The general logistic regression model with normal random effects takes the form

logit
$$(p_{ij}) = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \mathbf{z}_{ij}^T \mathbf{b}_i, \quad \boldsymbol{\beta} \in R^p, \mathbf{b}_i \in R^q, \mathbf{b}_i \sim N(\mathbf{0}, \mathbf{G}(\boldsymbol{\phi})),$$

where ϕ is a vector of unknown parameters (we will suppress ϕ from the notation in most of this write-up). The likelihood is given by

$$L = \prod_{i=1}^{n} \int Q_i(\mathbf{b}_i) \varphi_q(\mathbf{b}_i, \mathbf{G}) d\mathbf{b}_i,$$

where

$$Q_i(\mathbf{b}_i) = \prod_{j=1}^{m_i} \left(\frac{\exp(\mathbf{x}_{ij}^T \boldsymbol{\beta} + \mathbf{z}_{ij}^T \mathbf{b}_i)}{1 + \exp(\mathbf{x}_{ij}^T \boldsymbol{\beta} + \mathbf{z}_{ij}^T \mathbf{b}_i)} \right)^{Y_{ij}} \left(\frac{1}{1 + \exp(\mathbf{x}_{ij}^T \boldsymbol{\beta} + \mathbf{z}_{ij}^T \mathbf{b}_i)} \right)^{1 - Y_{ij}}$$

and $\varphi_q(\mathbf{b}, \mathbf{G})$ denotes the *q*-variate normal density with mean **0** and covariance matrix **G**. Now, since **G** is a symmetric positive definite matrix, a result of matrix theory says that **G** can be decomposed as $\mathbf{G} = \mathbf{A}\mathbf{A}^T$. There is more than one way to do this; the most popular choice is what is called the Cholesky square root of **G** based on the Cholesky decomposition. Define $\mathbf{h}_i = \mathbf{A}^{-1}\mathbf{b}_i$. We then have $\mathbf{h}_i \sim N(\mathbf{0}, \mathbf{I})$. So we can write the likelihood as

$$L = \prod_{i=1}^{n} \int Q_i(\mathbf{A}\mathbf{h}_i) [\varphi(h_{i1}) \cdots \varphi(h_{iq})] dh_{i1} \cdots dh_{iq}.$$

This can be evaluated by Gaussian quadrature as

$$L \doteq \prod_{i=1}^{n} \sum_{k_1=1}^{K} \cdots \sum_{k_q=1}^{K} w_{k_1} \cdots w_{k_q} Q_i (\mathbf{A}[\zeta_{k_1}^* \cdots \zeta_{k_q}^*]^T),$$

where $\{(\zeta_k^*, w_k)\}$ are the nodes and weights for univariate Gauss-Hermite quadrature.

SAS PROC NLMIXED and other programs use a refined computational method known as adaptive Gaussian quadrature. This approach is designed to center the grid of points at the most relevant location, and scale it in a way that is tailored to the specific integral of interest. It is especially relevant when m_i is moderate to large. The method works as follows. Let $J_i(\mathbf{b}_i) = Q_i(\mathbf{b}_i)\varphi_q(\mathbf{b}_i, \mathbf{G})$. We want to evaluate the integral

$$\mathcal{I}_i = \int J_i(\mathbf{b}_i) d\mathbf{b}_i.$$

Let $\tilde{\mathbf{b}}_i$ be the value of \mathbf{b}_i that maximizes $J_i(\mathbf{b}_i)$, let Γ_i be the Hessian of $-\log J_i(\mathbf{b}_i)$ (with respect to \mathbf{b}_i), and let $\tilde{\mathbf{A}}_i$ be the Cholesky square root of Γ_i^{-1} . We then make the change of

variable $\mathbf{c}_i = \tilde{\mathbf{A}}_i^{-1}(\mathbf{b}_i - \tilde{\mathbf{b}}_i) \leftrightarrow \mathbf{b}_i = \tilde{\mathbf{b}}_i + \tilde{\mathbf{A}}_i \mathbf{c}_i$. Implementing this change of variable in the integral \mathcal{I}_i , we obtain

$$\mathcal{I}_{i} = \det(\tilde{\mathbf{A}}_{i}) \int J_{i}(\mathbf{b}_{i} + \tilde{\mathbf{A}}_{i}\mathbf{c}_{i})d\mathbf{c}_{i}$$

$$= \det(\tilde{\mathbf{A}}_{i}) \int \left[\frac{J_{i}(\mathbf{b}_{i} + \tilde{\mathbf{A}}_{i}\mathbf{c}_{i})}{\varphi(c_{1})\cdots\varphi(c_{q})}\right] \varphi(c_{1})\cdots\varphi(c_{q})dc_{1}\cdots dc_{q}$$

$$\doteq \det(\tilde{\mathbf{A}}_{i}) \sum_{k_{1}=1}^{K} \cdots \sum_{k_{q}=1}^{K} w_{k_{1}}\cdots w_{k_{q}} \left[\frac{J_{i}(\tilde{\mathbf{b}}_{i} + \tilde{\mathbf{A}}_{i}[\zeta_{k_{1}}^{*}\cdots\zeta_{k_{q}}^{*}]^{T})}{\varphi(\zeta_{k_{1}}^{*})\cdots\varphi(\zeta_{k_{q}}^{*})}\right]$$

Another approach to evaluating the integral (see, e.g., Breslow and Clayton, 1993, JASA) is to use the Laplace approximation $\mathcal{I}_i \doteq (2\pi)^{\frac{q}{2}} \det(\mathbf{\Gamma}_i)^{-\frac{1}{2}} J_i(\tilde{\mathbf{b}}_i)$. This approximation is satisfactory when m_i is large, but unsatisfactory when m_i is small.

Prediction

In the context of repeated measures over time, if we want to predict the value of Y_{ij} at a future time for individual *i*, we need a "guess" of \mathbf{b}_i . The most natural guess (minimum mean square error) would be the conditional expectation

$$\hat{\mathbf{b}}_i = E[\mathbf{b}_i | \mathbf{Y}_i],$$

with $\mathbf{Y}_i = [Y_{i1} \cdots Y_{i,m_i}]^T$. This is obtained as follows. By Bayes' theorem, the conditional density of \mathbf{b}_i given \mathbf{Y}_i is given by

$$f_{\mathbf{b}_i|\mathbf{Y}_i}(\mathbf{b}_i|\mathbf{Y}_i) = \frac{f_{\mathbf{Y}_i|\mathbf{b}_i}(\mathbf{Y}_i|\mathbf{b}_i)f_{\mathbf{b}_i}(\mathbf{b}_i)}{f_{\mathbf{Y}_i}(\mathbf{Y}_i)},$$

where $f_{\mathbf{Y}_i|\mathbf{b}_i}(\mathbf{Y}_i|\mathbf{b}_i) = Q_i(\mathbf{b}_i), f_{\mathbf{b}_i}(\mathbf{b}_i) = \varphi_q(\mathbf{b}_i, \mathbf{G}), \text{ and } f_{\mathbf{Y}_i}(\mathbf{Y}_i) \text{ is the marginal probability function of } \mathbf{Y}_i, \text{ given by}$

$$f_{\mathbf{Y}_i}(\mathbf{Y}_i) = \int f_{\mathbf{Y}_i|\mathbf{b}_i}(\mathbf{Y}_i|\mathbf{b}_i)d\mathbf{b}_i.$$

We thus have

$$\hat{\mathbf{b}}_i = E[\mathbf{b}_i | \mathbf{Y}_i] = \frac{\int \mathbf{b}_i f_{\mathbf{Y}_i | \mathbf{b}_i}(\mathbf{Y}_i | \mathbf{b}_i) f_{\mathbf{b}_i}(\mathbf{b}_i) d\mathbf{b}_i}{f_{\mathbf{Y}_i}(\mathbf{Y}_i)} \,.$$

However, instead of using the expectation of the conditional distribution $f_{\mathbf{b}_i|\mathbf{Y}_i}(\mathbf{b}_i|\mathbf{Y}_i)$, SAS PROC NLMIXED uses the mode of this distribution, which is precisely the quantity $\tilde{\mathbf{b}}_i$ defined previously. If m_i is large, then $\hat{\mathbf{b}}_i$ and $\tilde{\mathbf{b}}_i$ will be similar. However, in many (probably most) applications, m_i is small, and in these situations the approach NLMIXED takes is not really satisfactory.

The OUT=dataset option in the RANDOM statement of NLMIXED outputs these $\tilde{\mathbf{b}}_i$'s. It also outputs corresponding standard errors of prediction. The standard errors are computed based on an approximation under which $\tilde{\mathbf{b}}_i$ is taken to be approximately distributed as $N(\mathbf{b}_i, \mathbf{\Gamma}_i^{-1})$. Since $\mathbf{\Gamma}_i$ depends on unknown parameters for which estimates are substituted, NLMIXED adds an extra term to the standard error of prediction to account for this estimation; this extra term is computed based on a delta method calculation.

The PREDICT statement in NLMIXED generates predicted values of functions of β , **G**, and \mathbf{b}_i , such as $\Pr(Y_{ij} = 1 | \mathbf{b}_i)$. These are produced by plugging in the maximum likelihood estimates of β and $\mathbf{G}(\phi)$, and plugging $\tilde{\mathbf{b}}_i$ in place of \mathbf{b}_i . NLMIXED computes corresponding standard errors using the delta method.