with the aim of being applicable to the entire class (see Pregibon, 1979).
The general pattern of the computations could well lead to applications in models outside

this specialized framework, say to the areas of time series analysis and survival models.

The author is currently investigating the possibilities in the latter area.

In Section 3, we introduce the model, the relevant notation, and an example. In Section
4, we develop the basic building blocks of inexpensive regression diagnostics. In Section 5,
we introduce a device to perturb the maximum likelihood fit and, accordingly, allow for
suitable regression diagnostics to be deduced. The diagnostics are described in detail in
Section 6. We close with a brief comment on various extensions and computational
considerations.

2. An overview of regression diagnostics for the standard linear model. The
standard linear model is specified as

yi=xB +¢, i=1,...,N
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where X8 = x,81 + ... + XnfBm and € ~ N(0, 6?). The least-squares estimate f is obtained
by solving the normal equations

XTr=X"y-9=0

where § = XB is the vector of fitted values. The solution of this linear system is ,é =
(X"X)'X "y, which is sensitive to poorly-fit observations and extreme design points.

Presently, there is a fairly large battery of diagnostics available for detecting which
observations exert undue influence on B. The two basic quantities that are most useful for
this purpose are the residuals, r; = y; — x,»ﬁ, and the projection matrix

M=I-H=I-XX"X)"'X"

Essentially, the vector r describes the deviation of the observed data from the fit, and M
the subspace in which r lies.

The residual vector r is important for the detection of ill-fitting points, but will not
adequately point to observations which unduly influence the fit. In particular, large
residuals are seldom associated with high-leverage points, whereas small residuals (which
usually pass our inspection unnoticed) are typically of the opposite character.

The diagonal elements of M can direct us to such points (see for example, Hoaglin and
Welsch, 1978). Influential points will tend to have small values of m,;, much smaller than
the average value 1 — m/N. Hoaglin and Welsch (1978) suggest using m;; = 1 — 2m/N as
a rough guide for determining whether a point is influential or not.

The quantities r; and my; (or h;) are useful for detecting extreme points, but not for
assessing their impact on the various aspects of the fit, e.g., parameter estimates, fitted
values, goodness-of-fit measures, etc. Two approaches which attempt to quantify the effect
of individual observations on the fit have been investigated:

(1) assessment by deletion (references [1, 2, 4, 5, 6, 11, 13]), and

(2) assessment by infinitesimal perturbations (references [2, 11, 13]).

In the former approach, one computes the change in some aspect of the fit incurred by
deleting one or more data points. For single deletions (say the /th observation), the basic
formula for the change in the least-squares estimate ﬁ is given by

AB =B - BO) = XTX)'x,r/mu,

where (1) and (0) denote the presence and absence of the /th point in computing the
quantity immediately to the left of (-).

A scalar measure summarizing the effect of deleting the /th observation over all
coefficients is

= (AR TXTX(AB) = rihu/(1 — hy)*.

This measure, when appropriately standardized, can be given several interpretations (see
Cook, 1977, 1979). One such interpretation is the confidence region displacement due to
deleting the /th observation. Another is the sum of squared distances of A;y. In either case,
individual observations which produce large values of ¢; unduly influence the overall fit of
the model. In many cases these observations are of interest in themselves, indicating a set
of experimental conditions much different from the others.

Another type of summary diagnostic is the change in the residual sum of squares (RSS)
due to deleting the /th observation:

A/RSS = RSS(1) — RSS(0) = r#/mu.

This diagnostic provides much of the motivation for computing and plotting studentized
residuals.

Note that all the above diagnostics can be readily computed for each observation as all
the necessary bits (the basic building blocks) are available following the usual fit. Other
diagnostics, too numerous to mention here, are almost exclusively functions of the residuals
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and the diagonal elements of M. The off-diagonal elements of M will play an important
role when we consider the joint effects of several observations on the fit.
The infinitesimal perturbation approach is obtained by specifying e, ~ N(0, ¢®/w))

where
{w i=1
w;, =

1 otherwise

and 0 = w = 1. According to this specification, the normal equations are modified asAXTWr
= 0 with W = diag{w:}, leading to the modified least squares estimate B(w) =
(X"™WX)'X"Wy. This estimate is related to ﬁ = B(1) via the basic formula

(XTX)"xl(l - w)r,

51) — B _
B = Blw) {1 -1 —whu}

which simplifies to A8 at w = 0. The effect of infinitesimal perturbations of the variance
of the /th data point is easily obtained by differentiation of B(w) leading to

PN (XTX)'x1y
B(w) —%B(w) SR’
In particular,

B = (XTX)xiry
BA(O) = (X"™X)"'xir/(1 — h)®.

Evaluation at w = 1 describes local changes in B(w) at the usual least squares solution. In
the literature of robust and resistant estimation, this function is termed the influence curve
of the estimate ,é For diagnostic purposes, it tends to be conservative because an extreme
observation tends to pull the fit toward itself, and infinitesimal changes at this point may
not perturb the fit sufficiently to cause large changes in the coefficients (see, for example,
Figure 3). On the other hand, evaluation at w = 0 describes the changes in ﬁ(w) at the
least squares fit to the data without the /th observation. This function can also be
interpreted as an influence curve, but one which is sensitive to both outlying responses
and extreme design points. In particular, note that the denominator of BO) is m¥ =
(1 — hy)% and small values of m; indicate extreme design points. This latter influence
curve is more desirable for diagnostic purposes, although it has seen very little use (as yet)
in the literature.

Since B(w) is everywhere differentiable on the unit interval, application of the mean
value theorem yields

B —BO) 4
T1-o P

for some w, 0 < w < 1. That is, the change in the least squares estimate of 8 due to
dropping the Ith observation is given by the derivative of ﬁ (w) evaluated at an interior
point of the unit interval. Accordingly, some writers (e.g. Cook and Weisberg, 1979) have
termed A,ﬁ = ﬁ(l) - ﬁ(O) as the empirical influence curve of the estimate.

All three versions of the influence curve provide diffeArentifl information concerning the
effect of individual observations on the fit. Since A8 = B(w) for some w in the unit
interval, it tends to be a reasonable compromise between conservatism (at w = 1) and
liberalism (at w = 0). Apart from the intuitive appeal, it is perhaps this reason that most
regression diagnostics are formulated by the deletion method. As our experience grows
with understanding and interpreting infinitesimal perturbations at w = 0, this may no
longer remain the case.

Summary type diagnostics can be formed for the infinitesimal perturbation model in an
analogous fashion as in the deletion model. The interested reader is referred to Pregibon
(1979).
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3. Background and notation for the logistic regression model.

3.1. The Unstructured Case. Consider a single binomial response y ~ B(n, p). If we
let § = logit(p) = log{p/(1 — p)}, the probability function of y can be written as

f(y; 0) = exp{yf — a(f) + b(y)} y=0,1,...,n

with a(§) = n log(l + €%, b(y) = log(Z) and where throughout this paper log(.) =
log.(-). Up to an arbitrary constant, the logarithm of f(y; ),
1(0;y) =y8 — a(8) + b(y),

is the loglikelihood function of . The score and information functions are given by

)
s(6; y) =£l(0;y) =y—da@)=y—np

F}
v(;y) =~ v s(6; y) = d(0) = np(1 — p),

where a with k dots above it denotes (8*/00%)a(). Standard results yield E{s(d; y)} = 0
(or E(y) = = a(f)) and Var(y) = np(l —p) = @(@). Also, since s(f; y) = 0 at the
maximum llkellhood estimate (m.l.e.) 8, we have § = a'(y) = logit(y/n) as the m.Le. of §
based on a single binomial observation y.

Given a sample of N independent binomial responses y; ~ B (n;, p;), the loglikelihood
function for the sample is the sum of individual loglikelihood contributions:

1B;y) =YY Ub; y) = TN (vl — al@) + b(y)).

3.2. The Logistic Regression Model. The likelihood function /(8 y) is over-specified—
there are as many parameters as observations. Given a set of m explanatory variables {Xi,
X, ..., X}, the logistic regression model utilizes the relationship

6 = logit(p) = X8

as the description of the systematic component of the response y. In terms of the m-
dimensional parameter 8, we have the loglikelihood function:

(1) UXB;y) =YX UxiB; y) = T yixiB — a(x:B) + b(y).

The m,l,g. maximizes (1) and is a solution (assumed unique) to (a/a,é)l(xﬁ; y) =0.1In
particular, B satisfies the system of equations:

SN xy(yi — axB)) =0 j=L...,m
Writing s = y — a(Xf) = y — np, the matrix formulation of the likelihood equations is
X's=X"(y -y =

These equations, although very similar to their normal theory counterparts, are nonlinear
in ﬁ, and iterative methods are required to solve them. Typically, when second derivatives
are easy to compute (in the present case —(3/88)X"s = X"VX with V = diag{d(x;8)}), the
Newton-Raphson method is employed. This leads to the iterative scheme

Be+1 =B+ (XTVX)_IXTS t=0,1,...%

where both V and s are evaluated at 8. At convergence (¢t = *), we take ,é = B* and
denote the fitted values n;p; by y:. The estimated variance of y; is v; = n,pi(1 — p)).

A most useful way to view the iterative process outlined above is by the method of
iteratively reweighted least-squares (IRLS). This is obtained by employing the pseudo-
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observation vector z' = X' + V™'s, upon which the above equation becomes
Bl+l — (XTVX)-IXTVZ,.

At convergence, we have z = X8 + V's. Thus we may write the m.le. of B as 8 =
(X"VX) 'X"Vz. This form of the estimate will provide the basis of extending the results
of Section 2 to the logistic regression case.

3.3. The Standard Output from a Maximum Likelihood Fit. Once the model has been
fitted (that is, we have the m.l.e. ,é), various quantities from the fitting process are available
to the analyst. Typically, these quantities consist of a subset of the following:

(a) the estimated parameter vector, ﬁ;

(b) the individual coefficient standard errors, s.e.(ﬁ,);

(¢) the estimated covariance matrix of ﬁ, Var(ﬁ) = XT'VX);

(d) the chi-squared goodness-of-fit statistic x* = X, s{/vi;

(e) the individual components of x*, namely x; = s;/Vva = (yi — n.p)/Nnpl — p);

(f) the deviance D = —2 {l(Xﬁ; y) — 16, y)}, where 16: y) refers to the maximum of
the loglikelihood function based on fitting each point exactly, i.e., 8, = logit(y.,/n).

Asymptotic arguments suggest that the deviance and chi-squared statistics have the
same limiting null x*(N — m) distribution, and hence provide some measure of the
appropriateness of the fitted model.

As an illustration of the standard output from a maximum likelihood fit, we introduce
an example from Finney (1947). The data, listed in Table 1, were obtained in a carefully
controlled study of the effect of the rate and volume of air inspired on a transient vaso-
constriction in the skin of the digits. The nature of the measurement process was such that
only the occurrence or nonoccurrence of vaso-constriction could be reliably measured.
Three subjects were involved in the study: the first contributed 9 responses, the second
contributed 8 responses, and the third contributed 22 responses. A plot of the data appears

TABLE 1
Listing of Finney’s data on vaso-constriction in the skin of the digits. The
binary response y indicates the occurrence (1) or nonoccurrence (0)
of vaso-constriction.

Volume Rate  Response Volume Rate  Response
3.7 825 1 1.8 1.8 1
3.5 1.09 1 4 2 0
1.25 25 1 95 1.36 0

.75 1.5 1 1.35 1.35 0
8 3.2 1 1.5 1.36 0

7 3.5 1 1.6 1.78 1
.6 75 0 6 1.5 0
1.1 1.7 0 1.8 1.5 1
9 75 0 95 1.9 0
9 45 0 1.9 95 1
.8 57 0 1.6 4 0
.55 2.75 0 2.7 .75 1
6 3. 0 2.35 .03 0
1.4 2.33 1 1.1 1.83 0
.75 3.75 1 1.1 2.2 1
2.3 1.64 1 1.2 2.0 1
3.2 1.6 1 -.8 3.33 1
.85 1.415 1 95 1.9 0
1.7 1.06 0 75 1.9 0
1.3 1.625 1
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Fic. 1. Scatter plot of Finney’s data: (0) and (1) represent the nonoccurrence and occurrence of
vaso-constriction of the skin. The curves labeled .25 and .75 are the 256% and 75% contours for the
logit fit. '

in Figure 1. The two lines superimposed on the scatter plot are the estimated 25% and 75%
contours corresponding to the model:
logit(p) = B + B2log(RATE) + B3log(VOLUME).
The estimated coefficients and their standard errors are
B = —2.875 (1.319)
B. = 5.179 (1.862)
Bs = 4.562 (1.835).

The deviance for the fit is 29.23 on 36 degrees of freedom, and the corresponding chi-
squared statistic is 34.15. Both are less than their asymptotic expectation of 36, indicating
no gross inadequacies with the model. The ordered components of x* are plotted against
standard normal quantiles in Figure 2. Evidently, two observations, the 4th and 18th, are
not well fit by the model—their x; residuals deviate from the straight-line configuration of
the others. These two points correspond to the only positive responses outside the 256%
contour (see Figure 1). As these observations are not really associated with extreme values
in the design space, their effect on the fit might presumably be small. From the information
thus far presented, we have no reason to believe otherwise.

4. The basic building blocks of regression diagnostics.

4.1. Preliminaries. After fitting a logistic regression model, and prior to drawing
inferences from it, the natural succeeding step is that of critically assessing the fit. In
practice however, this assessment is rarely considered, and seldom carried out. The basic
reasons are

(i) the lack of routine methods (in the literature and in standard computing packages)
for performing such an analysis, and ‘

(ii) the presumably high costs (in analyst and computer time) of doing so.

The role of a regression diagnostician is to provide routine methods of model sensitivity
analysis which are both intuitively appealing and inexpensive. Clearly this requires a
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Fi1c. 2. Gaussian probability plot of Finney's data: the ordered components of x’ vs standard normal
quantiles.

thorough understanding of the model and the nature of the fitting process (here, maximum
likelihood).

In what follows, we assume that we have fit a logistic regression model by maximum
likelihood, and that we have the components of that fit. We want to derive useful and
informative diagnostic measures from these components to supplement the “usual” output.
These measures should readily identify observations that are not well explained by the
model, as well as those dominating some important aspect of the fit. In some cases, this
analysis may reveal systematic departures of the data from the model, though, in general,
this is not to be expected. A routine method for detecting systematic departures is given
by Pregibon (1980; Chapter 3, 1979).

4.2. The Basic Building Blocks. For the logistic regression model, the basic building
blocks for the identification of outlying and influential points will again be a residual vector
and a projection matrix. For the linear model, residuals are rather uniquely defined (apart
from standardization), whereas for the logistic regression model, residuals can be defined
on several (at least three) scales. The two which we find most useful are the components
of chi-squared, given in 3.3(e), and the components of deviance, D = ¥ d?:

di = = 2{Ub5; y:) — Ux; y))',

where the plus or minus is used according as 6; > x.f or 6, < xiﬁ. Note that d, is defined
for all values of y; even though 6, may not be. In particular, at y = 0, d> = —2n log(1 — p)
and at y = n, d* = —2n log(p). Both x* and D are measures of the goodness-of-fit of the
model. The former measures the relative deviations between the observed and fitted
values, whereas the latter measures the disagreement between the maxima of the observed
and fitted loglikelihood functions. In either case, large individual components indicate
observations poorly accounted for by the model.

The analog of the projection matrix for the logistic model will also be denoted by M,
which in its general form is given as

M=I-H=I-V"XX"VX)"'X"V"2

The usefulness of M arises as a consequence of the IRLS formulation described earlier. In
particular, as 8 = (X"VX)'X”Vz, the vector of pseudo-residuals is given by
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z—XB={I-XX"VX)"'X"V}z = V"MV,

Using the fact that z = X8 + Vs, this can be written as V''s = VMV s,
Premultiplication by the diagonal matrix V'/* yields x = My, where x = V~"?s. Thus, as
in the linear model case, M is symmetric, idempotent, and spans the residual (x) space.
This suggests that small m, should be useful in detecting extreme points in the design
space. Experience has shown this to be the case.

The hypothetical data set listed in Table 2 and plotted in Figure 3 gives evidence
supporting this contention. There is one potentially influential point, the last one in the
list. The figure also displays the maximum likelihood fit of a straight line to the data (with
and without the last point). The differences in fit between the two are striking. The values
of m;; are given in the last column of Table 2. The influential point has the smallest value
of m,; this will always be the case whenever a point is far removed from the others in the
design space.

This simple example is also useful in pointing out that the IRLS analogy can be carried
only so far. In particular, as »; = n;p(1 — p;) (which for fixed ﬁ decreases toward zero as
X; increases) is interpreted as the weight associated with the ith observation, it would
seem that the logistic regression model is protected against extreme design points as they
are automatically downweighted in the fitting procedure. However, the fact of the matter
is that the weights are an artifact of the IRLS formulation and have nothing to do with the
likelihood equations X”s = 0 which determine ﬁ That is, in the logistic regression model,
the weights v,; are determined by the fit, which should not be confused with a true weighted
least-squares problem where the weights determine the fit. For those readers who remain
doubtful of this subtle difference in interpretation of the weights, we suggest moving the
last point in Figure 3 further and further to the right and observing the consequences.

In most cases, the examination of x;, d; and m, will call attention to outlying and
influential points. In some cases, combinations of these (for example, studentized residuals)
will also be useful. For displaying these quantities, index plots are generally (and, if the
order of the observations is important, strongly) suggested: that is, plots of x; vs i, d; vs i
and m,; vs 1. In particular cases, plots of these building blocks against the fitted values
could prove useful.

Another useful plot is derived from the matrix

H* = V'/2X*(X*TVX*) I X*Ty1/2 X* = (X z).
A little algebra gives A% = h; + x?/x" as a diagonal element with 0 < A} <1 and ave(h}
TABLE 2
Listing of an hypothetical data set and the basic building blocks

assoctated with the maximum likelihood fit of a logistic
regression model.

Data Building Blocks
X logit (y:/n;) X d; mu
1 0.5 —0.506 —-0.496 0.7192
2 0.5 —0.615 —=0.600 0.7885
3 0.8 —0.247 —-0.244 0.8409
4 1.0 —0.055 —-0.054 0.8773
5 1.3 0.248 0.252 0.8989
6 1.3 0.157 0.159 0.9070
7 1.6 0.417 0.431 0.9030
8 1.8 0.535 0.561 0.8882
9 2.1 0.715 0.768 0.8640
10 2.1 0.642 0.686 0.8316
17 1.0 —1.383 —1.227 0.4813
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Fic. 3. Scatter plot of an hypothetical data set and two fitted logit models. The labelling of the lines
indicate whether the last point was (+) or wasn’t (=) included in the fit.

= (m + 1)/N. Thus, values of 2} near unity correspond to observations which are poorly-
fit (large relative x;), extreme in the design space (large &), or both. A scatter plot of
x?/x? vs hi; will display these characteristics. For calibration purposes, contours of constant
R} (lines with slope —1) can be superimposed on the scatter plot to clearly expose large
components of A/\.

Returning to the binary logistic regression example, Figure 4 displays the index plots of
m, xi, and d; based on the fitted logit model. At a glance, it is clear that the 4th and 18th
observations are not well fit by the model. The 31st observation has the smallest value of
mi:.. Reference to Figure 1 indicates that it is the right-most positive response between the
25% and 75% contours. Even though it is less than the rough cutoff of .8466 = 1 —
(2 X 3)/39, we will later see that its effect on the fit is minor in comparison to the previously
identified points. Figure 5 displays the scatter plot of xi/x> vs h; which effectively
summarizes the information provided by the index plots.

5. Model perturbations and one-step estimates. The quantities introduced in the
previous section should indicate which (if any) of the observations (1) are not well
explained by the model, or (2) are dominating some aspect of the fit. The quantities,
however, cannot adequately measure the effect on the many components of the fitted
model. In this section we attempt to refine our understanding of each observation’s effect
on the fitted model. We proceed by first introducing a simple method of perturbing our
usual model; this facilitates the study of the effects of individual points. These methods
are generalizations of the ones used by Welsch and Kuh (1977) for the normal-theory
linear model.

Consider first an unstructured set of binomial data {y: i =1, ..., N}, the loglikelihood
of which may be written as the sum of N individual contributions, {(§; v,). Alternatively, if
there are K distinct values, with the multiplicity of each given by the observation count
wy, the loglikelihood function may be written as

U0, y) = T wil(8; yi) = YK wil{ v — al8) + b(y)).

When we consider structured observational data, seldom will there be multiplicities greater
than unity since all components of the observations vector {y, x1, ..., X,,} must match
for this to occur. If all multiplicites are unity, K = N, k = i, and the loglikelihood function
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FiG. 4. Index plots of the basic building blocks for Finney's data: mi; vs i (top); x: vs i (middle); d,
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FiG. 5. Scatter plot of the basic building blocks for Finney's data: x!/x* vs hi. The dashed lines
correspond to the 2 X ave(h}) and 3 X ave(h}).

may be expresséd as
(2) L(XB; y) = T wd(x:B; y:),

where w; = 1 for all i. The reason for leaving the observation count in the loglikelihood
specification is that it permits simple perturbations of the model attributable to changes
in individual points. This allows us to study the effect of each observation on important
aspects of the fit.

To begin this study, consider

P fori=1
T otherwise

with 0 = w =< 1. The maximum likelihood estimate of 8 will now be a function of w and can
be obtained by maximizing (2). This is equivalent to solving the system of equations:

N .
2,’=1x,‘jw,’8i=0 Jj=1...,m

In matrix form these equations are X”Ws = 0. The matrix of mixed partial derivatives of
1, with respect to 8, and 8; is —X"V*WV"2X. Thus, the Newton-Raphson method leads
to the sequence of estimates

(3) B (w) = Bw) + XTVV2WV2X) ' X"Ws.

At w = 1, W is the identity matrix, and the above simplifies to the usual maximum
likelihood iterative procedure for 8 = B(1).

Our objective is to determine individual effects with a minimal effort. For big effects, it
is enough to know their direction, whereas for small changes, more precision is required.
Useful results can be obtained for this purpose by starting from the usual maximum
likelihood fit (that is, 8 = (1)) and terminating the sequence (3) after one step.” In this
case, equation (3) becomes

Blw) = XTVVW V)X TVVAW V2,

* This approximation was suggested by Chambers (1973) in a related context for the analysis of
more general nonlinear models.
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This equation is identical to the corresponding exact noniterative solution for the standard
linear model with V'/*X as the design matrix for the response variable V'/?z. This is useful
because the formulae displayed in Section 2 are then directly applicable to this one-step
estimate. In particular, we find that

XTVW) 'x5/(1 — w)

4 ' w) =B —
@ Bw) =B == 0wy

Since the usual maximum likelihood fit corresponds to w = 1, decreasing w toward zero
amounts to giving the /th point less and less weight in the fitting process. If the change in
coefficients is negligible as w is decreased, then the /th observation exerts very little
influence on the coefficients, and hence on the fit itself. On the other hand, if small changes
in w induce large (relative) changes in B, then the Ith point is influential, and we can
proceed further to isolate which components of the fit are most unstable with respect to
this point. The next section pursues this analysis.

6. Generalized regression diagnostics.

6.1. Coefficient Sensitivitz. The above comments can conveniently be summarized by
evaluating the derivative of 8'(w) with respect to w at several reference points. In general,
we have the result

%ﬁl(w) = él(w) = (XTVW)—IXISI/{I - (1= w)hu}z.

As with linear regression, evaluation of ,é‘(w) at w = 0, w, 1 provides differential
information concerning the effect of the /th observation on the fit and can be interpreted
as influence functions. For logistic regression, more of a case can be made for using ﬁ Y(w)
= A;ﬁ’ rather than the more liberal value ﬁ‘(O) since our one-step approximation may not
be valid this far from the maximum. Computationally, using (4), the suggested diagnostic
for individual coefficient sensitivity is given by

AR = XTVX) 'xisi/(1 — hy).

Plots of A;ﬁ,’ /s.e.(B;) vs I are useful for the detection of observations that are causing
instability in selected coefficients. For the example on vaso-constriction in the skin, these
plots are displayed in Figure 6. The symbol (*) refers to the standardized difference in
coefficients based on the fully iterated estimate 8(0), whereas the symbol (o) refers to the
approximation to this quantity using ﬁ’(O). Excellent agreement is obtained in all but two
cases, observations #4 and #18. Although the one-step estimates under-estimate the exact
coefficient differences in these extreme cases, they clearly display the large effects that
these points have on the estimates.

In the above example, it was clear that two observations had a large effect on all the
estimated parameters. However, changes in particular coefficients can be offset by changes
in other coefficients in such a way that the fitted values change very little, i.e.,

a J A
—y(w) = — aXBw)) = 0.
w w

In other cases where a large number of explanatory variables are being fit, looking at index
plots of each coefficient becomes unwieldly when it comes time to determine whether the
observation in question has undue influence on the fit.

We approach this phase of the analysis by adapting an overall discrepancy measure due
to Cook (1977). The motivation is as follows. The equation

(5) - 2(UXB;y) — UXB; ) = ¢,

describes the boundary of an asymptotic confidence region for the parameter 8. Evaluation
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Fi1G. 6. Index plots of the stAandardifed change in coefficients for Finney's data: standardized
change vs index number for B, (top); B. (middle); Bs (bottom). The symbols (x) and (O) respectively
refer to the fully iterated and one-step standardized change.
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of this equation at 8 = 8(0) leads to ¢;, which gives a scalar measure of the influence of the
Ith point on the estimate ﬁ In particular, comparison of ¢, to the percentage points of
x*(m) gives a rough guide as to which contour of the confidence region the m.le. is
displaced due to deleting the /th observation. Clearly one could extend this approach to
infinitesimal perturbations rather than deletions.

In order to routinely compute ¢, an approximation is required. A second-order Taylor-
series expansion of (5) leads to an approximate (ellipsoidal) confidence region, whose
boundary is given by

B-PHXVXB-8) =c

This corresponds to the confidence region determined by the limiting normal distribution
of B. Evaluating this equation at the one-step approximation to 8(0) given by equation (4)
leads to the confidence interval displacement diagnostic

2

A
6 — L
(©) EARNTRSY

Notice that c; is a function of the elementary building blocks of the previous section, all
of which are available from the usual fit. This function is suggested for routine calculation
following the usual fit. Again, an index plot, or a scatter plot versus § = xp, should provide
useful displays of these quantities.

Figure 7 displays the index plot for the skin vaso-constriction example. It is now
apparent that the two observations in question have an undue influence on the fit itself,
not just on the individual coefficients. The agreement between the exact and one-step
versions of (6) is good, although we still tend to under-estimate the large effects.

Results similar to the above are available by considering the asymptotic confidence
region for B defined by the inequality:

(7) - 2{UXB;y) — UXBO); y)} < @G

Evaluation at 8 = ﬁ corresponds to the contour that ﬁ(O) is displaced by inclusion of the
Ith observation. Calculations similar to those corresponding to ¢; yield the confidence
interval displacement diagnostic, which is given by

el = xthu/(1 — hy).

") 12 28 g 48
FiG. 7. Index plot of confidence interval displacement for Finney's data: ¢' vs index number. The
symbols (x) and (O) respectively refer to the fully iterated and one-step confidence interval
displacement.



LOGISTIC REGRESSION DIAGNOSTICS 719

In comparison with ¢/, this measure will necessarily be smaller in value. Essentially, ¢
measures the overall change in fitted logits due to deleting the /th observation for all
points excluding the one deleted. Conversely, ¢; includes the deleted point. Although ¢, will
usually be the preferred diagnostic to measure overall coefficient changes, in the examples
examined to date, the one-step approximations were more accurate for ¢} than c;.

The skin vaso-constriction data is a prime example of this behavior as evidenced by
Figure 8. The index plot essentially conveys the same information as Figure 7, but the one-
step approximation is much better in the present case.

6.2. Goodness-of-Fit Sensitivity. Another important aspect of the fit for which diag-
nostic information is valuable is the goodness-of-fit of the model itself. This can easily be
studied by calculating the effect of changes in w on the statistics D and x° Individual
points which greatly influence the model are likely to induce large changes in the quality
of the fit as judged by these statistics. We do not advocate using diagnostics on these
statistics to create an artificial utopian model (e.g., by deleting all points which do not
conform with specified standards), but rather to objectively identify points that do have
substantial impact on the fit. Changes in these goodness-of-fit statistics can take two forms:

(1) if the Ith point is not well fit by the model, the changes in D and x* (caused by small
changes in w) are usually (but as we shall see, not necessarily) isolated in the single
components d,; and x;, and

(2) if the /th point is in an extreme or sparse region of the design space, the changes in
D and x* will be the result of all the individual components changing.

A large value of the change in these statistics will not indicate which of (1) or (2) is
actually the case, but information from the other diagnostic tools (especially A;) should
clarify the situation.

We proceed by first determining the effect on the deviance attributable to arbitrary
values of w. Using the observation count device introduced in modifying the loglikelihood
function, the corresponding deviance is

D.XBw); y) =2 YN wi{l@; y) — IxBw); y)}.

This is the deviance that would have resulted if we had actually observed data correspond-

1.2

2.4 2.6 2.8 1.0

8.2

)
< -
"] i@ 20 38 42
Fi16. 8. Index plot of confidence interval displacement for Finney's data: é' vs index number. The
symbols () and (O) respectively refer to the fully iterated and one-step confidence interval
displacement.
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ing to the observation count given by w. Evaluation at the one-step estimate ﬁl(w)
approximates this quantity. In particular, a second-order expansion of D.(XB8"'(w); y)
about B leads to

(8)  D.XB'(w)y) =DXBy) — [(1 —w)d} + xH(1 — w)?hu/{1 — (1 — w)hu}].

This increasing function of w attains a minimum at w = 0 of D(XB'; y) — (d} + &}), and
a maximum at w = 1 of D(Xﬁ; y). That is, downweighting points reduces the deviance.

The rate of change of the deviance due to infinitesimal changes in w at the /th
observation is easily obtained by differentiating (8). We again strike a compromise by
evaluating at the one-step difference

X}Zh/l
1—hy

AD = D(XB;y) — Dy(XB'(0);y) = d} +

This gives the change (decrease) in deviance attributable to deleting the /th observation.
Notice that all the basic building blocks play a role in this quantity, and all of them are
available from the usual maximum likelihood fit. For display purposes an index plot of
A D, or the scatter plot of df vs ¢} are suggested. Alternatively, since

(a) w = 0 corresponds to deleting the /th observation,

(b) deleting the /th observation corresponds to augmenting X by a dummy variable E,,
and

(c) the deviance reduction due to adding a variable is asymptotically x*(1), the
individual values A;D are asymptotically x*(1), and suitable for probability plotting. In
particular, replacing x; by d, in the definition of A,D leads to A,D = d}/m; and the
approximately normal studentized residual d;/ Vma. Accordingly we suggest using the
ordered values of d;/ Vmu rather than of x:, as the ordinates for normal probability plots.

Determination of the effect of individual observations on x” is more difficult. The
underlying reason is that x” is not as intimately related to the fitting procedure as D is.
That is, D plays the same role for the logistic regression model as the RSS does for the
normal linear regression model: the maximum likelihood (least-squares) estimate mini-
mizes D (RSS). As observations are excluded from the fit, D (RSS) must decrease; x> does
not have this property, though only in extreme cases will x* actually increase.

On the other hand, x* is similar to RSS because both are sums of squares of deviations
of observed from fitted values (in the unit normal model D = x* = RSS). In fact, a one-
step approximation to the change in x? due to deleting the /th observation is given by

xi
1—hy

Aix* = xi—xo=

which is the logistic regression analog of A/RSS (see Section 2).

For the skin vaso-constriction example, index plots of A;x” and A;D are displayed in
Figure 9. The plots show that the 4th and 18th observations contribute heavily to the
disagreement between the data and the fitted model. The one-step approximation to A;D
is excellent. The one-step approximation to A;x” is not very precise, though it clearly
indicates the ill-fit points. This example is an extreme case where x” actually increases as
certain observations are deleted. In an effort to determine when and how this can occur,
we now turn our attention to the effect of perturbations on the individual fitted values.

6.3. Neighboring Effects. We now derive a diagnostic measure which indicates the
extent to which the /th point affects the fit at the remaining N — 1 points. A goal of this
analysis is to determine how observations interact between themselves and the fit. This
detailed analysis will usually be performed on a subset of A(= .05/N) points that stood out
(either clearly or marginally) in the previous diagnostic plots.

The naive approach considers the standardized change in the fit at the j th observation
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F16. 9. Index plots of change-in-fit diagnostics for Finney's data: change-in-fit diagnostic vs index
number. The symbols () and (O) respectively refer to the fully iterated and one-step change-in-fit
diagnostics.

due to infinitesimal changes at the /th observation, i.e.,

K2 { Yi(w) } o hx(l—w)
s.e.(y)) \/71;{1 — (1 — w)hy} .

w

Note the presence of an off-diagonal element of H, such that, holding other things constant,
large values of | h;; | imply large changes in fit. Further, since | A;; | 5@ Vh, the absolute
change in fit at j is bounded by that at I. At w = 0 this bound isx,vA,/(1 — hy). In any
case, whether we use the actual change or its absolute bound, this diagnostic can indicate
the magnitude of change only, and not the direction. Since a large change in y, can be the
result of the fit moving toward y, or away from it, this diagnostic does not give us an
adequate view of the interaction between points. [See Cook (Section 4, 1977) for a related
discussion for the linear regression model.] ‘

It is also clear that examination of the A, alone will not produce much insight. This is
so because the effect (either beneficial or detrimental) that one observation has on another
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depends not only on A,;, but also on the position of the points in the residual space (i.e.,
the space orthogonal to H). Since x lies in the orthogonal complement of the column space
of H, we can expect the desired diagnostic to be a function of x; and yx;, in addition to A,.

Consider the jth deviance contribution, d}(w), computed with (w = 1) and without
(w = 0) the /th observation included in the fit:

Ad? = dF(0) — di(1).
Note that

Aid} >0 implies that the fit at the jth observation gets worse;
Aid} =0 implies that the fit at the jth observation remains the same;
Aid} <0 implies that the fit at the jth observation gets better.

Computationally, a one-step approximation to A;d] is given by

. 2x ki x‘hi
Ad} = 204 s,
' 1—hy (1 - hy?

a function of x;, A, and x; as desired. The following three observations are important:

(1) the effect of / on j as measured by A,d? is not the same as the effect of j on [ as
measured by A;d7. This is intuitively and geometrically reasonable;

(2) the fit at / cannot improve by deleting / from the fit as A;d7 = 0; and

(3) the overall fit to the remaining N — 1 points must improve, as x = My implies that
0 = Hx, and A,d? = 0, leading to

2
. hu
Ad?=— X <o,
E/#I 1y l—h[[

Any points with A;d? much greater than zero must be dealt with carefully because
removing only the /th observation can mean disaster at these points. The most useful
display for this purpose is the index plot of A;d? vs j for a subset of points indexed by
L = {{, ..., l,}. Figure 10 displays this plot for the vaso-constriction data, and we
immediately see the close connection between the 4th and 18th points. This indicates that
one can improve the fit of the model only by dealing with these points together, and not

separately. In comparison, the effect of the 31st observation on the fit at the remaining
points is negligible.

n
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2.8
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1.5

T
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index number

F1G. 10. Index plot of neighboring effects for Finney's data: effect of observation 1 on j vs j, for
observations | = 4(4), 18(*) and 31(0).
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7. Concluding remarks. As stated in Section 1, the methods employed here are
easily extended to the class of generalized linear models; the notation was chosen to
facilitate this extension. In general, “cheap” regression diagnostics can be derived for any
model, provided that:

(1) one is given the fit of the model,

(2) one has access to the components of that fit, and

(3) one thoroughly understands the nature of the fitting process.

The methods of this paper are also easily extended to “subset” diagnostic measures,
though we must recognize that here, we get nothing for free. In particular, if we let

w =1 for i€L
T otherwise

where L = {l}, I, ..., [} is an index set of observations, the methods follow directly. The
main result is

Blw)=B- X'VX) ' XIVIAI - (1 —wH;)} Vi (1 — w),

where any quantity with subscript L denotes the obvious components of that quantity
indexed by the elements of L. Although we have the A X A matrix H; as a by-product of
the usual fit, it is necessary to compute {I — (1 — w)H;} "' to get diagnostic information on
the A-set in question. It is immediately apparent that much more work is required for
subset diagnostics. The quality of the one-step estimate B'(w) relative to B(w) is not so
apparent. For details of the implementation of a subset analysis, see Pregibon (1979) or
Belsley, Kuh, and Welsch (1980).

The formulae presented in this paper are based explicitly on the IRLS formulation of
Section 3.2. These expressions also serve as computational formulae, though recent trends
in numerical analysis suggest avoiding the computation of the sums-of-squares and
products matrix (and its inverse) by using some accurate matrix decomposition method. If
we use the QR decomposition, VX = QR with R (m X m) upper triangular and
Q(N X m) orthogonal (Q”Q = I), we have the basic result:

Blw)=B-R'QI-(1-wQQf} 'x:(1-w)

which holds for singletons L = {l} or subsets L = {l, L, ..., 5\}. In the latter case, a
carefully programmed algorithm would also avoid the direct inversion of I — (1 — w)Q,Q/.
All diagnostics derived from this basic expression can be written in terms of R™' and Q.

The presence of the components of x? in nearly every diagnostic is due to the nature of
the one-step approximation, and not because we believe these residuals to be best. In
particular, for the purposes of outlier detection and residual analysis, these quantities are
unstable for either near-zero or near-unity fitted probabilities. We prefer the signed-
deviance components for these purposes although other “denominatorless” x*-type resid-
uals are often used (see for example, Mosteller and Tukey, 1977).

A very careful reader may have noticed a discrepancy between the data used here and
those given in the Finney paper. The problem is that he reports RATE3, = 0.03 but log
(10 X RATE3;) = 0.48 (=logio (10 X 0.30)). Judging from his plot of the data, RATE,,
should be 0.30 rather than 0.03, but the latter value is tae one that we used. Will this
appreciably change the results of our analysis? Hint: Did observation 32 attract our
attention in the diagnostic plots?
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