
Model Checking in Logistic Regression

The purpose of these notes is to discuss model checking for logistic regression. At the end of

the notes, I provide a sample SAS program for implementing the tools.

In classical linear regression, model checking is carried out by examining the residuals ei =

Yi− Ŷi. We do plots of ei vs. Ŷi and plots of ei versus Xij for each specific covariate in the model

(indexed by j). The latter type of plot can also be done for X’s that are not yet in the model

but are under consideration.

This approach does not carry over directly to case of logistic regression. In logistic regression,

the Y ’s are all either 0 or 1, so if we do a plot of ei = Yi − p̂i, with p̂i = P̂r(Yi = 1|Xi), we will

get a plot that has a jumpy appearance and therefore not very useful. In order to carry out a

meaningful residual analysis for logistic regression, it is necessary to do some averaging first.

Suppose we want to do a plot in the spirit of the linear regression plot of ei vs. Ŷi. We can

proceed as follows. First we compute

p̂i = P̂r(Yi = 1|Xi) =
eβ̂

TXi

1 + eβ̂TXi

.

The p̂i values, being probabilities, lie in the range [0,1]. We divide up the range [0,1] into K

intervals, which we will denote by Ik, k = 1, . . . , K. We denote by nk the number of observations

that fall in interval k. There are two main ways to do the split. One way is to split into equal-sized

intervals, so that Ik = ((k − 1)/K, k/K]. The other way is to do the split in such a way that the

nk’s are roughly equal across the intervals. The second approach is often better, especially when

the sample size is small to moderate.

Now, let Ck denote the set of observations i for which p̂i ∈ Ik, and define the averages

Ȳk =
1

nk

∑
i∈Ck

Yi,

p̄k =
1

nk

∑
i∈Ck

p̂i
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and then

rk =
Ȳk − p̄k√

p̄k(1− p̄k)/nk
,

`k = logit(Ȳk)− logit(p̄k),

where logit(u) = log(u/(1− u)). A plot of rk vs. p̄k can be used for outlier detection; if the fitted

model is correct, we expect rk to be distributed approximately as N(0, 1) (if the intervals are

narrow enough). A plot of `k vs. p̄k can be used to identify trends pointing to the need to add

nonlinear terms to the model. It is useful to apply a nonparametric curve-fitting method such as

LOESS to the points (p̄k, `k) to get an idea of the trend.

A global goodness of fitness test can be carried out by examining

χ2 =
K∑
k=1

r2k,

which, under the null hypothesis that the fitted model is correct, has an approximate χ2 distri-

bution. This test is discussed on page 72 of the Cox and Snell (1989) book, and also by Hosmer

and Lemeshow in their 2000 book Applied Logistic Regression and in some previous papers they

published. The test is commonly known as the “Hosmer-Lemeshow” test. There are various

proposals for what degrees of freedom parameter to use for the chi-square distribution used in

the test. Cox and Snell recommend K − (p+ 1) degrees of freedom, with p being the number of

variables in the model. This proposal is workable only if the data set is large enough to allow

K to be taken to be reasonably large. The test can be carried out in SAS PROC LOGISTIC

using the LACKFIT option, but PROC LOGISTIC forces K = 10. In the PROC LOGISTIC

implementation, the default degrees of freedom is K − 2, but the user can specify a different

choice. My SAS code below allows arbitrary K.

In terms of the choice of K, there is no firm rule. PROC LOGISTIC, as I said, forces K = 10.

It is reasonable to do the plots for a few choices of K to see what happens.

The same type of scheme can be used to a plot in the spirit of an ei vs. Xij plot for a given

covariate. Here, we break up the range of the variable Xj into K intervals Ik, and then we

compute rk and `k as above. In addition, we compute (X̄j)k = n−1k
∑

i∈Ck
Xij. We then do plots

of rk vs. (X̄j)k and `k vs. (X̄j)k. The latter plot is particularly useful for identifying trends.
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Sample SAS Code

options nocenter nodate ls=80 pageno=1;

** READ DATA **;

data indat;

infile ’c:\users\david\desktop\test.txt’;

input Y X1-X5;

** RUN LOGISTIC MODEL AND PUT OUT PREDICTED VALUES **;

proc logistic descending;

model Y = X1-X5;

output out=odat p=predval;

run;

** CREATE GROUPS BASED ON VALUE OF X1 **;

proc rank;

var X1;

ranks rnkprd;

run;

data groups;

set;

*k = [here input the desired number of groups];

*n = [here input the number of observations in the dataset];

k = 50;

n = 5362;

rnk = k * rnkprd / n;

grp = int(rnk-.001) + 1;

** COMPUTE \bar{p}_k, r_k, and \ell_k **;

proc sort;

by grp;

run;

proc means noprint;

by grp;

var X1 predval Y X1;

output out=gmeans mean = xbar pbar ybar n(X1)=ng;

run;

data smeans;

set gmeans;

resid = ybar - pbar;

pvar = pbar * (1-pbar) / ng;

r_k = resid/sqrt(pvar);

lym = log(ybar/(1-ybar));

lpm = log(pbar/(1-pbar));

ell_k = lym - lpm;

keep xbar r_k ell_k;

** GRAPH OF r_k VERSUS X1 - THIS IS TO CHECK FOR OUTLIER RESIDUALS **;
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symbol1 color=black value=dot;

proc gplot;

plot r_k*xbar;

run;

** GRAPH OF \ell_k VERSUS X1 - THIS IS TO CHECK FOR NONLINEAR TREND **;

symbol1 color=black value=dot;

proc gplot;

plot ell_k*xbar;

run;

** CREATE NONPARAMETRIC REGRESSION CURVE BASED ON ABOVE PLOT **;

proc loess;

model ell_k = xbar / degree=2 direct scale=sd

smooth=0.2 0.4 0.6 0.8 1.0;

ods output outputstatistics=ldat1;

run;

** PLOT THE ORIGINAL POINTS AND THE SMOOTH CURVE ON THE SAME GRAPH **;

proc sort data=ldat1;

by smoothingparameter xbar;

run;

symbol1 color=black value=dot;

symbol2 color=black interpol=spline value=none;

proc gplot data=ldat1;

by smoothingparameter;

plot (depvar pred) * xbar / overlay;

run;
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