
Logistic Regression with Normal Random Effects - General Case

The general logistic regression model with normal random effects takes the form

logit(pij) = xT
ijβ + zT

ijbi, β ∈ Rp,bi ∈ Rq,bi ∼ N(0,G(φ)),

where φ is a vector of unknown parameters (we will suppress φ from the notation in most of

this write-up). The likelihood is given by

L =
n∏

i=1

∫
Qi(bi)ϕq(bi,G)dbi,

where

Qi(bi) =

mi∏
j=1

(
exp(xT

ijβ + zT
ijbi)

1 + exp(xT
ijβ + zT

ijbi)

)Yij (
1

1 + exp(xT
ijβ + zT

ijbi)

)1−Yij

and ϕq(b,G) denotes the q-variate normal density with mean 0 and covariance matrix G. Now,

since G is a symmetric positive definite matrix, a result of matrix theory says that G can be

decomposed as G = AAT . There is more than one way to do this; the most popular choice

is what is called the Cholesky square root of G based on the Cholesky decomposition. Define

hi = A−1bi. We then have hi ∼ N(0, I). So we can write the likelihood as

L =
n∏

i=1

∫
Qi(Ahi)[ϕ(hi1) · · ·ϕ(hiq)]dhi1 · · · dhiq.

This can be evaluated by Gaussian quadrature as

L
.
=

n∏
i=1

K∑
k1=1

· · ·
K∑

kq=1

wk1 · · ·wkqQi(A[ζ∗k1 · · · ζ
∗
kq ]

T ),

where {(ζ∗k , wk))} are the nodes and weights for univariate Gauss-Hermite quadrature.

SAS PROC NLMIXED and other programs use a refined computational method known as

adaptive Gaussian quadrature. This approach is designed to center the grid of points at the

most relevant location, and scale it in a way that is tailored to the specific integral of interest.

It is especially relevant when mi is moderate to large. The method works as follows. Let

Ji(bi) = Qi(bi)ϕq(bi,G). We want to evaluate the integral

Ii =

∫
Ji(bi)dbi.

Let b̃i be the value of bi that maximizes Ji(bi), let Γi be the Hessian of − log Ji(bi) (with

respect to bi), and let Ãi be the Cholesky square root of Γ−1i . We then make the change of
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variable ci = Ã−1i (bi − b̃i) ↔ bi = b̃i + Ãici. Implementing this change of variable in the

integral Ii, we obtain

Ii = det(Ãi)

∫
Ji(bi + Ãici)dci

= det(Ãi)

∫ [
Ji(bi + Ãici)

ϕ(c1) · · ·ϕ(cq)

]
ϕ(c1) · · ·ϕ(cq)dc1 · · · dcq

.
= det(Ãi)

K∑
k1=1

· · ·
K∑

kq=1

wk1 · · ·wkq

[
Ji(b̃i + Ãi[ζ

∗
k1
· · · ζ∗kq ]

T )

ϕ(ζ∗k1) · · ·ϕ(ζ∗kq)

]
.

Another approach to evaluating the integral (see, e.g., Breslow and Clayton, 1993, JASA) is to

use the Laplace approximation Ii
.
= (2π)

q
2 det(Γi)

− 1
2Ji(b̃i). This approximation is satisfactory

when mi is large, but unsatisfactory when mi is small.

Prediction

In the context of repeated measures over time, if we want to predict the value of Yij at a

future time for individual i, we need a “guess” of bi. The most natural guess (minimum mean

square error) would be the conditional expectation

b̂i = E[bi|Yi],

with Yi = [Yi1 · · ·Yi,mi
]T . This is obtained as follows. By Bayes’ theorem, the conditional

density of bi given Yi is given by

fbi|Yi
(bi|Yi) =

fYi|bi
(Yi|bi)fbi

(bi)

fYi
(Yi)

,

where fYi|bi
(Yi|bi) = Qi(bi), fbi

(bi) = ϕq(bi,G), and fYi
(Yi) is the marginal probability

function of Yi, given by

fYi
(Yi) =

∫
fYi|bi

(Yi|bi)dbi.

We thus have

b̂i = E[bi|Yi] =

∫
bifYi|bi

(Yi|bi)fbi
(bi)dbi

fYi
(Yi)

.

However, instead of using the expectation of the conditional distribution fbi|Yi
(bi|Yi), SAS

PROC NLMIXED uses the mode of this distribution, which is precisely the quantity b̃i defined

previously. If mi is large, then b̂i and b̃i will be similar. However, in many (probably most)
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applications, mi is small, and in these situations the approach NLMIXED takes is not really

satisfactory.

The OUT=dataset option in the RANDOM statement of NLMIXED outputs these b̃i’s. It also

outputs corresponding standard errors of prediction. The standard errors are computed based

on an approximation under which b̃i is taken to be approximately distributed as N(bi,Γ
−1
i ).

Since Γi depends on unknown parameters for which estimates are substituted, NLMIXED adds

an extra term to the standard error of prediction to account for this estimation; this extra term

is computed based on a delta method calculation.

The PREDICT statement in NLMIXED generates predicted values of functions of β,G, and

bi, such as Pr(Yij = 1|bi). These are produced by plugging in the maximum likelihood estimates

of β and G(φ), and plugging b̃i in place of bi. NLMIXED computes corresponding standard

errors using the delta method.
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